
HAL Id: hal-02413965
https://hal.science/hal-02413965v2

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Core Scientific Dataset Model: A lightweight and
portable model and file format for multi-dimensional

scientific data
Deepansh J Srivastava, Thomas Vosegaard, Dominique Massiot, Philip

Grandinetti

To cite this version:
Deepansh J Srivastava, Thomas Vosegaard, Dominique Massiot, Philip Grandinetti. Core Scientific
Dataset Model: A lightweight and portable model and file format for multi-dimensional scientific data.
PLoS ONE, 2020, 15, pp.e0225953. �10.1371/journal.pone.0225953�. �hal-02413965v2�

https://hal.science/hal-02413965v2
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Core Scientific Dataset Model: A lightweight

and portable model and file format for multi-

dimensional scientific data

Deepansh J. Srivastava1, Thomas Vosegaard2, Dominique MassiotID
3, Philip

J. GrandinettiID
1*

1 Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United

States of America, 2 Laboratory for Biomolecular NMR Spectroscopy, Department of Molecular and Structural

Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, 3 CEMHTI UPR3079 CNRS, Univ. Orléans, F-

45071 Orléans, France

* grandinetti.1@osu.edu

Abstract

The Core Scientific Dataset (CSD) model with JavaScript Object Notation (JSON) serializa-

tion is presented as a lightweight, portable, and versatile standard for intra- and interdisci-

plinary scientific data exchange. This model supports datasets with a p-component

dependent variable, {U0, . . ., Uq, . . ., Up−1}, discretely sampled at M unique points in a d-

dimensional independent variable (X0, . . ., Xk, . . ., Xd−1) space. Moreover, this sampling is

over an orthogonal grid, regular or rectilinear, where the principal coordinate axes of the grid

are the independent variables. It can also hold correlated datasets assuming the different

physical quantities (dependent variables) are sampled on the same orthogonal grid of inde-

pendent variables. The model encapsulates the dependent variables’ sampled data values

and the minimum metadata needed to accurately represent this data in an appropriate coor-

dinate system of independent variables. The CSD model can serve as a re-usable building

block in the development of more sophisticated portable scientific dataset file standards.

1 Introduction

A frustrating and common problem faced by scientists in many disciplines is the lack of a por-

table scientific dataset format and universal standards for exchanging and archiving multi-

dimensional datasets—both experimental and computational. Scientific datasets are too often

saved in vendor-specific file-formats using proprietary software, making archiving and data-

exchange problematic even within a discipline, let alone across disciplines. A majority of scien-

tists rely on vendor-specific proprietary software to interact with their datasets. These scientists

are at a constant risk that the original dataset files could become unreadable if a future version

of the software stops supporting older file formats or the vendor stops supporting the software,

or even worse, goes out of business.

As a result of such risks and incompatibilities, many scientists resort to using comma-sepa-

rated values (CSV) files for dataset exchange and archival. Such an approach, however, is not

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 1 / 38

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Srivastava DJ, Vosegaard T, Massiot D,

Grandinetti PJ (2020) Core Scientific Dataset

Model: A lightweight and portable model and file

format for multi-dimensional scientific data. PLoS

ONE 15(1): e0225953. https://doi.org/10.1371/

journal.pone.0225953

Editor: Ayyalusamy Ramamoorthy, University of

Michigan, UNITED STATES

Received: September 24, 2019

Accepted: November 3, 2019

Published: January 2, 2020

Copyright: © 2020 Srivastava et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by US National

Science Foundation under Grant No. DIBBS OAC

1640899, https://www.nsf.gov (PJS), and

European Commission (H2020 Future and

Emerging Technologies Grant 731475 and

Research Infrastructures Grant 731005), https://ec.

europa.eu/info/index_en (TV). The funders had no

role in study design, data collection and analysis,

http://orcid.org/0000-0003-1207-7040
http://orcid.org/0000-0003-0102-316X
https://doi.org/10.1371/journal.pone.0225953
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225953&domain=pdf&date_stamp=2020-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225953&domain=pdf&date_stamp=2020-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225953&domain=pdf&date_stamp=2020-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225953&domain=pdf&date_stamp=2020-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225953&domain=pdf&date_stamp=2020-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225953&domain=pdf&date_stamp=2020-01-02
https://doi.org/10.1371/journal.pone.0225953
https://doi.org/10.1371/journal.pone.0225953
http://creativecommons.org/licenses/by/4.0/
https://www.nsf.gov
https://ec.europa.eu/info/index_en
https://ec.europa.eu/info/index_en


resourceful, especially in the case of multi-dimensional datasets. Furthermore, such

approaches often leave out essential metadata about experimental or computational proce-

dures. Other scientists resort to specialized library packages to import datasets from the ven-

dor-specific file formats into their favorite programming languages such as Matlab, Python, R,

Java, or use the third-party software for dataset imports. This is only a temporary fix since it

just delays the original problem as the dataset files are translated to yet another third-party

software or user-specific file-format—and again, often with metadata loss.

With increasing pressure from the funding agencies and scientific journals to archive and

share primary and processed data, there is a growing sense of urgency for a stable, resourceful

and future-proof file-format for the exchange of scientific datasets. Here we take the first step

in addressing this problem by proposing a Core Scientific Dataset (CSD) Model that can encode

a wide variety of multi-dimensional and correlated datasets. The objective of the CSD model

is to encapsulate the data values and theminimummetadata needed to accurately represent

the data in an appropriate coordinate system. We envision the CSD model as a re-usable build-

ing block in a hierarchical description of more sophisticated portable scientific dataset file

standards.

2 Overview of CSD model

The CSD model supports a dataset of a continuous physical quantity (dependent variable)

discretely sampled on a multi-dimensional grid with vertexes associated with one or more

independent quantities (dimensions), e.g., a density as a function of temperature, a current as

a function of voltage and time, an ionization energy as a function of element symbol, etc.

Similarly, the CSD model supports a dataset with a multi-component dependent variable.

For example, a color image with a red, green, and blue (RGB) light intensity components as a

function of two independent spatial dimensions, or the six components of the symmetric sec-

ond-rank diffusion tensor MRI dataset as a function of three independent spatial dimensions.

In the CSD model, a dataset is defined as an p-component dependent variable, {U0, . . ., Uq, . . .,

Up−1}, discretely sampled atM unique points in a d-dimensional (X0, . . ., Xk, . . ., Xd−1) space.

Moreover, this sampling is over an orthogonal grid, regular or rectilinear, where the principal

coordinate axes of the grid are the dimensions. A regular grid is an orthogonal grid where the

spacing between vertex coordinates along each dimension is uniform. If the spacing along any

one of the dimensions is not uniform, the grid is rectilinear.

The CSD model can also hold multiple datasets when different physical quantities (depen-

dent variables) are sampled on the same multi-dimensional (independent variables) grid. We

refer to this case as correlated datasets. One such example would be the simultaneous sampling

of current and voltage as a function of time. Another example would be datasets for air tem-

perature, pressure, wind velocity, and solar-flux, all simultaneously sampled on a two-dimen-

sional grid associated with the same region of latitude and longitude coordinates.

We adopt the JavaScript Object Notation (JSON) as the file-serialization format [1] for the

CSD model because it is human-readable, if properly organized, as well as easily integrable
with any number of programming languages and field related application-software.

2.1 UML class diagram

The schema for the CSD model, in the form of a UML class diagram [2], is shown in Fig 1. In

such diagrams, each class is represented with a box that contains two compartments. The top

compartment contains the name of the class, and the bottom compartment contains the attri-

butes of the class. A composition is depicted as a binary association decorated with a filled

black diamond. Inheritance is shown as a line with a hollow triangle as an arrowhead.

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 2 / 38

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0225953


Each line in the bottom compartment of a box describes a single attribute of the class in the

form:

name:type ½multiplicity� ¼default fpropertiesg

In this line name is the name of an attribute in the class, type defines the kind of object

that may be placed in the attribute, multiplicity indicates how many objects are assigned

Fig 1. Unified Modeling Language (UML) [2] class diagram of the Core Scientific Dataset (CSD) Model. Each class is represented with

a box that contains two compartments. The top compartment contains the name of the class, and the bottom compartment contains the

attributes of the class. The enumerations DimObjectSubtype and DVObjectSubtype are described in Tables 1 and 2 as the description of

the type attribute. The enumerations QuantityType, NumericType, and EncodingType are described in Tables 3, 4 and 5, respectively.

The enumeration UnsignedIntegerType is a subset of NumericType enumeration with only unsigned integers. The ScalarQuantity
represents a physical quantity containing a numerical value and a unit. Note: When encoding is base64 the type and multiplicity for

the components attribute in InternalDependentVariable is String[1..�]. Similarly, when encoding is base64 the

type and multiplicity for the sparse_grid_vertexes attribute in SparseSampling is String[1].

https://doi.org/10.1371/journal.pone.0225953.g001

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 3 / 38

https://doi.org/10.1371/journal.pone.0225953.g001
https://doi.org/10.1371/journal.pone.0225953


to the attribute. The multiplicity can be a single number, e.g., “[1]”, indicating that one

object must be assigned to the attribute. Alternatively, the multiplicity can be given as a lower

and upper bound for how many objects can be assigned to the attribute, e.g., “[0..1]” indi-

cates that the assignment of a single object to an attribute is optional. An asterisk indicates an

unlimited number of objects. For example, an attribute with a multiplicity of “[1..�]” must

have no less than one object and an unlimited upper bound of objects that can be assigned

to it. The default is the object assigned when an optional attribute is unspecified. The

{properties} value at the end of the line gives additional information on the attribute. In

Table 1. The description of the attributes from the Dimension class in version 1.0 of the CSD model.

Dimension

attribute description

type Required attribute for all Dimension objects. Holds a String object with one of the allowed DimObjectSubtype enumeration

literals—linear, monotonic or labeled.

labels Required attribute for LabeledDimension objects. Holds an ordered and unique array of String objects containing UTF-8 allowed

characters. Invalid for LinearDimension and MonotonicDimension objects.

coordinates Required attribute for MonotonicDimension objects. Holds an ordered and unique array of strictly increasing or decreasing

ScalarQuantity objects along the dimension. The dimensionality of ScalarQuantity objects must be consistent with each other

and other dimension attributes. Invalid for LinearDimension and LabeledDimension objects.

count Required attribute for LinearDimension objects. Holds an Integer object specifying the number of coordinates, Nk, along the

dimension. Invalid for MonotonicDimension and LabeledDimension objects.

increment Required attribute for LinearDimension objects. Holds a ScalarQuantity object specifying the increment, Δxk, along the

dimension. Invalid for MonotonicDimension and LabeledDimension objects.

coordinates_offset Optional attribute for LinearDimension objects. Holds a ScalarQuantity object specifying the coordinates offset, bk, used in Eq

(3) to calculate the coordinates along the dimension. The default value is a physical quantity with a numerical value of zero. Invalid for

MonotonicDimension and LabeledDimension objects.

origin_offset Optional attribute for LinearDimension and MonotonicDimension objects. Holds a ScalarQuantity object specifying the

origin offset, ok, along the dimension. The default value is a physical quantity with a numerical value of zero. Invalid for

LabeledDimension objects.

complex_fft Optional attribute for LinearDimension objects. Holds a Boolean specifying how the coordinate, Bk, along the dimension are

calculated from Eq (3). When false, the value of Zk = 0 otherwise, Zk = Tk/2 where Tk = Nk and Nk − 1 for even and odd values of Nk,
respectively. Invalid for MonotonicDimension and LabeledDimension objects.

period Optional attribute for MonotonicDimension and LinearDimension objects. Holds a ScalarQuantity object specifying the

period of the dimension. The default value is a physical quantity with an infinite numerical value, that is, the absence of this key indicates

that the dimension is non-periodic. When present it indicates that all dependent variables are periodic along the dimension. A

ScalarQuantity object with a numerical value of zero is invalid for this attribute. Invalid for LabeledDimension objects.

quantity_name Optional attribute for MonotonicDimension and LinearDimension objects. Holds a String object containing the quantity
name associated with the dimension. This value may resolve ambiguities which may otherwise be inherent. For example, with only a unit

of “J/(mol�K)”, one cannot distinguish between the thermodynamic quantities ‘molar entropy’ and ‘molar heat capacity.’ Similarly, the

units “1/s”, “Bq”, and “Hz” all have the dimensionality of inverse time, but generally “Bq” would be an acceptable unit for the

quantity of radioactivity and “Hz” for frequency. If unspecified the valid quantity name is left at the end-user’s discretion. A list of

CSDM-accepted physical quantity names and their corresponding dimensionalities can be found in the supporting information. Invalid
for LabeledDimension objects.

label Optional attribute for all Dimension objects. Holds a String object of UTF-8 allowed characters containing the label for the

Dimension object. The default value is an empty string.

description Optional attribute for all Dimension objects. Holds a String object of UTF-8 allowed characters describing an instance of the

Dimension object. The default value is an empty string.

reciprocal Optional attribute for MonotonicDimension and LinearDimension objects. Holds a ReciprocalDimension object. See Fig 1

for the list of attributes in this object. These attributes follow the same definitions as described in this Table with the only difference being

that these attributes describe the reciprocal dimension. Invalid for LabeledDimension objects.

application Optional attribute for all Dimension objects. Holds a generic dictionary object. See section 2.5 for expected behavior.

There are three subtypes of this class—LinearDimension, MonotonicDimension, and LabeledDimension. See Fig 1 for the list of valid attributes for a

given subtype. If an attribute is optional, its value should only be serialized to the file if it is not the default value. As a recommendation, when deserializing a JSON file

the numerical value associated with the physical quantities should be converted to a 32-bit or higher floating-point number.

https://doi.org/10.1371/journal.pone.0225953.t001

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 4 / 38

https://doi.org/10.1371/journal.pone.0225953.t001
https://doi.org/10.1371/journal.pone.0225953


Fig 1 this is used to indicate whether a set of objects assigned to an attribute is ordered and/or

unique.

For object attribute names we adopt the “snake case” convention with all lower case charac-

ters and “camel case” for class or type names. Attribute value types used in the model are given

in Table 6 along with the corresponding JSON value type used for serialization of the model.

Of particular importance in the CSD model is the ScalarQuantity type, which is com-

posed of a numerical value and any valid SI unit symbol or any number of accepted non-SI

unit symbols. It is serialized in the JSON file as a string containing a numerical value followed

by the unit symbol, for example, “3.4 m” (SI) or “2.3 bar” (non-SI). The CSD model fol-

lows the International System of Units guideline [3] for defining the physical quantities. In

software usage, one must adhere to stricter conventions for unit and physical constant symbols

to avoid ambiguities and symbol collisions. All unit symbols are case sensitive. For derived

Table 2. The description of the attributes from the DependentVariable class in version 1.0 of the CSD model.

DependentVariable

attribute description

type Required attribute for all DependentVariable objects. Holds a String object with one of the two allowed DVObjectSubtype
enumeration literals—internal or external.

components Required attribute for InternalDependentVariable objects. Holds an ordered array of p components. When the value of encoding
attribute is none each component, Uq, is an ordered array of numerical values. When the value of the encoding attribute is base64, each

component is a Base64 string. Invalid for ExternalDependentVariable objects.

components_url Required attribute for ExternalDependentVariable objects. Holds a String object containing the Uniform Resource Locator

(URL) of a local or a remote file where the ordered array of numerical values {U0, . . .,Uq, . . ., Up} are stored as binary data. The CSD model

utilizes the https and file schemes for locating the files. For local data files, the URL is specified relative to the .csdfe file and is located

either in the folder containing the .csdfe file or in a subfolder of the folder containing the .csdfe file. The corresponding syntax follows

file:./relative/path/to/the/file. Invalid for InternalDependentVariable objects.

quantity_type Required attribute for all DependentVariable objects. Holds a String object with any of the allowed QuantityType enumeration

literals from Table 3. The value specifies the number, p, and interpretation of the DependentVariable components.

numeric_type Required attribute for all DependentVariable objects. Holds a String object with one of the allowed NumericType enumeration

literals from Table 4. This value represents the numeric type and the number of bits associated with each numerical value in Eq (5) when the

component data is stored in an external file or when Base64 encoded into a string. When numerical values are expressed as JSON numbers,

this value specifies the numerical precision needed for import.

unit Optional attribute for all DependentVariable objects. Holds a String object representing the unit associated with the data values in Eq

(5). The default value is “”, i.e., the data values are dimensionless.

quantity_name Optional attribute for all DependentVariable objects. Holds a String object containing the quantity name associated with the physical

quantity. See the description for the quantity_name attribute in Table 1 for further details.

encoding Optional attribute for InternalDependentVariable objects. Holds a String object with one of the allowed EncodingType
enumeration literals in Table 5. This value specifies the encoding method used to store the data values in the components attribute. The

default value is none. Invalid for ExternalDependentVariable objects.

component_labels Optional attribute for all DependentVariable objects. Holds an ordered array of String objects where the qth String is the label

associated with the qth component. The default value is an ordered set of empty strings.

name Optional attribute for all DependentVariable objects. Holds a String object of UTF-8 allowed characters containing the name

associated with the dependent variable. Naming is good practice as it improves the human readability of the serialized file when multiple

dependent variables might be present. The default value is an empty string.

description Optional attribute for all DependentVariable objects. Holds a String object of UTF-8 allowed characters describing an instance of the

DependentVariable. The default value is an empty string.

sparse_sampling Optional attribute for all DependentVariable objects. Holds a SparseSampling object, which contains the attributes

dimension_indexes and sparse_grid_vertexes. The attribute dimension_indexes holds an array of integers indicating

which dimensions in the ordered array of dimensions are sparsely sampled and form the sparse grid. The attribute

sparse_grid_vertexes holds an array of integers defining the ordered set of sampled vertexes on the sparse grid. See section 2.4.1 for

further details.

application Optional attribute for all DependentVariable objects. Holds a generic dictionary object. See section 2.5 for expected behavior.

If an attribute is optional, its value may only be serialized to the file if it is not the default value.

https://doi.org/10.1371/journal.pone.0225953.t002

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 5 / 38

https://doi.org/10.1371/journal.pone.0225953.t002
https://doi.org/10.1371/journal.pone.0225953


Table 4. NumericType enumeration literals allowed in version 1.0 of the CSD model.

literals description

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

uint64 64-bit unsigned integer

int8 8-bit signed integer

int16 16-bit signed integer

int32 32-bit signed integer

int64 64-bit signed integer

float32 32-bit floating-point number

float64 64-bit floating-point number

complex64 two 32-bit floating-points numbers

complex128 two 64-bit floating-points numbers

The literal is a String object corresponding to the value of the numeric_type attribute of the

DependentVariable object.

https://doi.org/10.1371/journal.pone.0225953.t004

Table 3. QuantityType enumeration literals allowed in version 1.0 of the CSD model.

literals description

scalar This value represents a p = 1, single-component dependent variable where the ith data value is interpreted as a scalar value, Si ¼ U0;i .

vector_n The value represents a p = n component dependent variable where the ith data value is interpreted as a vector,Vi ¼ ½U0;i;U1;i; . . .Un� 1;i�.

matrix_m_n The value represents a p =mn component dependent variable where the ith data value is interpreted as am × nmatrix, with m rows and n columns.

The p components of the matrix are in column-major order.

Mi ¼

U0;i Um;i . . . Uðn� 1Þm;i

U1;i Umþ1;i . . . Uðn� 1Þmþ1;i

..

. ..
. ..

. ..
.

Um� 1;i U2m� 1;i . . . Unm� 1;i

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:

Here, the entry at the rth row and the cth column is Ucm+r,i.

symmetric_matrix_n The value represents a p ¼ nðnþ1Þ

2
component dependent variable. This is a special case of matrix data value where n =m and the matrix is symmetric

about the leading diagonal. In this case, only the upper half of the matrix is specified. The n × n symmetric matrix, MðsÞ
i , of the ith data value is

interpreted as,

MðsÞ
i ¼

U0;i U1;i . . . Un� 1;i

U1;i Un;i . . . U2n� 2;i

..

. ..
. ..

. ..
.

Un� 1;i U2n� 2;i . . . Unðnþ1Þ

2
� 1;i

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:

pixel_n The value represents a p = n component dependent variable where the ith data value is interpreted as a pixel, [U0,i, U1,i, . . ., Un−1,i], with the n
components corresponding to pixel component intensities. Note this quantity type, as do all quantity types, is restricted to components that share the

same physical dimensionality, i.e., can be added or subtracted, making it, for example, appropriate for holding RGB or CMYK components but not

HSV components.

The literals are String objects and correspond to the value of the quantity_type attribute of the DependentVariable object. In the description, the index i
refers to the ith data value from the ordered array, Uq, in Eq (5).

https://doi.org/10.1371/journal.pone.0225953.t003

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 6 / 38

https://doi.org/10.1371/journal.pone.0225953.t004
https://doi.org/10.1371/journal.pone.0225953.t003
https://doi.org/10.1371/journal.pone.0225953


unit symbols, the multiplication and division of the units are represented by the asterisk sym-

bol, “�”, and the solidus symbol, “/”, respectively. For example, a unit of speed is “m/s”.

Note that derived unit symbols in the CSD model require explicit use of the multiplication

symbol instead of multiplication implied with spacing between symbols, e.g., use “N�m”
instead of “N m”. Similarly, avoid the use of compound symbols, e.g., use “kW�h” instead of

“kWh”. The caret symbol, “^” is used for raising unit symbols to a power—a unit of force is

“kg�m^2/s^2”, and a unit of concentration is “g/cm^3”. Operator precedence can be

specified using parentheses, e.g., “J/(mol�K)”. Also, note that while both ˚C and ˚F are

valid units, they are not proper thermodynamic temperature units and are discouraged due to

their ambiguity. Further details on the SI system and how units are used in the CSD model are

given in the supporting information.

2.2 CSDM object

At the root level of the CSD model is the CSDM object. The CSDM object includes a

required version attribute whose value is a string representing the version number of

the CSD model, here assigned a string value of “1.0”. The optional timestamp attribute

indicates when the CSDM file was last serialized and holds a combined date and time string

Table 5. EncodingType enumeration literals allowed in version 1.0 of the CSD model.

literals description

base64 The binary data corresponding to the ordered array of numerical values in Uq from Eq (5) is stored as a

Base64 encoded strings for the numeric_type specified assuming ‘little-endian’ format. This is the

recommended storage method when the type attribute of the corresponding DependentVariable
object is internal.

none The literal denotes that the ordered array of numerical values from Eq (5) are serialized as JSON

numbers. This is the default encoding type when the encoding attribute is not present in the

DependentVariable object.

The literals are the String object corresponding to the value of the encoding attribute of the

DependentVariable object.

https://doi.org/10.1371/journal.pone.0225953.t005

Table 6. Mapping of CSD model attribute values to JSON serialized values.

CSD model attribute value type JSON value type

DependentVariable object

Dimension object

DimObjectSubtype string

DVObjectSubtype string

ScalarQuantity string

NumericType string

EncodingType string

QuantityType string

String string

Integer number

Boolean boolean

The relation between the CSD model attribute value types and the corresponding JSON serialized value type. In

JSON serialization the attribute name is the JSON key.

https://doi.org/10.1371/journal.pone.0225953.t006

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 7 / 38

https://doi.org/10.1371/journal.pone.0225953.t005
https://doi.org/10.1371/journal.pone.0225953.t006
https://doi.org/10.1371/journal.pone.0225953


representation of the Coordinated Universal Time (UTC) formatted according to the ISO-

8601 standard. The optional geographic_coordinate attribute indicates where the

CSDM file was last serialized and holds a GeographicCoordinate object, inside which

are three attributes: the required latitude and longitude, and the optional alti-
tude. Positive latitude values indicate latitudes north of the equator, while negative values

indicate latitudes south of the equator. Longitude values are relative to the zero meridian,

with positive values extending east of the meridian and negative values extending west of the

meridian. Positive altitudes indicate above sea level while negative values indicate below sea

level. All three are ScalarQuantity types. The optional boolean read_only attribute is

set to true for archived datasets—informing applications that the dataset should not be modi-

fied or overwritten. The optional tags attribute holds a set of UTF-8 allowed string values

describing keywords associated with the dataset. The description attribute appears in

nearly every CSD model object and holds a UTF-8 allowed string describing the instance of

the model object. The application attribute also appears in nearly every CSD model

object and is a generic object that can be used for storing application-specific metadata

within the CSD model. Further details on the expected behavior of application attri-

butes are given in section 2.5.

The dependent_variables and dimensions attributes each hold a set of Depen-
dentVariable and Dimension objects, respectively. The ordered and unique set of

Dimension objects, indexed from k = 0 to d − 1, define the d-dimensional coordinate grid

where discrete samples of the dependent variables are taken.

2.3 Dimension object

The mapping of grid vertexes along the kth dimension to an ordered set of coordinates, Xk, are

defined by one of three Dimension subtypes: LabeledDimension, MonotonicDi-
mension, and LinearDimension. Fig 1 gives the required and optional attributes along

with their default values for the three subtypes. Descriptions of the attributes for all three sub-

types are also given in Table 1, and examples of various instances are given in section 3.

2.3.1 LabeledDimension object. An ordered set, Ak, of Nk character string labels in the

labels attribute of a LabeledDimension object are mapped to the grid vertexes along

the kth dimension, becoming the ordered set of coordinates, Xk, along the dimension, as given

by

Xk ¼ Ak: ð1Þ

This is a purely qualitative dimension, with no physical significance given to the spacing

between grid vertexes along the dimension.

2.3.2 MonotonicDimension object. An ordered set, Ak, of Nk strictly ascending or

descending coordinates in the coordinates attribute of a MonotonicDimension
object are similarly mapped to the grid vertexes along the kth dimension and become the

ordered set of coordinates along the dimension, also given by Eq (1).

For the MonotonicDimension and LinearDimension objects, the CSD model

allows the mapping of grid vertexes along a dimension to an ordered set of absolute coordi-

nates, Xabs
k , using the origin_offset attribute according to

Xabs
k ¼ Xk þ ok1; ð2Þ

where ok is the value of the origin_offset attribute. Note, the ScalarQuantity
objects in Xk, and ok must all share the same unit dimensionality.

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 8 / 38

https://doi.org/10.1371/journal.pone.0225953


2.3.3 LinearDimension object. The ordered set of Nk uniformly spaced coordinates along

the kth LinearDimension object are given by

Xk ¼ Dxk ðJk � ZkÞ þ bk1; ð3Þ

where Δxk and bk are the ScalarQuantity objects in the increment and coordina-
tes_offset attributes, respectively, and Jk is an ordered set of coordinate indexes along the

kth dimension,

Jk ¼ ½0; 1; 2 . . . ; jk; . . . ;Nk � 1�: ð4Þ

Here, Nk is the Integer object in the count attribute. As before, the absolute coordi-

nates along the kth dimension are given by Eq (2). Again, the ScalarQuantity objects Δxk,
bk, and ok must all share the same unit dimensionality.

The Zk variable in Eq (3) is an integer with a value of Zk = 0 when the LinearDimension
attribute complex_fft is false. The complex_fft is set to true when a complex fast

Fourier transform (FFT) has been applied to the dataset along the kth dimension, and then the

value of Zk becomes Tk/2, where Tk =Nk andNk − 1 for even and odd values of Nk, respectively.

There are two reasons for the inclusion of the attribute complex_fft and the different val-

ues of Zk. First, it provides the metadata needed for determining whether a forward (false)

or reverse (true) complex FFT should be performed on the dataset. Second, a value of Zk =

Tk/2 in Eq (3) when complex_fft is true associates bk with the zero “frequency” after a

complex FFT. This definition makes bk independent of count and the increment in the

Reciprocal dimension, i.e., the dimension before the complex FFT.

2.3.4 ReciprocalDimension object. An optional attribute named reciprocal can be

present in both the LinearDimension and MonotonicDimension objects. This attri-

bute holds a ReciprocalDimension object which contains metadata about the coordinate

that is reciprocal to the Xk coordinate. This metadata is useful for datasets which are frequently

transformed into the reciprocal dimension, such as NMR, FTIR and x-ray datasets.

2.4 DependentVariable object

The DependentVariable object can be one of two subtypes: InternalDependent-
Variable and ExternalDependentVariable, depending on whether the serialized

components are stored internally with the rest of the serialized metadata or externally at a

location specified by a uniform resource locator (URL) [4], respectively. Descriptions of all

DependentVariable attributes are given in Table 2, as well as through examples given in

section 3. See Fig 1 for the required and optional attributes along with their default values.

A DependentVariable object holds an ordered set of p components indexed from

q = 0 to p − 1,

fU0; . . . ;Uq; . . . ;Up� 1g: ð5Þ

Each component, Uq, contains an ordered array ofM physical quantity values indexed from

i = 0 toM − 1. These values represent samples on the coordinates grid and are ordered to fol-

low a column-major order relative to the ordered set of dimensions. If Uq contains a sample at

every vertex of the d-dimensional grid, then

M ¼
Yd� 1

k¼0

Nk; ð6Þ

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 9 / 38

https://doi.org/10.1371/journal.pone.0225953


and the mapping of the values in Uq to the grid vertexes follows a simple reshaping of Uq to a

N0 × N1 × . . . × Nd−1 matrix where d is the number of Dimension objects. In this case, the

location or memory offset of the ith value in a component array maps to a grid vertex with

coordinate indexes, (j0, j1, . . ., jd−1), given by

jk ¼
i

Qk� 1

‘¼0
N‘

mod Nk; k ¼ 0; . . . ; d � 1: ð7Þ

Conversely, the memory offset of the ith value in a component array is obtained from the

ordered array of coordinate indexes (j0, j1, . . ., jd−1), according to

i ¼
Xd� 1

k¼0

�
Yk� 1

l¼0

Nl

�

jk: ð8Þ

It is also helpful to recall that the value of the empty product,
Qn

m am wherem> n is 1.

Taken together, the ith values from each of the p components form a quantity specified by

one of the quantity_type attribute values given in Table 3.

InternalDependentVariable. The components attribute in an InternalDepen-
dentVariable object holds an ordered array of p components, and each component, Uq,

is an ordered array ofM numerical values associated with the qth component. When the

value of the encoding attribute is none or unspecified, a JSON serialization of this object

gives a human-readable list of numerical values. This approach, however, is not resourceful

compared to the serialization of raw binary data. As JSON files are strictly text-based it is not

possible to serialize raw binary data inside a JSON file. A commonly used approach to reduce

JSON file sizes in such situations is to encode raw binary data into plain text using a binary-

to-text encoding scheme. The CSD model allows this approach with the raw binary data for

each component encoded into a Base64 string when the encoding attribute is set to

base64. In this case, JSON serialization of the components attribute in an Internal-
DependentVariable object holds an ordered array of p Base64 strings where the qth

string represents the array Uq. Out of the various binary-to-text encoding schemes, we chose

Base64 encoding because of its widespread use and easy access to decoders across most

object-oriented programming languages. Base64 provides an efficiency of �75% compared

to the serialization of raw binary data. When encoding and decoding raw binary data with

Base64 we assume a ‘little-endian’ byte order for multi-byte numeric types such as 32-bit and

64-bit integers or floats. Typically, data saved on Intel x86 platforms use the little-endian as

the native format. Also, binary floating-point standard IEEE 754 is assumed for float and

complex numeric types.

ExternalDependentVariable. The components_url attribute is only valid when the

value of the corresponding type attribute is external. Its value is a String object con-

taining the address of a local or a remote file where the ordered array of numerical values

{U0, . . .,Uq, . . ., Up} are stored as binary data. In this case we also assume little-endian byte

order and the binary floating-point standard IEEE 754 for float and complex numeric types.

The CSD model utilizes the https and file schemes of the Uniform Resource Locator

(URL) for locating the files. For local data files, the URL is specified relative to the .csdfe file

(see section 2.6) and is located either in the folder containing the .csdfe file or in a subfolder

of the folder containing the .csdfe file. The corresponding syntax follows, file:./rela-
tive/path/to/the/file.

2.4.1 SparseSampling object. Eqs (6), (7) and (8) are no longer valid when the Depen-
dentVariable components are sparsely sampled on the d dimensional grid. In this case,

additional metadata is required to determine the grid vertex, (j0, j1, . . ., jd−1), where the ith

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 10 / 38

https://doi.org/10.1371/journal.pone.0225953


sampled component value belongs. If the component is sparsely sampled along all d dimen-

sions, then the additional metadata can be an ordered set ofM grid vertexes. We must, how-

ever, consider the general mixed case of s fully sampled dimensions and d − s sparsely sampled

dimensions. In this case, we adopt an approach where the component values are organized

into a set of fully sampled s-dimensional cross-sections taken at vertexes of a sub-grid formed

from the sparsely sampled dimensions, which we will call the sparse grid. In adopting this

approach, we require that the component values along the fully sampled dimensions are packed
together into the array in column-major order relative to the ordered set of fully sampled dimen-
sions, i.e., excluding the sparsely sampled dimensions.

The SparseSampling object provides this metadata in its two attributes dimension_
indexes and sparse_grid_vertexes. The dimension_indexes attribute holds

an ordered and unique set of integers indicating along which dimensions the Dependent-
Variable is sparsely sampled. These dimensions form the sparse grid. The sparse_grid_
vertexes holds an ordered set of vertexes on the sparse grid. Each sparse grid vertex is

an ordered array of d − s indexes. To make the serialization more resourceful, we flatten the

ordered set of arrays intended for the sparse_grid_vertexes attribute into an ordered

array of integers, for example,

½½1; 0�; ½3; 4�; ½5; 7�; ½8; 11�; . . .� ! ½1; 0; 3; 4; 5; 7; 8; 11; . . .�;

in a case of two sparsely sampled dimensions. The set of arrays (on the left) can be easily recon-

structed from the array of integers (on the right) given the number of indexes specified in the

dimension_indexes attribute. Additional storage reduction can be had by encoding the

sparse_grid_vertexes array as a Base64 character string of specified unsigned_
integer_type and little-endian byte ordering. The encoding attribute in the Sparse-
Sampling object would indicate this option with a value of base64.

2.5 Generic application objects—Beyond the CSD model

As stated earlier, the objective of the CSD model is to encapsulate the data values and the

minimum metadata needed to accurately represent the data in an appropriate coordinate

system, that is, the minimum metadata for defining the current state of the dataset. Thus, the

goal of the CSD model is to always remain relevant as the state of the dataset changes. In our

refinement of the CSD model, we identified any metadata attribute as extraneous if it could

become irrelevant as the state of the dataset changes. Metadata attributes extraneous to the

CSD model could generally be classified as belonging in one of four broad and somewhat

overlapping categories: acquisition, process, analysis, and presentation. The design of mod-

els organizing these extraneous metadata attributes tends to be scientific domain specific,

although some commonalities exist. The CSD model allows the inclusion of metadata mod-

els describing these other categories using generic application objects. An application

can place its own attribute type, e.g., a dictionary object with application-specific metadata

attributes inside each generic application object using a reverse domain name notation

string as the attribute key, for example, “com.example.myApp”. The use of a reverse-DNS

key provides a simple mechanism for reducing name-space collisions. Overall, we believe

generic application objects give the CSD model enough flexibility to become the native

file format of many applications.

This approach, however, creates a dilemma when CSDM files are saved and opened by

different applications. Specifically, what does an application from company B (e.g., “com.B.

process”) do with generic application objects placed in a CSDM file by an application

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 11 / 38

https://doi.org/10.1371/journal.pone.0225953


from company A (e.g., “com.A.acquire”)? On the one hand, company B could retain the

company A specific metadata (as found) in the generic application object using the “com.A.

acquire” key as well as serialize its own metadata using the “com.B.process” key. If the com-

pany B application made any modification to the dataset, however, it runs the risk that parts

of the company A application-specific metadata are now irrelevant or logically inconsistent

with the newly saved dataset—potentially causing company A’s application to crash when it

tries to open this newly saved dataset. On the other hand, company B could decide to discard

the company A specific metadata, in which case the company A application can safely open

the dataset saved by company B, but will have lost all of its previously saved metadata. Find-

ing a consistent solution to this dilemma is critically important as one can easily envision a

workflow where a dataset passes through many applications as it progresses from the raw

dataset to the final “product.” During such a workflow there is often an expectation of an

audit trail, which most likely could be determined from application metadata saved by each

application used during the workflow.

One approach that could solve this dilemma is to allow the CSDM file to contain a time-

ordered array of CSDM objects. In other words, company B would simply append a second

CSDM object with only company B metadata to the array that already contains the CSDM

object created by company A. No application metadata would be lost, and the metadata in

each CSDM object would be relevant and logically consistent with its respective datasets. In

this approach, the CSDM “array” file would grow as each application completes its task in the

overall workflow.

It is our opinion, however, that it is better to delegate such a task of managing a time-

ordered array of CSDM objects to the operating system. In this approach, we envision the

workflow associated with a particular dataset to result in a folder containing a series of CSDM

files, each a snapshot from the workflow as it progresses from the raw dataset to the final

“product.” When each application is finished with its workflow task a CSDM file is saved with

the read_only flag set to true, so that any future work on the dataset would be performed

on a copy of the CSDM dataset, leaving the “read-only” file with application metadata intact.

Typically, the read_only flag would be set to true immediately after the acquisition of raw

data, after processing is complete, or after analysis of a dataset. Delegating the task of managing

a time-ordered set of CSDM objects to the operating system also makes the workflow status

involving individual CSDM files more transparent to the end-user. In adopting this solution

we propose the general rule that while application attributes should be visible to any appli-
cation opening a CSDM file, only the reverse-DNS owners have permission to use their respective
keys to place an attribute in an application object.

An application could implement an additional layer of protection from application meta-

data loss by saving CSDM compliant files with its own application-specific file extension.

Other applications could still open the CSDM compliant file but would be discouraged from

saving with another application’s file extension.

2.6 JSON file-serialization

A JSON file is ordinarily a UTF-8 encoded text file which is built on two structures: a collection

of unordered key-value pairs and an ordered list of values. The “key”: value pair is sepa-

rated by a colon symbol, with the key to the left and the value to the right of the colon. Dif-

ferent key-value pairs are separated using commas. The JSON keys are always wrapped in

double quotation marks, as in “key”, and the value type can either be (a) a string, (b) a num-

ber, (c) a JSON object, (d) an array, (e) a boolean or (d) null. A string is a composition of

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 12 / 38

https://doi.org/10.1371/journal.pone.0225953


JSON allowed characters [1] wrapped in double quotation marks. A number can be integer or

float. A JSON object is an unordered set of key-value pairs which begins with a left curly brace,

{, and ends in a right curly brace, }. An array is an ordered collection of JSON values that

begins with a left square bracket, [, and ends in a right square bracket, ]. A boolean is true or

false. In the JSON serialization of the CSD model, the JSON “ key “ corresponds to the attri-

bute name of the various CSD model objects while the JSON value and CSD model attribute

value follow the relationship listed in Table 6.

Efforts have been made in the design of the CSD model to keep the keys intuitive and self-

explanatory to all scientists and engineers. To further enhance the human-readability aspect of

the files, we recommend, as a general rule, that no key be present in the file unless its value dif-

fers from the default value. With this in mind, the CSD model defines all boolean values as

false when unspecified. In other words, the only boolean keys that need to appear in the file are

those set to true.

The serialization file names are designated with two possible extensions: .csdf and .
csdfe, the acronyms for Core Scientific Dataset Format and Core Scientific Dataset Format

External. When all data values are stored within the file, i.e., there are no instances of an

ExternalDependentVariable object in the serialization, then the .csdf file extension

is allowed, otherwise, the serialization file name must use the extension .csdfe. This differ-

ence in extensions is intended to alert the end-user to a possible risk of failure if the external

data file is inaccessible when deserializing a file with the .csdfe file extensions.

3 dD{p0, p1, . . .} example datasets

In this section we examine the CSD model in a number of illustrative examples. We use a

shorthand notation of dD{p} to indicate that a dataset has a p-component dependent variable

defined on a d-dimensional coordinate grid. In the case of correlated datasets the number of

components in each dependent variable is given as a list within the curly braces, i.e., dD{p0, p1,

p2, . . .}.

Efforts have been made to include examples across disciplines, although given our expertise

in magnetic resonance spectroscopy, we include multiple examples from this field. It is worth

noting, however, that magnetic resonance datasets prove to be excellent test cases for the CSD

model as they are diverse and often multi-dimensional in nature. We have converted a variety

of datasets from various fields to the CSD model format. To accomplish this, we utilize several

Python packages [5, 6] to import the original field-specific scientific datasets as Numpy [7]

array(s) and export the latter in the CSD model format using the csdmpy package for Python,

described in the appendix.

3.1 1D{1} examples

In this section, we examine the JSON serialization for illustrative cases of 1D{1} datasets. These

are the simplest cases, with one dimension, d = 1, and one single-component dependent vari-

able, p = 1. The supplementary material gives further 1D{1} examples from FITR, UV-vis, and

EPR spectroscopies.

GMSL.csdf. An example of a JSON serialized CSD model holding a 1D{1} dataset is

shown in Listing 1. This dataset is a measurement of the global mean sea level [8] (GMSL)

based on the satellite altimeter data from 1993-2009.

Listing 1. CSD model depiction of the global mean sea level dataset. A JSON serialized

CSD model describing the global mean sea level dataset. The listing was created by the authors

using data from reference [8].

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 13 / 38

https://doi.org/10.1371/journal.pone.0225953


Fig 2. CSD model depiction of the global mean sea level dataset. A line plot, derived from Listing 1, depicting the

global mean sea level as a function of time. The figure was created by the authors using data from reference [8].

https://doi.org/10.1371/journal.pone.0225953.g002

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 14 / 38

https://doi.org/10.1371/journal.pone.0225953.g002
https://doi.org/10.1371/journal.pone.0225953


At the root level is the csdm key, an acronym for the core scientific dataset model. The

value of this key is a JSON object which is a serialization of the CSD model’s CSDM object and

includes six keys—version, timestamp, tags, description, dimensions, and

dependent_variables. The value of the dimensions key is an array (lines 7-14) with

a single JSON object defined in-between lines 8 and 13. This object is a JSON serialization of

the CSD model’s Dimension object. In this example, it represents a LinearDimension
object, as indicated by the value of linear in the type key, and with a coordinate count

of 1608 as defined by the value of the key count. Furthermore, it is a temporal dimension

with ScalarQuantity values of 0.08333 yr for increment and 1880.0417 yr
for coordinates_offset. The coordinates at vertexes along this temporal dimension are

obtained from Eq (3).

The value of the dependent_variables key is an array (lines 15-31) with a single

JSON object describing the global mean sea level. This object is a JSON serialization of an

InternalDependentVariable object, with data values stored within the object, as indi-

cated by the value of internal for the type key. The data values are serialized as JSON

numbers as seen in-between lines 23-28 of Listing 1. Ellipses indicate where superfluous lines

were omitted from the listing. The value of float32 for the numeric_type key indicates

that the array of JSON numbers should be converted into a numerical array of data values with

32-bit floating-point precision on import. The value of mm for the unit key is the unit associ-

ated with the data values. The value of the component_labels is an array with a single

entry holding the label associated with the component values. The value of scalar for the

quantity_type key indicates that the component of the dependent variable is interpreted

as scalar.

A plot of the dataset is shown in Fig 2. Note that meta-data on how a dataset is presented in

a plot or otherwise is not included in the CSD model. While such presentation metadata is out-

side the scope of the core model, it can be included in an application dictionary.

blochDecay.csdf. Another simple example of a 1D{1} dataset, acquired by the authors for

this work, is shown in Listing 2. This example corresponds to a 13C free induction decay signal

from a nuclear magnetic resonance spectroscopy of ethanol.

The value of the dimensions key is an array (lines 12-26) with a single JSON serialized

LinearDimension object (lines 13-25) representing a temporal dimension with 4096 coor-

dinate positions sampled every 0.1 ms starting at −0.3 ms. The coordinate values along the

dimension are evaluated using Eq (3). This LinearDimension object also contains an

optional JSON serialized ReciprocalDimension object (lines 19-24) as the value of the

reciprocal key. In this example, it provides the metadata needed for describing the recip-

rocal time or the frequency dimension, i.e., after a Fourier transform.

The value of the dependent_variables key is an array (lines 27-41) with a single

JSON serialized InternalDependentVariable object (lines 28-40) describing the sig-

nal response. While the keys and values in this object are similar to the corresponding object

from the previous example, a key difference is that the value of the numeric_type key

denotes a complex64 numeric type. Complex numbers are stored as an ordered array of

alternating real and imaginary data values, starting with the real value. In this example, the

first and the last complex numbers of the signal in Fig 3 are (−8899.406 − i1276.773) and

(−193.923 − i67.065), respectively. Note that the length of the ordered data array is 2M for

complex numeric types, whereM is the total number of sampled data points. Fig 3 shows a

line plot of the time domain NMR decay signal.

Listing 2. CSD model depicting an 1-D NMR dataset. JSON serialized CSD model

describing the 13C NMR Bloch decay time signal along with the relevant metadata of the recip-

rocal frequency dimension.

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 15 / 38

https://doi.org/10.1371/journal.pone.0225953


acetone.csdf. In Listing 3 is an illustration of a 1D{1} mass spectrum dataset [9] serialized

with sparse sampling. Here the InternalDependentVariable object (lines 17-43)

holds a SparseSampling object (lines 23-34) in the sparse_sampling key. Inside the

SparseSampling object are the three keys dimensions_indexes, sparse_grid_
vertexes, and unsigned_integer_type. The dimensions_indexes key holds

an array of integers specifying the indexes of the dimensions along which the dependent vari-

able is sparsely sampled. In this case, it is the zeroth dimension, i.e., the only dimension in the

dataset. The sparse_grid_vertexes key holds an array of integers specifying the ver-

texes on the one-dimensional sparsely sampled grid. Again, in this example with only one

dimension, the array of integers corresponds to the sampled sparse grid vertexes, i.e., the

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 16 / 38

https://doi.org/10.1371/journal.pone.0225953


coordinate indexes, j0, along the zeroth dimension. The value uint8 for the unsigne-
d_integer_type key is the numeric type used when importing the JSON serialized integer

array from the sparse_grid_vertexes key.

3.2 2D{1} examples

TEM.csdf. In Fig 4 is an intensity plot of a Transmission Electron Microscopy (TEM) data-

set of a section of the early larval brain ofDrosophila melanogaster used in the analysis of neuro-

nal microcircuitry [10]. The CSDM JSON serialization for this 2D{1} dataset is given in Listing

4. This dataset has two dimensions, d = 2, and one single-component dependent variable, p = 1.

The value of the dimensions key is an array with two JSON serialized LinearDimen-
sion objects, defined in-between lines 8-12 and 13-17. Both these objects describe a linearly

sampled spatial dimension with 512 points sampled every 4 nm. As before, Eq (3) gives the

ordered list of the coordinates along the respective dimensions. The value of the depen-
dent_variables key is an array containing a single JSON serialized InternalDepen-
dentVariable object (lines 20-26). Unlike the previous examples, the value of the

components key is an array with a single element. This element is a Base64 encoded string,

as indicated by the encoding key, and decodes to an array of binary data values which are

interpreted as an array of numerical values with a uint8 numeric type. The array of numeri-

cal values is then mapped to the 512 × 512 coordinate grid according to Eqs (7) and (8).

bubble.csdfe. In Fig 5 and in Listing 5 we present a 2D{1} astronomy dataset of the bubble

nebula acquired at 656 nm wavelength by the Hubble Heritage Project [11] team. In this exam-

ple, the value of the dimensions key is an array with two JSON serialized LinearDimen-
sion objects defined in lines 8-15 and 16-23. Both these objects describe a linearly sampled

angular dimension. The value of the dependent_variables key is an array with a single

JSON serialized ExternalDependentVariable object, described in lines 26-32. In this

example, the value of the type key is external, indicating that the data values are stored in

an external file located at the Uniform Resource Locator (URL) address given by the compo-
nents_url key. In this case, the address corresponds to a local file, designated by the file
scheme of the URL, relative to the location of the bubble.csdfe file. The external file holds

an ordered array of 11592 × 11351 binary values, which are specified by the numeric_type
key as 32-bit floating-point numbers.

Fig 3. CSD model depicting an 1-D NMR dataset. A plot, derived from Listing 2, of the real (left) and imaginary

(right) 13C NMR Bloch decay signal as a function of time.

https://doi.org/10.1371/journal.pone.0225953.g003

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 17 / 38

https://doi.org/10.1371/journal.pone.0225953.g003
https://doi.org/10.1371/journal.pone.0225953


Listing 3. CSD model depiction of a sparse mass spectrum. JSON serialized CSD model

describing the mass spectrum of acetone.

Listing 4. CSD model depiction of a TEM image dataset. JSON serialized listing of a TEM

dataset containing one single-component InternalDependentVariable object and

two LinearDimension objects. The listing was created by the authors using data from ref-

erence [10].

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 18 / 38

https://doi.org/10.1371/journal.pone.0225953


Fig 4. CSD model depiction of a TEM image dataset. An intensity plot, derived from Listing 4, of a TEM dataset

depicting the early larval brain of Drosophila melanogaster. The figure was created by the authors using data from

reference [10].

https://doi.org/10.1371/journal.pone.0225953.g004

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 19 / 38

https://doi.org/10.1371/journal.pone.0225953.g004
https://doi.org/10.1371/journal.pone.0225953


Listing 5. CSD model depiction of an astronomy image dataset. JSON serialized listing of

the astronomy dataset describing the bubble nebula observed at 656 nm wavelength. The list-

ing was created by the authors using data from reference [11].

satRec.csdf. A monotonic dimension is employed when measurements are not uniformly

spaced or span several orders of magnitude along a dimension. An example of a 2D{1} dataset

with a monotonic dimension, acquired by the authors, is given in Listing 6. Here the dataset

comes from a 29Si NMR magnetization recovery measurement of a highly siliceous ZSM-12

zeolite sampled on a 2D rectilinear grid. Fig 6 depicts a stacked plot corresponding to the data-

set from Listing 6.

The value of the dimensions key is an array with two JSON serialized Dimension
objects (lines 18-30 and 31-38). The first is a LinearDimension object, labeled as t2,

describing a temporal dimension with 1024 points sampled at every 80 μs with a coordina-
tes_offset of −41.04 ms. Additionally, this LinearDimension object contains a Reci-
procalDimension object serialized as the value of the reciprocal key. The second is

a MonotonicDimension object, labeled as t1, with the coordinates associated with grid

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 20 / 38

https://doi.org/10.1371/journal.pone.0225953


vertexes along the dimension explicitly given in the ordered set of values in the coordinates
key. The value of the dependent_variables key is an array with a single JSON serialized

InternalDependentVariable object (lines 41-47) describing the signal response. Here,

the data values are encoded as an array with one Base64 string in the components key.

This listing also gives an example of the use of the application key in the csdm
dictionary. Here an application owning the domain name physyapps.com has placed an

attribute in the application dictionary using the reverse domain name key com.phy-
syapps.rmn. Domain name owners are free to place any valid JSON object as the value of

their respective reverse domain name attribute inside the application dictionary. In this

case, the domain name owner has used the reverse domain name key com.physyapps.
rmn to place a dictionary holding two keys, focus and dimension_precedence.

An application key can also be placed in any Dimension, ReciprocalDimen-
sion, DependentVariable, and SparseSampling object. Again, according to the

rule in section 2.5, only the reverse domain name owner has permission to serialize a file using

their respective reverse domain name as a key in the application attribute.

iglu_1d.csdf. Listing 7 is a 2D{1} example of an NMR signal shown in Fig 7 with sparse sam-

pling along one dimension [12]. Here the InternalDependentVariable object (lines

30-44) holds a SparseSampling object (lines 37-43) in the sparse_sampling key. The

SparseSampling object contains three keys dimension_indexes, sparse_grid_
vertexes, and unsigned_integer_type. The dimension_indexes key holds an

array of integers specifying the indexes of the dimensions along which the dependent variable is

sparsely sampled, in this case, the k = 1 dimension. The sparse_grid_vertexes key holds

an array of integers specifying the vertexes on the one-dimensional sparsely sampled grid. Since

there are two dimensions in the dataset the array of integers corresponds to the coordinate

indexes, j1, along the k = 1 dimension. In this example, the dependent variable values are fully

sampled along the k = 0 dimension. The value of the unsigned_integer_type key holds

the numeric type used in importing the integer array from sparse_grid_vertexes.

Fig 5. CSD model depiction of an astronomy image dataset. A log intensity plot, derived from Listing 5, of the

bubble nebula [11] observed at 656 nm wavelength. The figure was created by the authors using data from reference

[11].

https://doi.org/10.1371/journal.pone.0225953.g005

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 21 / 38

https://doi.org/10.1371/journal.pone.0225953.g005
https://doi.org/10.1371/journal.pone.0225953


Listing 6. CSD model depiction of a 2-D NMR dataset. JSON serialized listing of 29Si

NMR magnetization saturation relaxation dataset containing one single-component Depen-
dentVariable object and two Dimension objects.

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 22 / 38

https://doi.org/10.1371/journal.pone.0225953


iglu_2d.csdf. Listing 8 is a 2D{1} example of an NMR signal shown in Fig 8 with sparse

sampling along two dimensions [12]. As before, the sparse_sampling key holds a Spar-
seSampling object with the dimension_indexes, sparse_grid_vertexes, and

unsigned_integer_type attributes. The dimension_indexes key holds an array of

two integers, k = 0 and 1, specifying the sparse sampling dimensions. The sparse_grid_
vertexes key holds an array of integers defining the vertexes on the two-dimensional

sparsely sampled grid. As described in section 2.4.1 this array is a flattened ordered set of

arrays which can be reshaped into the ordered set of sparse grid vertexes, i.e.,

½0; 0; 1; 0; . . . ; 972; 511; 1015; 511� � ! ½½0; 0�; ½1; 0�; . . . ; ½972; 511�; ½1015; 511��:

The ith vertex in the ordered set of sparse grid vertexes specifies the sparse grid location of

the ith value in each component array of the dependent variable.

3.3 2D{3} example

RGB_image.csdf. A simple example of a 2D dataset with multiple components is a color

image [13], such as the one shown in Fig 9. This is a 2D{3} dataset, with two LinearDimen-
sion objects and one three-component dependent variable, p = 3. The CSDM serialization is

shown in Listing 9. The dimensions key holds an array with two JSON serialized Linear-
Dimension objects (lines 8-13 and 14-19) with 1024 and 768 points, respectively, and a unit

sampling interval. The dependent_variable key holds an array with a single JSON seri-

alized InternalDependentVariable object (lines 22-34) containing an image dataset

as indicated by the pixel_3 value of the quantity_type key. The first part, pixel, indi-

cates pixel data, and the last part, 3, gives the number of pixel components. An array holding

to the three components, i.e., the red, green, and blue color intensities with each encoded as a

Base64 string, is the value of the components key. The Base64 decoded binary data values

are then interpreted as an array of 8-bit unsigned integer (uint8), for each component, and

Fig 6. CSD model depiction of a 2-D NMR dataset. A stacked plot, derived from Listing 6, of an NMR dataset depicting the 29Si saturation recovery

measurement of a highly siliceous ZSM-12 zeolite.

https://doi.org/10.1371/journal.pone.0225953.g006

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 23 / 38

https://doi.org/10.1371/journal.pone.0225953.g006
https://doi.org/10.1371/journal.pone.0225953


subsequently mapped onto a 1024 × 768 coordinate grid. The value of the component_la-
bels key is an array of the labels ordered to match the order of the components.

Listing 7. CSD model depiction of a sparse NMR dataset with one sparse dimension.

JSON serialized listing of 13C-15N NMR HSQC dataset containing one single-component

DependentVariable object and two Dimension objects. The listing was created by the

authors using data from reference [12].

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 24 / 38

https://doi.org/10.1371/journal.pone.0225953


3.4 3D{2} example

wind_velocity.csdfe. An example of a 3D{2} dataset, i.e., with three dimensions, d = 3,

and one two-component dependent variable, p = 2, is the wind velocity prediction [14] dataset

as a function of latitude, longitude and time, shown in Listing 10.

The value of the dimensions key is an array with three JSON serialized Dimension
objects. The first two LinearDimension objects, labeled as longitude and latitudes respec-

tively, describe two linear dimensions sampled at every 0.5˚ for 49 points starting at −102.5˚

longitudes and 13.5˚ latitudes. Together, these two objects create a two-dimensional grid that

spans the region around the Gulf of Mexico as depicted in Fig 10. The third dimension is a

LabeledDimension object as indicated by the value of the type key. The corresponding

labels array lists six date-time stamps entries.

The value of the dependent_variable key is an array with a single JSON serialized

ExternalDependentVariable object (lines 34-43) containing a two-component vector

dataset as identified by the quantity_type key-value. This value is vector_2 where

the first part, vector, indicates vector data, and the last part, 2, gives the number of vector

components. The two vector components are labeled as ugrd10m-eastward_wind and

vgrd10m-northward_wind, in the array assigned to the component_labels key.

The data values are located in an external file as a binary data whose address, relative to the

wind_velocity.csdfe file, is the value of the components_url key. The binary data

is interpreted as a 32-bit floating-point numerical array. Note, because the binary data does

not support array indexing, unlike JSON serialization, the corresponding numerical array of

data values is reshaped into a matrix which includes the number of components. In this case,

the reshaped matrix is 49 × 49 × 6 × 2, where the last number is the number of components,

p = 2, and the remaining three is the number of points from the Dimension objects. Table 3

contains a description of the number of components, p, for each quantity_type.

Fig 7. CSD model depiction of a sparse NMR dataset with one sparse dimension. A plot, derived from Listing 7, of

the real part of a 2D{1} dataset sparsely sampled in one dimension. The figure was created by the authors using data

from reference [12].

https://doi.org/10.1371/journal.pone.0225953.g007

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 25 / 38

https://doi.org/10.1371/journal.pone.0225953.g007
https://doi.org/10.1371/journal.pone.0225953


Listing 8. CSD model depiction of a sparse NMR dataset with two sparse dimensions.

JSON serialized listing of 1H NMR TOCSY dataset containing two Dimension objects and

one single-component DependentVariable object with sparsely sampled values in both

dimensions. The listing was created by the authors using data from reference [12].

Fig 10 depicts a quiver plot of the wind velocity at three different date-time stamps. Under-

laid these plots is a map of the Earth corresponding to the given range of latitudes and longi-

tudes. These plots were generated using the Matplotlib library [16] for python in addition to

the Matplotlib Basemap toolkit [15] for rendering maps.

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 26 / 38

https://doi.org/10.1371/journal.pone.0225953


3.5 3D{6} example

brain_MRI.csdf. A 3D{6} dataset has three dimensions, d = 3, and one six-component

dependent variable, p = 6. An example of such a dataset is the second rank symmetric diffusion

tensor MRI dataset [17] of a brain given in Listing 11.

The value of the dimensions key is an array with three JSON serialized Dimension
objects describing the three spatial dimensions, labeled as x, y, and z respectively. Here, all

objects describe a linear dimension with the sampling resolution of 1 mm, and 148, 190 and

160 points along the respective dimension.

The value of the dependent_variables key is an array with a single JSON serialized

InternalDependentVariable object (lines 30-51) describing a symmetric matrix

dataset as indicated by the value of the quantity_type key. The value symmetric_
matrix_3 emphasizes a six-component dataset as noted in Table 3. The six components,

labeled as Dxx, Dxy, Dxz, Dyy, Dyz, and Dzz respectively, are stored as Base64 strings as the

value of the components key. Each Base64 decoded binary array is interpreted as 32-bit

floating-points array and subsequently reshaped to a 148 × 190 × 160 matrix.

The symmetric matrix data from the brain_MRI.csdf file was partially processed as a

second-rank symmetric diffusion tensor to determine the isotropic diffusion coefficients. The

intensity plots in Fig 11 depicts the projection of the isotropic diffusion coefficients on to the

three spatial dimensions.

Listing 9. CSD model depiction of a RGB image dataset. JSON serialized listing of an

RGB image dataset containing two Dimension objects, and one DependentVariable
object with three components corresponding to red, green and blue color intensities. The list-

ing was created by the authors using the data [13] available under (Creative common 0) CC0

license.

Fig 8. CSD model depiction of a sparse NMR dataset with two sparse dimensions. A plot, derived from in Listing 8,

of the real part of a 2D{1} dataset sparsely sampled in both dimensions. The figure was created by the authors using

data from reference [12].

https://doi.org/10.1371/journal.pone.0225953.g008

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 27 / 38

https://doi.org/10.1371/journal.pone.0225953.g008
https://doi.org/10.1371/journal.pone.0225953


Fig 9. CSD model depiction of a RGB image dataset. An image plot, derived from Listing 9, of an RGB dataset

depicting a raccoon face. Photo credit: Judy Weggelaar.

https://doi.org/10.1371/journal.pone.0225953.g009

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 28 / 38

https://doi.org/10.1371/journal.pone.0225953.g009
https://doi.org/10.1371/journal.pone.0225953


Listing 10. CSD model depiction of a meteorology vector dataset. JSON serialized listing

of the predicted wind velocities over and around the Gulf of Mexico. The model contains one

two-component DependentVariable object and three Dimension objects. Listing was

created by the authors using data from the national centers for environment information/

national oceanic and atmospheric administration [14].

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 29 / 38

https://doi.org/10.1371/journal.pone.0225953


Fig 10. CSD model depiction of a meteorology vector dataset. A quiver plot, derived from Listing 10, of the wind

velocities from the dataset in Listing 10 at three different date-time stamps. The underlaid map of the Earth

corresponding to the latitudes and longitudes is rendered using the Matplotlib Basemap toolkit [15]. The figure was

created by the authors using data from reference [14].

https://doi.org/10.1371/journal.pone.0225953.g010

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 30 / 38

https://doi.org/10.1371/journal.pone.0225953.g010
https://doi.org/10.1371/journal.pone.0225953


Listing 11. CSD model depiction of an MRI tensor dataset. JSON serialized listing of the

diffusion tensor MRI dataset [17] of the brain containing one six-component Dependent-
Variable object and three Dimension objects. Listing was created by the authors using

data from reference [17].

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 31 / 38

https://doi.org/10.1371/journal.pone.0225953


3.6 2D{1,1,2,1,1} example

An example of a 2D{1,1,2,1,1} dataset using data from the US National Centers for Environ-

ment Information / National Oceanic and Atmospheric Administration [14] is given in

Listing 12.

In this example, the value of the dimensions key is an array with two LinearDimen-
sion objects describing the two spatial dimensions, labeled as longitude and latitude,
respectively. The value of the dependent_variables key is an array with five Exter-
nalDependentVariable objects describing the surface temperature (p0 = 1), the air tem-

perature at 2 m above ground level (p1 = 1), the two-component wind velocity vector at 10 m

above surface (p2 = 2), the relative humidity (p3 = 1), and the air pressure at the sea level (p4 =

1). Fig 12 depicts the intensity and quiver plots of four dependent variables.

3.7 0D{1,1} example

J_vs_s.csdf. The CSD model also allows the serialization of datasets without a coordi-

nate grid. A 0D{1,1} datasets, for example, has no dimensions, d = 0, and two single-compo-

nent dependent variable, p0 = 1 and p1 = 1. The listing for such a dataset [18] is given in

Listing 13. In this example, the two “correlated” dependent variables are the 29Si-29Si

nuclear spin couplings, 2J, across a Si-O-Si linkage and the s-character product on the O and

two Si along the Si-O bond across the Si-O-Si linkage [18]. The value of the dependent_
variables key is an array with two JSON serialized InternalDependentVariable
object (lines 7-16 and 17-27). The first object, named as Gaussian computed J-couplings,
describes the 2J couplings. The data values are stored as a Base64 string in the components
key. The Base64 decoded binary array is interpreted as a 32-bit floating-point numerical

array following the value of the numeric_type key. The second object is named as the

product of s-characters. Here, the data values are again stored as a Base64 string, which after

decoding is interpreted as a 32-bit floating-point numerical array. A scatter plot revealing

the correlation between the two dependent variables from the dataset in Listing 13 is pre-

sented in Fig 13.

Fig 11. CSD model depiction of an MRI tensor dataset. The intensity plots, derived from the diffusion tensor MRI dataset in Listing 11, are the projection of

the isotropic diffusion coefficients, calculated on to the three spatial dimensions. The figure was created by the authors using data from reference [17]. The

diffusion tensor MRI Brain dataset [17] courtesy of Gordon Kindlmann at the Scientific Computing and Imaging Institute, University of Utah, and Andrew

Alexander, W. M. Keck Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-Madison.

https://doi.org/10.1371/journal.pone.0225953.g011

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 32 / 38

https://doi.org/10.1371/journal.pone.0225953.g011
https://doi.org/10.1371/journal.pone.0225953


Listing 12. CSD model depiction of a meteorology dataset with multiple dependent-var-

iables. JSON serialized listing of multiple dependent variables including scalar and vector on

a two-dimensional grid. Listing was created by the authors using data from the US National

Centers for Environment Information / National Oceanic and Atmospheric Administration

[14].

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 33 / 38

https://doi.org/10.1371/journal.pone.0225953


Listing 13. CSD model depiction of a computational dataset. JSON serialized listing of

quantum chemistry calculation of nuclear spin-spin coupling constant between 29Si nuclei

across a Si-O-Si linkage in small cluster molecule. An example dataset with two Dependent-
Variable objects and no Dimension objects. The listing was created by the authors using

data from reference [18].

Fig 12. CSD model depiction of a meteorology dataset with multiple dependent-variables. The figure depicts (a) an

intensity plot of the air temperature at 2 m above surface, (b) a quiver plot of the wind vectors at 10 m above surface, (c) an

intensity plot of the relative humidity, and (d) an intensity of the air pressure at sea level corresponding to the last four

dependent-variables from Listing 12. These plots are overlaid on the coastline map of the Earth corresponding to the

latitude and longitudes. These coastline were rendered using the Matplotlib Basemap toolkit [15]. The plots were generated

using the Matplotlib library [16] for python. The figure was created by the authors using data from reference [14].

https://doi.org/10.1371/journal.pone.0225953.g012

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 34 / 38

https://doi.org/10.1371/journal.pone.0225953.g012
https://doi.org/10.1371/journal.pone.0225953


4 Conclusions

We have designed the Core Scientific Dataset (CSD) Model as a lightweight, portable, versatile,

resourceful, and standalone data model that is capable of handling multi-dimensional and cor-

related datasets from various spectroscopies, diffraction, microscopy, and imaging techniques.

A guiding principle in the design of this model was to encapsulate only the minimal metadata

necessary to represent the correlated datasets sampled on a common orthogonal coordinate

grid. The model also allows for sparse sampling on this grid. Throughout the model, we

make use of the ScalarQuantity class, which is composed of a numerical value and any

valid SI unit symbol or any number of accepted non-SI unit symbols. This approach enables

tremendous flexibility in allowing the dataset model to be agnostic of the scientific domain.

Historically, this may have been perceived as a potential barrier to software implementation of

the CSDM, however, in recent years libraries capable of parsing units have become freely avail-

able for various computing environments such as Matlab, Mathematica, and python. The CSD

model is independent of the hardware, operating system, application software, and file-seriali-

zation method used for data exchange. The model provides a mechanism for the inclusion of

additional application-specific metadata without compromising its fundamental role as a data

exchange and archiving standard. When serialized using JSON serialization the resulting file

format is human readable and integrable with most object-oriented programming languages

and software. The serialization of the CSD model has been adopted as an open dataset file for-

mat in NMR software development under our control, i.e., SIMPSON [19, 20], DMFIT [21],

jsNMR [22], and RMN [23], which already have a large installed user base within the solid-

state NMR scientific community. We envision the CSD model and its associated file format as

playing an important role in community accessible databases and in greater data-trail integrity

and compliance issues for many research laboratories.

Fig 13. CSD model depiction of a computational dataset. Two dependent variables [18] correlating 2JSi‐O‐Si couplings

to the corresponding product of s-characters on the Si, O and Si atoms along the Si-O bond across the Si-O-Si linkage.

The figure was created by the authors using data from reference [18].

https://doi.org/10.1371/journal.pone.0225953.g013

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 35 / 38

https://doi.org/10.1371/journal.pone.0225953.g013
https://doi.org/10.1371/journal.pone.0225953


Appendix

Scaled variables

Coordinates along a dimension can also be converted into scaled quantities based on other

attributes in the Dimension object or in application meta-data. For example, in nuclear

magnetic resonance spectroscopy, the spectra are conventionally plotted as a function of a

dimensionless frequency ratio. In CSD model, the origin_offset, ok, is interpreted as

the NMR spectrometer frequency and the coordinates_offset, bk, as the reference fre-

quency. Given the dimension coordinate, Xk, from Eq (3), the corresponding dimensionless-

coordinate ratio follows,

Xratio
k ¼

Xk

ok � bk
: ð9Þ

csdmpy

The csdmpy module is the Python support for the core scientific dataset (CSD) model file-

exchange format. The source code is available at https://github.com/DeepanshS/csdmpy and

the corresponding documentation at https://csdmpy.readthedocs.io/en/stable, which includes

links for downloading the CSDM compliant files used in this report.

The main objective of this python module is to facilitate the import and export of the CSD

model serialized files for Python users. Moreover, the module utilizes Python libraries such as

Numpy and therefore allowing the end-users to process or visualize the imported datasets with

any third-party package(s) compatible with Numpy.

Supporting information

S1 File. Additional CSDM examples and review of units and constants as used in the CSD

model.

(PDF)

Acknowledgments

This material is based upon work supported in part by the US National Science Foundation

under Grant No. DIBBS OAC 1640899. T.V. acknowledges financial support from the Euro-

pean Commission (H2020 Future and Emerging Technologies Grant 731475 and Research

Infrastructures Grant 731005). Early support for this work came from the Le Studium Loire

Valley Institute for Advanced Studies, Orléans, France.

Author Contributions

Conceptualization: Deepansh J. Srivastava, Thomas Vosegaard, Philip J. Grandinetti.

Formal analysis: Deepansh J. Srivastava, Thomas Vosegaard, Dominique Massiot, Philip J.

Grandinetti.

Funding acquisition: Dominique Massiot, Philip J. Grandinetti.

Investigation: Deepansh J. Srivastava, Thomas Vosegaard, Dominique Massiot, Philip J.

Grandinetti.

Methodology: Deepansh J. Srivastava, Thomas Vosegaard, Dominique Massiot, Philip J.

Grandinetti.

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 36 / 38

https://github.com/DeepanshS/csdmpy
https://csdmpy.readthedocs.io/en/stable
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225953.s001
https://doi.org/10.1371/journal.pone.0225953


Project administration: Philip J. Grandinetti.

Resources: Deepansh J. Srivastava, Thomas Vosegaard, Dominique Massiot, Philip J.

Grandinetti.

Software: Deepansh J. Srivastava, Thomas Vosegaard, Dominique Massiot, Philip J.

Grandinetti.

Supervision: Philip J. Grandinetti.

Validation: Deepansh J. Srivastava, Thomas Vosegaard, Dominique Massiot, Philip J.

Grandinetti.

Visualization: Deepansh J. Srivastava, Thomas Vosegaard, Dominique Massiot, Philip J.

Grandinetti.

Writing – original draft: Deepansh J. Srivastava, Philip J. Grandinetti.

Writing – review & editing: Deepansh J. Srivastava, Thomas Vosegaard, Dominique Massiot,

Philip J. Grandinetti.

References
1. ECMA. Standard ECMA-404: The JSON Data Interchange Syntax; 2017. Available from: https://www.

ecma-international.org/publications/standards/Ecma-404.htm.

2. Fowler M. UML Distilled, A Brief Guide to the Standard Object Modeling Language. Boston: Addison-

Wesley; 2004.

3. Thompson A, Taylor BN. Guide for the use of the International System of Units (SI); 2008. Available

from: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication811e2008.pdf.

4. Consortium WWW. Architecture of the World Wide Web, Volume One; 2004. Available from: http://

www.w3.org/TR/webarch/.

5. PythonWare. Python Imaging Library (PIL);. Available from: http://www.pythonware.com/products/pil/.

6. Collaboration A, Robitaille TP, Tollerud EJ, Greenfield P, Droettboom M, Bray E, et al. Astropy: A com-

munity Python package for astronomy. aap. 2013; 558:A33.

7. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical Com-

putation. Computing in Science & Engineering. 2011; 13:22–30. https://doi.org/10.1109/MCSE.2011.37

8. Church JA, White NJ. Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophys-

ics. 2011; 32:585–602. https://doi.org/10.1007/s10712-011-9119-1

9. Lancashire RJ. JCAMP-DX; 2006. Available from: http://wwwchem.uwimona.edu.jm/spectra/index.

html.

10. Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, et al. An Integrated Micro- and

Macro architectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron

Microscopy. PLoS Biology. 2010; 8:e1000502. https://doi.org/10.1371/journal.pbio.1000502 PMID:

20957184

11. The Hubble Heritage Project; 2016. Available from: https://archive.stsci.edu/prepds/heritage/bubble/

introduction.html.

12. Balsgart NM, Vosegaard T. Fast Forward Maximum entropy reconstruction of sparsely sampled data. J

Magn Reson. 2012; 223:164–169. https://doi.org/10.1016/j.jmr.2012.07.002 PMID: 22975245

13. Weggelaar J;. Available from: https://pixnio.com/fauna-animals/raccoons/raccoon-procyon-lotor.

14. ERDDAP: Marine Domain Awareness (MDA) ERDDAP Server—JRC Italy;. Available from: http://mda.

marine.ie/erddap/griddap/NCEP_Global_Best.html.

15. Whitaker J. Matplotlib Basemap Toolkit; 2011. Available from: https://matplotlib.org/basemap/.

16. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007; 9:90–

95. https://doi.org/10.1109/MCSE.2007.55

17. Diffusion tensor MRI datasets; 2000. Available from: http://www.sci.utah.edu/~gk/DTI-data/.

18. Srivastava DJ, Florian P, Baltisberger JH, Grandinetti PJ. Correlating geminal 2JSi‐O‐Si couplings to

structure in framework silicates. Phys Chem Chem Phys. 2018; 20:562–571. https://doi.org/10.1039/

C7CP06486A

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 37 / 38

https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication811e2008.pdf
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/
http://www.pythonware.com/products/pil/
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1007/s10712-011-9119-1
http://wwwchem.uwimona.edu.jm/spectra/index.html
http://wwwchem.uwimona.edu.jm/spectra/index.html
https://doi.org/10.1371/journal.pbio.1000502
http://www.ncbi.nlm.nih.gov/pubmed/20957184
https://archive.stsci.edu/prepds/heritage/bubble/introduction.html
https://archive.stsci.edu/prepds/heritage/bubble/introduction.html
https://doi.org/10.1016/j.jmr.2012.07.002
http://www.ncbi.nlm.nih.gov/pubmed/22975245
https://pixnio.com/fauna-animals/raccoons/raccoon-procyon-lotor
http://mda.marine.ie/erddap/griddap/NCEP_Global_Best.html
http://mda.marine.ie/erddap/griddap/NCEP_Global_Best.html
https://matplotlib.org/basemap/
https://doi.org/10.1109/MCSE.2007.55
http://www.sci.utah.edu/~gk/DTI-data/
https://doi.org/10.1039/C7CP06486A
https://doi.org/10.1039/C7CP06486A
https://doi.org/10.1371/journal.pone.0225953


19. Bak M, Rasmussen JT, Nielsen NC. SIMPSON: A General Simulation Program for Solid-State NMR

Spectroscopy. J Magn Reson. 2000; 147:296–330. https://doi.org/10.1006/jmre.2000.2179 PMID:

11097821

20. Tosšner Z, Andersen R, Stevensson B, Edén M, Nielsen NC, Vosegaard T. Computer-intensive simula-

tion of solid-state NMR experiments using SIMPSON. J Magn Reson. 2014; 246:79–93. https://doi.org/

10.1016/j.jmr.2014.07.002 PMID: 25093693

21. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, et al. Modelling one- and two-dimensional

solid-state NMR spectra. Magn Reson Chem. 2002; 40:70–76. https://doi.org/10.1002/mrc.984

22. Vosegaard T. jsNMR: an embedded platform-independent NMR spectrum viewer. Magn Reson Chem.

2015; 53:285–290. https://doi.org/10.1002/mrc.4195 PMID: 25641013

23. PhySy Ltd. RMN 2.0; 2019. Available from: https://www.physyapps.com/rmn.

Core Scientific Dataset Model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225953 January 2, 2020 38 / 38

https://doi.org/10.1006/jmre.2000.2179
http://www.ncbi.nlm.nih.gov/pubmed/11097821
https://doi.org/10.1016/j.jmr.2014.07.002
https://doi.org/10.1016/j.jmr.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25093693
https://doi.org/10.1002/mrc.984
https://doi.org/10.1002/mrc.4195
http://www.ncbi.nlm.nih.gov/pubmed/25641013
https://www.physyapps.com/rmn
https://doi.org/10.1371/journal.pone.0225953

