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Multiple scattering of seismic waves is often seen as a nightmare for conventional migration techniques that
generally rely on a ballistic or a single scattering assumption. In heterogeneous areas such as volcanoes, the
multiple scattering contribution limits the imaging-depth to one scattering mean free path, the mean distance
between two successive scattering events for body waves. In this Letter, we propose a matrix approach of
passive seismic imaging that pushes back this fundamental limit by making an efficient use of scattered body
waves drowned into a noisy seismic coda. As a proof-of-concept, the case of the Erebus volcano in Antarctica
is considered. The Green’s functions between a set of geophones placed on top of the volcano are first retrieved
by the cross-correlation of coda waves induced by multiple icequakes. This set of impulse responses forms a
reflection matrix. By combining a matrix discrimination of singly-scattered waves with iterative time reversal,
we are able to push back the multiple scattering limit beyond 10 scattering mean free paths. The matrix approach
reveals the internal structure of the Erebus volcano: A chimney-shaped structure at shallow depths, a magma
reservoir at 2500 m and several cavities at sea level and below it. The matrix approach paves the way towards a
greatly improved monitoring of volcanic structures at depth. Beyond this specific case, the matrix approach of
seismic imaging can generally be applied to all scales and areas where multiple scattering events undergone by
body waves prevent in-depth imaging of the Earth’s crust.

INTRODUCTION

Conventional seismic modeling, imaging, and inversion methods generally apply to direct waves in seismic records [43].
However, in heterogeneous areas, the coherent components of the wave-field may vanish, and the seismic record entails a long
coda due to scattering undergone by seismic waves in the Earth’s crust. Albeit difficult to interpret via conventional approaches,
the information contained in the coda is particularly rich. The challenge is to extract relevant information from such a seemingly
incoherent signal. Cross-correlation of coda waves or seismic noise received at two stations was shown to be an important
breakthrough in geophysics [13, 23]. Under appropriate wave-field conditions, coda cross-correlation converges towards the
Green’s function between receiving stations [17, 37, 39, 41], as if one of them had been used as a source, thus paving the way to
passive imaging.

In that process, multiple scattering of waves helps approaching energy equipartition [20, 25] which is necessary to fully
retrieve the exact Green’s function. This seems paradoxical because multiple scattering is detrimental to imaging: it becomes
more and more difficult to distinguish anything at depths larger than the scattering mean-free path `s, the mean distance between
two successive scattering events. Beyond that depth, the wave actually loses its coherence and the memory of its initial direction.
In reality, multiple scattering does help to retrieve the main features of the Green’s function passively, but subsequent imaging
techniques ultimately apply to the ballistic (i.e., unscattered) or singly-scattered component of the estimated Green’s functions.
Although a multiply scattered wavefield is a prerequisite to passively recovering Green’s functions through cross-correlations,
ultimately passive imaging suffers from the same limitations as classical active imaging: it fails if multiple scattering is too
strong.

Yet new perspectives to overcome this problem were opened by the advent of multi-element arrays with controllable emitters
and/or receivers, both in ultrasound imaging [3, 4, 35] and in optical microscopy [8, 9]. In a linear and time-invariant system
with an array ofM independent emitters/receivers, the propagation of waves can be described by a matrix approach. All relevant
information is contained in theM×M reflection matrix composed of the set of inter-element impulse responses. In this context,
recent academic studies proposed a solution based on random matrix properties to overcome multiple scattering by separating
the single and multiple scattering contributions in the reflection matrix. From a physical point of view, it was done by taking
advantage of the memory effect in the far-field [35] or, equivalently, by a confocal discrimination between single and multiple
scattering in the focal plane [8].

Inspired by these previous works, this paper aims to develop a similar matrix approach for seismic wave imaging in strongly
scattering environments. Arrays of geophones are commonly used to probe the subsoil, hence matrix formalism can be particu-
larly appropriate, as is the case for ultrasound and optical imaging. As a proof-of-concept for seismic imaging, we here consider
the case of the Erebus volcano in Antarctica. Volcanoes are among the most challenging media for seismic imaging given their
highly localized and abrupt variations in physical parameters, extreme landforms, extensive fractures and the additional presence
of magma and other fluids. In that respect, the case of the Erebus volcano is extreme since the scattering mean free path `s for
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body waves is smaller than their wavelength λ in the 1-4 Hz bandwidth [15]. Imaging the volcano at large depths with conven-
tional techniques fails, since multiple scattering increasingly dominates as depth becomes significantly larger than `s. Strikingly,
we will show that our matrix approach allows us to push back the multiple scattering limit to a depth of 9000 m, or roughly 12`s
at a frequency f = 2.6 Hz, for which `s ∼ 750 m [15].

To do so, we take advantage of a high-density network of 76 seismographs that was deployed on the upper plateau of the
volcano as part of the TOMO-Erebus project (2007-2009). The coda generated by shallow icequakes [21] is used to retrieve the
vertical component of the Green’s functions between the geophones. The associated reflection matrix is then investigated for
imaging purposes. As a whole, the process we present in this paper can be analyzed as a combination of 5 building blocks (see
Fig. S1 in supporting information):

• (B1) Any reflection matrix can be written as a sum of three contributions: ballistic, single-scattering, multiple scattering.

• (B2) Based on a rough estimate of velocity c, the Green’s functions between the M actual geophones can be transformed
in order to mimic a set of N virtual geophones, located in a plane at an arbitrary depth z below the surface. To that end,
focusing is performed both at emission and reception by means of simple matrix operations. It yields a new reflection
matrix, each element of which is the total response (i.e., ballistic, single and multiple scattering) between two virtual
geophones [8, 32, 40].

• (B3) An input-output analysis, which will be referred to as confocal filtering, allows for the removal of most of the multiple
scattering contribution in the new reflection matrix [8].

• (B4) Iterative time reversal [30, 31] is applied to overcome the residual multiple scattering contribution as well as the
aberration effects induced by the scattering medium itself, and detect possible reflectors.

• (B5) A statistical analysis of the matrix singular values permits attribution of a likelihood index to each detected structure
[4, 5].

As a result of these five steps, an image of the internal structure of the Erebus volcano is obtained. While conventional imaging
methods lead to a speckled image due to multiple scattering, the matrix approach developed here manages to detect internal
structures in a reliable way, and reveal a chimney-shaped structure feeding the lava lake that bifurcates sharply towards the
north-west and then seems to set centrally in a shallow magma chamber near 2500 m elevation. Some particular features also
emerge from the sea level to 5000 m below it. A structural interpretation of the obtained image is finally built on the existing
literature about Erebus.

RESPONSE MATRIX OF GEOPHONES

FIG. 1: a) Map of the Erebus volcano upper edifice with some principal geographic and geological features and showing the locations of the
ETS Erebus stations. b) Adaptive focusing at emission and reception on two points rin and rout of the focal plane (z = ct/2) yields the
Green’s function between virtual geophones placed at these two points. The same operation is repeated for any couple of points in the focal
plane and yields the focal reflection matrix R [Eq. (5)].

In this study, we take advantage of inter-station correlations of ice-quake coda recorded on a large temporary short-period
deployment (referred to as the ETS network). Previous studies have identified several distinct mechanisms for short period
discrete seismicity, namely Strombolian gas slug decompression eruptions from a centralized convecting lava lake [14, 22], and
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a plethora of randomly distributed impulsive icequake events on Erebus volcano’s snow and ice cap [21]. Though similar in both
temporal and spectral character, eruptive events were systematically separated from icequake events in early studies [14] using a
joint seismic and infrasound matched filter. Icequake events were subsequently detected and roughly located using the Antelope
database management package, using an STA/LTA trigger coupled with grid search waveform stacking for a simple velocity
model. Spatial resolution of detected events, as noted in Ref. [21], is on the order of 10-100 m based on the number of recording
stations and the location of the icequake (inside or outside the network). The coda of both types of events were shown to satisfy
theoretical precursors of equipartition [15], notably, modal partition stabilization [20], and coherent backscattering [24]. Further
studies using these icequake events also noted that exact source locations were unnecessary for Green’s function reconstruction,
given that highly symmetric coda correlation functions could be obtained with a correct choice of coda windows, while using
a severally azimuthally polarized subset of the icequakes [15, 16]. These points together, along with numerically validated
Bayesian optimization of coda windows as proposed by Ref. [16], form a set of corroborating arguments that point to an accurate
convergence of icequake coda correlations to the true Green’s function between station pairs.

Figure 1a shows the location of the ETS instruments [14, 44]. The approximately 5 km diameter summit plateau, cone, and
crater region of the Erebus volcano is a caldera-filling, highly heterogeneous, assemblage of bomb deposits, buried intrusions,
geothermal features, gas-rich magma, permafrost, and lava flows. The volcano hosts an approximately 500 m diameter main
crater that hosts a long-lived phonolitic lava lake sustained by a significant near-summit magmatic system [45]. The 76 seis-
mographs, spaced 300 to 500m apart, were deployed over a roughly 4 by 4 km area surrounding the summit crater and lava
lake. Each geophone is denoted by an index i and its position si. We make use here of 3318 randomly located icequake events
identified by Ref. [21] for a period of 1 month in 2008-2009 [44]. We performed inter-station correlations of ice-quake coda
using the vertical component of the recorded wave-fields. The method used for the convergence of the coda cross-correlation
towards inter-station Green’s functions has been detailed by Ref. [16], and relies on a Bayesian optimization scheme to select
ideal combinations of coda windows at each icequake. The impulse response between stations i and j is noted hij(τ), with τ the
time lag. The set of impulse responses form a time-dependent response matrix H(τ). The Green’s functions are estimated over
a time length of 15 s, with a 20 Hz sampling frequency. The central frequency f0 is 2.6 Hz and the −3 dB frequency bandwidth
is 1 Hz.

The impulse responses exhibit several direct arrivals that have already been investigated by Refs. [15, 16]. Rayleigh waves
are well resolved, with an apparent velocity ranging between 1000 and 1300 m/s. Ballistic waves, likely direct inter-station
S-wave and P-wave, arrive before the Rayleigh wave at apparent velocities between 1500 m/s and 3000 m/s. This range of body
wave velocities is consistent with a previous seismic tomography study [45] from which a mean P-wave velocity of 2200 m/s
has been measured in the near-surface region of the edifice. In the following, we will use a homogeneous wave velocity model
with c = 2200 m/s as the reference bulk wave velocity. This choice will be also validated a posteriori by a minimization of the
aberration effects in the reflection matrix (see Sec. ).

In the present study, we are not interested in the ballistic component of the wave-field but rather in its scattered contribution
due to reflections by the internal structure of the volcano. These vertical echoes are mainly associated with P-waves since only
the vertical component of the Green’s functions is considered in this study. The scattered wave-field consists of two parts: (i)
a single-scattering contribution which can be taken advantage of for 3D imaging, because there is a direct first-order relation
between the arrival time τ of singly-scattered echoes and the distance d between sensors and scatterers, τ = 2d/c; (ii) a
multiple-scattering contribution for which the time-space relation does not hold, which is a hurdle for imaging. On the one
hand, a time-resolved analysis of H is needed in order to enhance the single-scattering component compared to the multiple
scattering contribution. On the other hand, a Fourier analysis of the impulse responses is required for a matrix description of
wave propagation.

To fulfill these two constraints, a short-time Fourier analysis of the impulse response matrix H is achieved. The impulse
responses hij(τ) are truncated into successive time windows of length ∆t: kij(t, τ) = hij(t + τ)W (τ) with W (τ) = 1 for
τ ∈ [−∆t/2,∆t/2], W (τ) = 0 elsewhere. t is the central time of each temporal window. The value of ∆t = 1 s is chosen so
that signals associated with the same scattering event(s) within the medium arrive in the same time window [5]. For each value
of time t, the coefficients kij(t, τ) form a matrix K(t, τ). A Fourier analysis is then achieved by means of a discrete Fourier
transform (DFT) and gives a set of impulse responses kij(t, f) at time t and frequency f . In the following, we will mainly
consider the response matrix K(t, f0) at the central frequency f0 = 2.6 Hz.

As previously discussed, any reflection matrix can be decomposed as the sum of a ballistic (B) contribution, a single (S)
scattering contribution and a multiple (M) scattering contribution. In the case of K(t, f), this is written:

K(t, f) = KB(t, f) + KS(t, f) + KM(t, f), (1)

or, in terms of matrix coefficients,

kij(t, f) = k
(B)
ij (t, f) + k

(S)
ij (t, f) + k

(M)
ij (t, f). (2)
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At any specific time t, KS(t, f) contains singly-scattered echoes associated with reflectors contained in the isochronous volume
i.e., the ensemble of points that contribute to the back-scattered signal at a given time. It is formed by the superposition of
all ellipses whose foci are elements i and j, for (i, j) ∈ [1;M ]. In a far-field configuration, the isochronous volume can be
approximated to a slab of thickness ∆r = c∆t, centered at a distance z = ct/2 from the array of geophones and parallel to it.
The multiple scattering contribution KM(t, f) corresponds to the sum of partial waves associated with multiple scattering paths
that occur at shallower depths and whose length belongs to the interval [z − c∆t/2; z + c∆t/2].

Previous works in ultrasound imaging have investigated the input-output correlation properties of the reflection matrix in
order to discriminate single and multiple scattering [3, 4]. While the latter contribution displays a random feature, the former
contribution displays a deterministic coherence related to the memory effect [35]. The original multiple scattering filter in
ultrasound imaging has been developed for a regular array of sensors under a paraxial approximation and neglecting wave-front
distortions related to an inhomogeneous wave velocity background [3, 4]. On the contrary, the geophones placed on top of
Erebus have irregular positions relative to one another. Moreover, the paraxial approximation is everything but true at shallow
depths and wave velocity tomography maps show strong variations at the top of Erebus volcano [45]. Hence, though we are
dealing with seismic waves whose mechanical nature is similar to ultrasound, the discrimination between single and multiple
scattering must be performed in a different manner than what has been done in the context of ultrasonic detection. Instead, we
adapt a recent extension of the matrix approach to optical imaging [8]. In the next section we explain how the reflection matrix
is transformed by emission and reception focusing, before discriminating single and multiple scattering.

FOCAL REFLECTION MATRIX

In order to emulate a set of virtual sources/receivers located below the surface at an arbitrary depth z, coherent beamforming
can be achieved at emission and reception. If the geophones were active sensors, it would consist in focusing the transmitted
wave at the desired point by applying the appropriate time delay to each geophone. In the reception mode, the same delays would
be applied to the received signals before being summed. Single scattering signals coming from a scatterer located at the focus
would add up coherently, whereas the summation would be expected to be incoherent for multiple scattering signals arriving at
the same time.

The matrix formalism allows to do all these operations in post-processing. To that aim, we first have to map, at each time, the
focal plane with a 2D set of N2 focusing points along the x and y directions (see Figure 1). The spatial sampling period should
be chosen smaller than the typical size δ of a resolution cell. δ is determined by the effective numerical aperture, sin θ, of the
geophone array at each depth z, such that

δ ∼ λ

2 sin θ
, with tan θ =

D

2z
(3)

where λ = c/f0 is the wavelength, assuming c is known. D is the typical size of the geophones’ network. At shallow depth,
δ is limited by diffraction: δ ∼ λ/2. The number N2 of focusing points in the focal plane is chosen such that the field-of-view
Nδ (i.e., the transverse size of the focal plane) coincides with twice the geophones’ array size at shallow depth, hence we take
Nλ/2 ∼ 2D. Here D = 4 km, so N is fixed to be 40. In the far-field (z >> D), the resolution cell δ scales as λz/D and the
field-of-view increases linearly with z.

The second step consists in defining a Green’s matrix G that describes the ballistic propagation of seismic waves from the
geophones’ network to the focal plane. As the scattered wave-field mainly contains P-waves, an homogeneous acoustic model
is considered with a wave velocity equal to c. G gathers all the free-space causal Green’s functions G(si, rl) between each
geophone at point si and each focal point rl:

G(si, rl) =
e−i 2πλ ‖rl−si‖

4π ‖rl − si‖
(4)

The final step consists in applying the double focusing operation to K to obtain the reflection matrix R in the focal plane.
Based on the Kirchoff-Helmholtz integral, such a focusing operation is standard in exploration seismology and referred to as
redatuming[10–12]. Under a matrix formalism, it can be written as follows,

R = ∂nG† ×K× ∂nG∗ (5)

where the symbols † and ∗ stands for transpose conjugate and conjugate. The matrices ∂nG† and ∂nG∗ contain the normal
derivatives of the anti-causal Green’s functions between the geophones and the focal points, i.e the wave-fronts that should
be applied at emission and reception in order to project the reflection matrix in the focal plane (Figure 1). The coefficients
R(rin, rout) of R is the impulse response between a virtual source at point rin = (xin, yin, z) and a virtual detector at rout =
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FIG. 2: (a,b,c) Reflection matrices R in the focal plane basis recorded at time t = 0.25, 5 and 12.5 s. (d,e,f) The central line of these reflection
matrices is reshaped in 2D and yields the focal spot for a central input focusing point rin = 0. The black circle represents the ideal focal spot
of radius δ that would be obtained in absence of aberration. The white circle line accounts for the typical size `c of the aberrated focal spot.
(g,h,i) The diagonal of these reflection matrices is reshaped in 2D and yields the confocal image of each focal plane. Note that the field-of-view
scales with the size of the resolution cell predicted by diffraction theory such that each focal plane contains a constant number of points. In
each panel, the modulus of matrix coefficients is displayed in arbitrary units with a linear color scale.

(xout, yout, z) at depth z = ct/2 [2, 32]. The effective size of each virtual geophone is δ in the transverse direction and c∆t/2
in the axial direction.

Figures 2a, b and c display the focal reflection matrix at three different times of flight: t = 0.25 s, 5 s and 12.5 s, respectively.
Since the focal plane is bi-dimensional, R has a four-dimension structure: R(rin, rout) = R(xin, yin, xout, yout). R is thus
concatenated in 2D as a set of block matrices to be represented graphically [see Figure 3a]. In such a representation, every
sub-matrix of R corresponds to a specific couple (yin, yout), whereas every element in the given sub-matrix corresponds to
a specific couple (xin, xout) [Figure 3b]. Each coefficient R(rin, rout) corresponds to the complex amplitude of the echoes
coming from the point rout in the focal plane when focusing at point rin (or conversely since R is a symmetric matrix due to
spatial reciprocity). Therefore, a line of the reflection matrix yields the response of the medium all across the focal plane for a
specific input focusing point. It may be reshaped in two dimensions to visualize the corresponding reflected wave-fields in the
focal plane (Figure 3b). Figures 2d, e and f show the 2D reshaped central line of the matrices R displayed in Figures 2a, b and
c, respectively and in these examples, the input focusing point is at the center of the field-of-view.

At small times of flight (t = 0.25 s) or equivalently at shallow depths (z ∼ 275 m), single scattering is predominant since the
corresponding focal depth is shallower than `s. Not surprisingly, R is close to being a diagonal matrix (Figure 2a). Most of the
incident energy reaches the input focusing point and most of the reflected echoes are collected nearby, which is a characteristic
feature of singly-scattered echoes. Nevertheless, as illustrated by Figure 2d, the characteristic size of the focal spot is larger
than the resolution cell δ predicted by diffraction theory. The size of the focal spot is given by the coherence length `c of the
reflected wave-field back-propagated in the focal plane. At time t = 0.25 s, `c is twice the theoretical resolution cell δ. The
inhomogeneity of the bulk wave velocity implies wave-front distortions and an energy spreading over off-diagonal elements of
R in Figure 2a. The blurring of the reflection matrix around the diagonal is a manifestation of the aberrations undergone by the
incident and reflected wave-fronts during their travel from the geophone array to the focal plane. This property has been taken
advantage of to validate a posteriori our initial choice for the mean wave velocity. The selected value, c = 2200 m/s, is found
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FIG. 3: Structure of the focal reflection matrix R. a) Every line or column corresponds to the reflected wave-field for an input or output
focusing point, rin or rout, respectively. b) The 2D representation of R corresponds to a set of block matrices that represents the reflection
matrix between two lines of virtual geophones in the focal plane. c) A line in the reflection matrix provides the backscattered wave-field
backpropagated in the focal plane for an input focusing point rin. d) The diagonal of R provides the reflected wave-field for identical input
and output focusing points. It yields a confocal image of the volcano at depth z = ct/2.

to minimize the ratio `c/λ. Such an optimization is important since it has an impact on both the transverse resolution and the
stretching in depth of the synthesized image.

At larger depths (`s < z < 10`s), we are in an intermediate regime where single and multiple scattering coexist. Figures 2b
and e display an example of reflection matrix and its central focal spot in this intermediary regime (t = 5 s, z ∼ 5.5 km). An
aberrated focal spot can hardly be observed in the vicinity of the input focusing point (Figure 2e). Aberration can be assessed by
the ratio `c/δ ∼ 3, which is stronger than at shallow depths (Figure 2d). Otherwise, beyond the central area (‖rin−rout‖ > `c),
the reflected wave-field also shows much higher side lobes that can be accounted for by multiple scattering events occurring
at shallower depths. With regards to the reflection matrix (Figure 2b), the multiple scattering contribution manifests itself as a
spreading of the back-scattered energy over its off-diagonal elements.

At last, beyond a depth of 10`s, we are in a fully developed multiple scattering regime. Figures 2c and f show a reflexion
matrix and its 2D reshaped central line in this regime (t = 12.5 s, z ∼ 13.75 km). Unlike previous cases, the backscattered
wave-field displays a random feature with hardly any relationship to the original input location (Figure 2f). At large travel times,
backscattered waves have actually undergone numerous scattering events and followed complex trajectories. Not surprisingly,
multiple scattering yield a seemingly random reflection matrix (Figure 2c).

The results displayed in Figure2 have shown how the reflection matrix gives a quantitative information about the aberration
level and the single-to-multiple scattering ratio. In the next sections, we will show how the internal structure of the volcano can
be imaged from the reflection matrix.

IN-DEPTH IMAGING OF EREBUS VOLCANO

Confocal imaging

A direct way to build a map of reflectivity for each focal plane, hence a 3D image, is to consider the diagonal of the reflection
matrix R. Each diagonal element R(rin, rin) corresponds to the recorded echo amplitude when focused beamforming is per-
formed both at emission and reception on the same point rin. Repeating this operation for each point within the field-of-view
gives an image, each pixel of which codes the reflectivity of a specific point rin. Confocal imaging is actually the underlying
principle of ultrasound imaging. It is based on a single-scattering assumption and is extremely sensitive to aberration issues.

Figures 2g, h and i display the 2D confocal images built from the diagonal of the reflection matrices displayed in Figures 3a,
b and c at time t = 0.5 s, 5 s and 10 s. At shallow depth (Figure 2g), one could have expected the confocal image to provide a
satisfying image of the Erebus volcano. However, the short propagation distance and the aberration level (Figure 2d) preclude a
clear distinction of inner structures of the volcano beyond roughly 1 km depth. Note that Ref. [14] already obtained a scattering
image of Erebus in this depth range by means of a confocal imaging process. However, this work benefited from additional
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arrival incidence information provided by the full Green’s tensor, itself estimated by correlations of Strombolian eruption coda.
At larger depths (Figures 2h-i), multiple scattering predominates over single scattering. A random speckle image is obtained
with, probably, no connection with the reflectivity of the volcano at the corresponding focal depth. This is confirmed by Figure 6a
that displays the 3D confocal image of Erebus.

Confocal imaging here fails not only because of multiple scattering but also owing to aberrations. A strict confocal discrimi-
nation of single scattering events is actually too restrictive. Aberrations induced by the wave velocity inhomogeneities degrade
the singly-scattered focal spots that spread over the off-diagonal elements of the reflection matrix. In the next section, we show
how to discriminate more precisely the single and multiple scattering contributions for imaging purposes.

Confocal filter

Recently, a new route has been proposed to extract singly-scattered echoes from a predominant multiple scattering background
in presence of aberrations [8]. It consists in applying consecutively to the reflection matrix R: (i) an adaptive confocal filter
that we describe below; (ii) an iterative time reversal process that we will describe in Sec. . The adaptive confocal filter consists
in weighting the coefficients R(rin, rout) of the focal reflection matrix as a function of the distance ||rout − rin|| between the
virtual geophones. The characteristic size of the adaptive confocal filter matches the coherence length `c of the backscattered
wave-field (Figure 4a), that was introduced in Sec. . The filter is chosen to be Gaussian-shaped

RF (rin, rout) = R(rin, rout)× exp

[
−‖rin − rout‖2

2`2c

]
(6)

The effect of confocal filtering is illustrated in Figure 4; it displays the filtered reflection matrix RF (Figure 4c) at time t = 5
s. The original reflection matrix R is shown for comparison in Figure 2b. Figures 4b-d display one line of R and RF reshaped
in a 2D wave-field. They correspond to the reflected wave-field from the focal plane for an input focusing point at the origin.
The confocal filter of Eq. (6) tends to favor single scattering paths that are associated with input and output focusing points
distant from less than one coherence length `c. The further the input and output points are apart, the likelier the resulting signal
is to contain multiple scattering, and the more it is accordingly penalized through the filter. As a consequence, even though
R is clearly dominated by multiple scattering, RF indeed displays a single scattering feature with most of the back-scattered
energy gathered by close-diagonal elements (Figure 4c) and much narrower focal spots than the original matrix R (see e.g the
comparison between the central focal spots displayed Figures 4b and d).

However, RF still contains a residual multiple scattering component. Indeed, multiple scattering also contributes to the
diagonal of R which is unaffected by the adaptive confocal filter in Eq. 6. As a result, standard confocal imaging applied to RF

would also fail, resulting in the random speckle images displayed in Figures 2h and i. Another operation is needed to filter the
residual multiple scattering contribution. This is done using iterative time reversal [8, 30, 31], presented in the next section.

Iterative time reversal

Iterative time reversal has originally been developed in acoustics. It initially consisted in insonifying a multi-target medium
with a pulse wave, recording the back-scattered wave-field, and time-reversing it. Then, this time-reversed response was sent
back into the medium and the whole process was iterated [30]. The procedure has been shown to converge towards a wave-
front that selectively focuses on the strongest scatterer, even in presence of strong aberrations. Mathematically, this amounts to
looking for the first invariant of the time reversal operator KK†.

Iterative time reversal paved the way towards the DORT method (French acronym for Decomposition of the Time Reversal
Operator), which takes advantage of the response matrix K associated with an array of transducers probing a homogeneous
medium in which discrete scatterers are embedded [30, 31]. It consists in computing the whole set of invariants of the time
reversal operator KK† from its eigenvalue decomposition, or equivalently, from the singular value decomposition (SVD) of K.
Under a single scattering assumption, there is a one-to-one correspondence between each eigenstate of K and each scatterer
embedded in the medium. Each singular value is proportional to the target reflectivity and the corresponding singular vector
yields the wave-front that selectively focuses on each scatterer, even in presence of strong aberrations.

In the present case, the single scattering assumption is far from being verified and the one-to-one matching between scatterers
and singular states of K is no longer true. Instead of working on the reflection matrix at the volcano surface, we consider it in
the focal plane, and its confocally filtered version RF is brought into play. Due to the confocal filter, the multiple scattering
component has been severely reduced in RF. Next, we rely on DORT for extracting singly-scattered echoes among the residual
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FIG. 4: Adaptive confocal filter of single scattering. a) Scheme of the confocal filtering operation described in Eq. (6). (b) Reflected wave-field
in the focal plane for an incident focusing wave at the origin of the focal plane at time t =5 s. c) Filtered reflection matrix RF deduced from
R displayed in Figure 2b. [Eq. (6)]. d) Adaptive confocal filter applied to the wave-field displayed in b.

multiple scattering noise. The SVD of RF reads:

RF = UΛV† =

N2∑
p=1

λpUpVp
† (7)

where U and V are unitary matrices whose columns Up and Vp are the singular vectors. Λ is a real diagonal matrix whose
elements λ1 ≥ λ2 ≥ · · · ≥ λN2 ≥ 0 are the singular values. In the present case, the symmetry of RF implies that U = V∗. As
was mentioned before, each eigenstate of RF should be associated with one scatterer only, under a single scattering assumption.
Note that, in the case of RF, this assumption refers to scattering trajectories starting and ending at the virtual transducers, not
the actual geophones.

Figure 5a displays the singular values of RF at time t = 5 s. The first two singular values seem to emerge from a continuum
of lower singular values associated with the residual multiple scattering noise in RF. The square norm ‖Up(rin)‖2 of the
corresponding singular vector coefficients are displayed in Figures 5b and c. They show an energy focusing at specific locations.
However, a systematic and quantitative analysis of the singular value spectrum is needed in order to assess whether the first
two singular values are indeed associated with coherent reflectors at the focal depth or if they are false alarms due to speckle
fluctuations. To that aim, a probabilistic approach based on random matrix theory is developed in the next section in order to
discriminate potential artifacts [4, 5, 36].

Likelihood index of potential targets

Since the scattering medium is considered as one realization of a random process, assessing the reliability of the images
obtained requires a statistical model for the probability density function of the singular values λp in the multiple scattering
regime. At any time t, by convention and for the sake of simplicity, the singular values λp are normalized by their quadratic
mean:

λ̃p =
Nλp√∑N2

q=1 λ
2
q

(8)

If the reflection matrix coefficients were independently and identically distributed random variables, the singular values would
obey the quarter-circle law [27]. However, because of the adaptive confocal filter applied to the raw reflection matrix R, the
variance of the matrix elements RF (rin, rout) strongly depends on the distance ||rin− rout||. Moreover, aberrations also imply
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short-range correlations over the coherence length `c, which also impacts the distribution of singular values [34]. For all these
reasons, the histogram of normalized singular values displayed in Figure 5d does not follow the quarter circle law. Therefore, in
order to obtain a model for the probability density function ρ(λ) in a target-less area, we numerically generated a set of random
reflection matrices whose elements display the same statistical behavior (i.e., mean value, standard deviation and inter-element
correlation) as the experimental matrix coefficients [6]. By repeating this operation over 500 realizations, the probability density
function ρ(λ) is estimated. Close agreement is found with the experimental histogram of the singular values, as shown in
Figure 5d.

Once ρ(λ) is known, a likelihood index can be associated with the first singular state. To that aim, the relevant quantity is the
distribution function F1 of the first singular value [4, 5]:

F1(λ) = P(λ̃1 < λ) =

∫ λ

0

ρ1(λ)dλ (9)

with ρ1(λ) the probability density function of λ̃1 [see Figure 5d]. The quantity 1−F1(λ̃1) is the probability that a pure multiple
scattering speckle gives rise to a first singular value larger than the measured λ̃1. Therefore, F1(λ̃1) can be directly used as a
likelihood index that the first singular state of RF is actually associated with a coherent reflector (a target) rather than a normal
multiple scattering speckle fluctuation. For instance, at the specific time of flight t = 5 s considered in Figure 5, the first singular
state is associated with a target with a high likelihood index of 97%.

A likelihood index can also be assigned to any eigenstate of rank p > 1. To that aim, we need to determine the singular value
distribution ρp(λ) for a reflection matrix whose signal subspace is of rank (p−1). Ref. [34] has shown that the (N2−p) smallest
singular values (linked to the noise subspace) exhibit the same distribution as singular values of a random matrix whose size is
(N2 − p)×N2. The corresponding distribution function Fp(λ) can then be derived numerically following the same method as
above. By way of example, the likelihood index of the second singular state in Figure 5 is of 98%.
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FIG. 5: Singular value decomposition of the reflection matrix RF at time t = 5 s (Figure 4c). a) Normalized singular values λ̃p [Eq. (8)]
displayed in decreasing order. b) Image associated with the first eigenspace of RF, |U1(r)|2. c) Image associated with the second eigenspace
of RF, |U2(r)|2. d) Histogram of the experimental singular values compared with the probability density functions ρ(λ) (red line), ρ1(λ)
(dark blue line) and ρ2(λ) (light blue line) that would be obtained in a fully developed multiple scattering regime. The integration of ρ1(λ)
(green shaded area) and ρ2(λ) (blue shaded area) from 0 to λ̃1 and λ̃2 [Eq. (9)], respectively, yields the likelihood index of the corresponding
eigenspaces.

THREE-DIMENSIONAL IMAGING OF THE EREBUS VOLCANO

Before building a 3D image of Erebus, let us recap the main steps of the procedure (see Fig. S1 in supporting information):

• The Green’s functions between the actual geophones have been recovered from cross-correlation of icequakes;

• The resulting matrix H has been submitted to a time-frequency analysis;

• Assuming a constant velocity, focused beamforming has been achieved in order to emulate a virtual array of sources and
receivers, at any arbitrary depth;

• A confocal filter, whose cutoff length is adapted to match the coherence length of the scattered field at each depth, is
applied;
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• The resulting matrix RF undergoes an SVD in order to extract its strongest eigenstates, and the probability for these
eigenstates to be due to an actual reflector is evaluated, based on random matrix theory.

So at this stage, we have all the necessary ingredients to build images and compare the result of the matrix approach to standard
techniques.

The iterative time reversal process described in Sec. is applied at each time of flight. The images obtained from the first
and second singular vectors of RF at each ballistic depth are stacked into 3D images. The corresponding isosurface plots
are displayed in Figure 6b and c. The statistical analysis described in Sec. allows to assign a likelihood index to each detected
scattering structure. Note that only scattering structures associated with a likelihood index larger than 70% are displayed. Inferior
values mean that the corresponding singular state has a high probability of being associated with pure multiple scattering speckle.
Figure 6b displays the image provided by the first singular vector U1. Internal scattering structures of the volcano are imaged
with a likelihood index higher than 90% until an elevation of −3000 m, i.e. a depth z ∼ 9 ls. Figure 6c displays the image
provided by the second singular vector U2. The latter image is much more sparse than the former one. Notably, U2 is often
associated with the same coherent reflector as U1 but focuses on smaller details. Indeed, as soon as a scatterer is larger than a
resolution cell, several singular vectors are associated with it. Their number n actually scales as the number of resolution cells
contained in the scatterer [7, 33]. A weighted combination of singular vectors allows to recover the complete structure of the
reflectors in the volcano:

I(r) =

n∑
p=1

λp |Up(r)|2 (10)

In the present case, only the two first singular vectors are considered (n = 2) because the third singular value is dominated by
the multiple scattering noise subspace of RF (see e.g. Figure 5a).
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FIG. 6: Isosurface plots of the three dimensional images of the volcano built from (a) confocal focusing, (b,c) the first and second singular
vectors of RF, λ2

1|U1(r)|2 and λ2
2|U2(r)|2, respectively, and (d) the coherent combination of both [Eq. (10)]. For all these isosurface plots,

the images are multiplied in depth by a factor z2 to compensate for the geometrical decrease of singly-scattered body waves.The isosurface
is fixed to be 4% of the maximum of each image. The color scale in panels (b) and (c) accounts for the likelihood index associated with the
singular vector at each depth (see Sec.).

Figure 6d displays the resulting three-dimensional image of the Erebus volcano. It should be compared with the random
speckle image obtained by the direct confocal method (Figure 6a). The matrix approach described in this paper enables to
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highlight a chimney-shaped structure with a nearly 100% likelihood index (Figure 6b). Moreover, although computed inde-
pendently, the results at each depth are spatially consistent, substantiating their physical meaning. In agreement with previous
studies [14, 45], the chimney seems to rise towards the lava lake at shallow depth, followed by a sharp bifurcation towards the
north-west, finally setting centrally in a shallow magma chamber near 2500 m elevation. Some particular features also emerge
from the sea level to 5000 m below it. An interpretation of these imaged structures will be provided in the next section.

Beforehand, however, it should be noted that the velocity model used for emission and reception is a bulk approximation
and thus the depth is likely to be inaccurate. Yet a correct model would dilate the structure up or down but would not change
significantly its geometrical shape. We should also keep in mind that the obtained 3D image still suffers from aberrations owing
to the imperfect wave velocity model used for the Erebus volcano. One great advantage of iterative time reversal is the ability
to detect scatterers in presence of the strong wave-front distortions. However, the associated image still suffers from aberrations
as the wave velocity model used for the back-propagation is inaccurate. The perspective of this work will be to tackle these
aberration issues. A first step will be to incorporate the existing wave velocity model over the first km depths [45], before
improving and extending it to larger depths thanks to the reflection matrix approach. The removal of multiple reflections due to
geological layering will be also a challenge [38].

STRUCTURAL INTERPRETATION

A structural interpretation of the three-dimensional image displayed in Figure 6 is now proposed by relying on the existing
literature about Erebus. The Erebus magmatic system consists of a persistently open convecting lava lake, and has historically
produced multi-phase magma, potentially a testament to its complex inner structure. Magmas related to the proposed hot spot
upwelling beneath Ross Island have been found in wide regions (such as the Dry Valleys), and variability in the compositions
have pointed to radial fracturing in the lower crust as a mechanism for diversification. All current models suggest a single original
mantle source with subsequent crustal assimilation. A large mantle anomaly down to roughly 400 km depth has been imaged as
a source [18]. Beyond the modified confocal image produced by Ref. [14] and the subsequent shallow active source tomography
model [45] however, there are no reliable structural images of Erebus at intermediate depths. This lack of information between
1-100 km is due to several factors.

Firstly, there is a general lack of magmatic seismicity at Erebus, thus precluding event location studies, compounded with a
paucity of tectonic earthquakes in West Antarctica that could be used in passive tomographic studies [42]. Furthermore, given the
extreme topographic expression of Erebus on Ross Island, ambient noise Rayleigh wave reconstructions for imaging at depths of
interest would require stations located in the Ross Sea. Geochemical and geological methods therefore are the only alternative
source of constraint for this depth range. Ref. [29], for instance, studied phase equilibria in lavas for Erebus Lineage magmas
(CO2-H2O-Pressure-Temperature-O2-fugacity). These magma phase equilibria suggest that a pressurized deeper body capable
of reproducing Erebus lavas must be contained in the 4-7.5 km range. Note that this is in agreement with the inferred deeper
structures imaged in the 5 km depth range in Figure 6d.

As a measure of confidence in our results, the top kilometer imaged in this study shows a distinctly West/NorthWest bifurcation
immediately under the lava lake, which is supported by previous imaging studies [14, 45], as well as moment tensor inversions of
Very Long Period (VLP) signals associated with gas slug movement in the shallow conduit preceding Strombolian eruptions [1].
The agreement between Ref. [14] and this paper, both showing a West/NorthWest shallow bifurcation with a re-centralization at
2500 m elevation, is particularly encouraging, given that the former study was performed with autocorrelations of eruption coda,
and thus an entirely different dataset. This corroboration lays credence to the unbiased nature of the icequake-reconstructed
Green’s functions.

Furthermore, temporal variations in the timing of VLP signals with respect to the short period lava lake eruption imply
concurrent changes in gas slug trapping mechanisms [22], thus suggesting an abnormally lateral conduit system at shallow
depths. This is a further testament to the complexity of the near surface conduit structure, and is reflected in the results presented
here (see Figure6d). Efforts are currently underway to back-project continuous seismic data from the ETS-ETB arrays [19] and
identify any potential coherent magmatic seismicity embedded in the noise that might locate at depth.

CONCLUSION

The analysis of the cross-correlation of coda waves recorded by a set of geophones under a reflection matrix approach provides
an elegant and powerful tool for geophysical exploration. The reflection matrix actually contains all the information about the
propagation of body waves beneath the geophones array. The incoherent noise present in the cross-correlation of coda waves
is efficiently reduced by the imaging procedure. This allows for an effective use of body waves for passive imaging with
array correlations. Our approach first consists in applying a set of matrix operations to perform an adaptive confocal selection
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of singly-scattered waves among a predominant multiple scattering background. Iterative time reversal is then applied to the
focal reflection matrix in order selectively focus on the most scattering parts of the scattering medium while removing the
residual multiple scattering noise. This approach is applied successfully to the case of Erebus volcano. A 3D image of the
internal structure of the volcano is revealed while state-of-the art techniques fail in imaging such scattering media. Although
the velocity model is approximate, the penetration depth and resolution are strongly enhanced compared to a direct back-
propagation of seismic waves, and could be even improved using more sophisticated back-propagation tools. Although only
the single scattering contribution has been used here, a matrix analysis of the multiple scattering contribution can be fruitful to
characterize the scattering and transport parameters of seismic waves propagating in the medium of interest [2, 26, 28]. In any
case, this approach is very general and can be particularly useful in strongly heterogeneous environments such as volcanoes,
mountain areas or fault zones in which aberrations and scattering impede seismic bulk wave imaging.
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FIG. S1: Flow chart describing the matrix imaging process. (B0) The Green’s functions between each geophone are recovered from coda
based cross-correlation functions. (B1) The resulting impulse response matrix H(t) is submitted to a time-frequency analysis, yielding the
matrix K(t, f). (B2) Based on a rough estimate of velocity c, focusing is performed both at emission and reception at each time t by means
of simple matrix operations [Eq. (4)]. It provides a new reflection matrix R defined for a set of virtual geophones located at depth z = ct/2.
(B3) An input-output analysis, referred to as confocal filtering, allows for the removal of most of the multiple scattering contribution in the
new reflection matrix RF [Eq. (6)]. (B4) Iterative time reversal is applied to overcome the residual multiple scattering contribution as well as
the aberration effects induced by the scattering medium itself, and detect possible reflectors [Eq. (7)]. (B5) A statistical analysis of the matrix
singular values permits attribution of a likelihood index to each detected structure [Eq. (9)]. (B6) Significant eigenmodes of RF obtained at
each depth are stacked into a 3D image.
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