A. R. Pries, D. Neuhaus, and P. Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit, Am. J. Physiol, vol.263, p.1770, 1992.

T. W. Secomb and A. R. Pries, Blood viscosity in microvessels: Experiment and theory, C. R. Phys, vol.14, p.470, 2013.

G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli, and S. Guido, Red blood cell deformation in microconfined flow, Soft Matter, vol.5, p.3736, 2009.

S. Quint, A. F. Christ, A. Guckenberger, S. Himbert, L. Kaestner et al., 3D tomography of celles in micro-channels, Appl. Phys. Lett, vol.111, p.103701, 2017.

V. Vitkova, M. Mader, and T. Podgorski, Deformation of vesicles flowing through capillaries, Europhys. Lett, vol.68, p.398, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01261887

F. Risso, F. Colle-paillot, and M. Zagzoule, Experimental investigation of a bioartificial capsule flowing in a narrow tube, J. Fluid Mech, vol.547, p.149, 2006.

I. Cantat, Liquid meniscus friction on a wet plate: Bubbles, lamellae, and foams, Phys. Fluids, vol.25, p.31303, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00819785

A. Huerre, O. Theodoly, A. M. Leshansky, M. Valignat, I. Cantat et al., Droplets in microchannels: Dynamical properties of the lubrication film, Phys. Rev. Lett, vol.115, p.64501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201928

A. Yazdani and P. Bagchi, Three-dimensional numerical simulation of vesicle dynamics using a fronttracking method, Phys. Rev. E, vol.85, p.56308, 2012.

S. Mendez, E. Gibaud, and F. Nicoud, An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers, J. Comput. Phys, vol.256, p.465, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00871557

H. Zhang and C. Misbah, Lattice boltzmann simulation of advection-diffusion of chemicals and applications to blood flow, Comput. Fluids, vol.187, p.46, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02397342

H. Noguchi and G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows, Proc. Natl. Acad. Sci. USA, vol.102, p.14159, 2005.

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Systematic coarse-graining of spectrin-level red blood cell models, Comput. Methods Appl. Mech. Eng, vol.199, p.1937, 2010.

L. Lanotte, J. Mauer, S. Mendez, D. A. Fedosov, J. Fromental et al., Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions, Proc. Natl. Acad. Sci. USA, vol.113, p.13289, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435953

D. Barthès-biesel, Motion and deformation of elastic capsules and vesicles in flow, Annu. Rev. Fluid Mech, vol.48, p.25, 2016.

D. Abreu, M. Levant, V. Steinberg, and U. Seifert, Fluid vesicles in flow, Adv. Colloid. Interface Sci, vol.208, p.129, 2014.

J. B. Freund, Numerical simulation of flowing blood cells, Annu. Rev. Fluid Mech, vol.46, p.67, 2014.

C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, 1992.

E. Lac and J. D. Sherwood, Motion of a drop along the centreline of a capillary in a pressure-driven flow, J. Fluid Mech, vol.640, p.27, 2009.

M. Nagel and F. Gallaire, Boundary elements method for microfluidic two-phase flows in shallow channels, Comput. Fluids, vol.107, p.272, 2015.

X. Hu, A. Salsac, and D. Barthès-biesel, Flow of a spherical capsule in a pore with circular or square cross-section, J. Fluid Mech, vol.705, p.176, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02019758

G. Boedec, M. Leonetti, and M. Jaeger, 3D vesicle dynamics simulations with a linearly triangulated surface, J. Comput. Phys, vol.230, p.1020, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00717365

A. Farutin, T. Biben, and C. Misbah, 3D numerical simulations of vesicle and inextensible capsule dynamics, J. Comput. Phys, vol.275, p.539, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00841996

G. Boedec, M. Leonetti, and M. Jaeger, Isogeometric FEM-BEM simulations of drop, capsule and vesicle dynamics in Stokes flow, J. Comput. Phys, vol.342, p.117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01590257

J. M. Barakat and E. S. Shaqfeh, Stokes flow of vesicles in a circular tube, J. Fluid Mech, vol.851, p.606, 2018.

J. M. Barakat, S. M. Ahmmed, S. A. Vanapalli, and E. S. Shaqfeh, Pressure-driven flow of a vesicle through a square microchannel, J. Fluid Mech, vol.861, p.447, 2019.

C. Pozrikidis, Axisymmetric motion of a file of red blood cells through capillaries, Phys. Fluids, vol.17, p.31503, 2005.

H. Zhao, A. H. Isfahani, L. Olson, and J. Freund, A spectral boundary integral method for flowing blood cells, J. Comput. Phys, vol.229, p.3726, 2010.

U. Seifert, K. Berndl, and R. Lipowsky, Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models, Phys. Rev. A, vol.44, p.1182, 1991.

R. Lipowsky, The conformation of membranes, Nature, vol.349, p.475, 1991.

P. M. Vlahovska, D. Barthes-biesel, and C. Misbah, Flow dynamics of red blood cells and their biomimetic counterparts, C. R. Phys, vol.14, p.451, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881110

J. M. Barakat and E. S. Shaqfeh, The steady motion of a closely fitting vesicle in a tube, J. Fluid Mech, vol.835, p.721, 2018.

R. Trozzo, G. Boedec, M. Leonetti, and M. Jaeger, Axisymmetric boundary element method for vesicles in a capillary, J. Comput. Phys, vol.289, p.62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01281961

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, Flow of axisymmetric red blood cells in narrow capillaries, J. Fluid Mech, vol.163, p.405, 1986.

A. Farutin and C. Misbah, Symmetry breaking of vesicle shapes in Poiseuille flow, Phys. Rev. E, vol.84, p.11902, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00908801

G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, Shape diagram of vesicles in Poiseuille flow, Phys. Rev. Lett, vol.108, p.178106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909427

W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch, vol.28, p.693, 1973.

O. Zhong-can and W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A, vol.39, p.5280, 1989.

A. Guckenberger, M. P. Schraml, P. G. Chen, M. Leonetti, and S. Gekle, On the bending algorithms for soft objects in flows, Comput. Phys. Commun, vol.207, p.1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314722

R. Bruinsma, Rheology and shape transitions of vesicles under capillary flow, Physica A, vol.234, p.249, 1996.

G. Boedec, M. Leonetti, and M. Jaeger, 3D vesicle dynamics simulations with a linearly triangulated surface, J. Comput. Phys, vol.230, p.1020, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00717365

C. Pozrikidis, Numerical simulation of cell motion in tube flow, Ann. Biomed Eng, vol.33, p.165, 2005.

N. Liron and R. Shahar, Stokes flow due to a Stokeslet in a pipe, J. Fluid Mech, vol.86, p.727, 1978.

P. Canham and A. Burton, Distribution of size and shape in populationsof normal human red cells, Circulation Res, vol.22, p.405, 1968.

F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech, vol.10, p.166, 1961.

R. Lipowsky, Coupling of bending and stretching deformations in vesicle membranes, Adv. Colloid. Interface Sci, vol.208, p.14, 2014.

G. Hetsroni, S. Haber, and W. , The flow fields in and around a droplet moving axially within a tube, J. Fluid Mech, vol.41, p.689, 1970.

H. Brenner, Pressure drop due to the motion of neutrally buoyant particles in duct flows, J. Fluid Mech, vol.43, p.641, 1970.

B. Kaoui, G. Biros, and C. Misbah, Why do red blood cells have asymmetric shapes even in a symmetric flow?, Phys. Rev. Lett, vol.103, p.188101, 2009.

M. J. Lighthill, Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes, J. Fluid Mech, vol.34, p.113, 1968.

R. M. Hochmuth and S. P. Sutera, Spherical caps in low Reynolds-number tube flow, vol.25, p.593, 1970.