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Eigendecomposition-based convergence analysis of the Neumann series for
laminated composites and discretization error estimation

C. Bellis, H. Moulinec, P. Suquet
Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France

Abstract

In computational homogenization for periodic composites, the Lippmann-Schwinger integral equation con-
stitutes a convenient formulation to devise numerical methods to compute local fields and their macroscopic
responses. Among them, the iterative scheme based on the Neumann series is simple and efficient. For such
schemes, a priori global error estimates on local fields and effective property are not available and this is the
concern of this article, which focuses on the simple, but illustrative, conductivity problem in laminated com-
posites. The global error is split into an iteration error, associated with the Neumann series expansion, and a
discretization error. The featured non-local Green’s operator is expressed in terms of the averaging operator,
which circumvents the use of the Fourier transform. The Neumann series is formulated in a discrete setting and
the eigendecomposition of the iterated matrix is performed. The ensuing analysis shows that the local fields are
computed using a particular subset of eigenvectors, the iteration error being governed by the associated eigen-
values. Quadratic error bounds on the effective property are also discussed. The discretization error is shown to
be related to the accuracy of the trapezoidal quadrature scheme. These results are illustrated numerically and
their extension to other configurations is discussed.

Keywords: Computational homogenization, Lippmann-Schwinger equation, Green’s operator, Error estimates

1 Introduction
Since the works of Kröner (1972) and Willis (1981), volume integral formulations have shown to be convenient
tools in the study of composites. In particular, starting from the set of governing equations of a given linear
problem and introducing a reference homogenous comparison material together with the associated Green’s
operator, the solution field can be shown to satisfy the so-called Lippmann-Schwinger equation. Computing this
field therefore amounts to invert this integral equation, which can be done by expressing the solution through
a Neumann series expansion. In turn, such an expansion requires iterating the non-local Green’s operator
composed with a local material contrast function. For periodic composites, it has been recognized in Moulinec
and Suquet (1994, 1998) that such computations can be advantageously performed by iterating back and forth
between the physical space and the Fourier space where the Green’s operator can be expressed algebraically
as a frequency-dependent tensor. Building on this idea and making use of the Fast Fourier Transform for
computational efficiency, an iterative fixed-point scheme has been proposed in Moulinec and Suquet (1994,
1998) to compute local fields by the Neumann series expansion, giving access in turn to macroscopic responses.

FFT-based computational homogenization methods have been flourishing since, with applications to a variety
of material configurations. From an algorithmic standpoint, most developments have aimed at fast or uncondi-
tionally convergent schemes, see e.g. Eyre and Milton (1999); Michel et al. (2001); Zeman et al. (2010); Monchiet
and Bonnet (2012); Brisard and Dormieux (2012); Gélébart and Mondon-Cancel (2013); Mishra et al. (2016);
Moulinec et al. (2018). Recently Kabel et al. (2014), the connexion between the Lippmann-Schwinger equation
and the gradient of the strain-based elastic energy functional has been highlighted. This has opened the door
to the development of accelerated gradient-based algorithms, see Schneider (2017), as well as numerical schemes
based on alternative geometrical variational principles Bellis and Suquet (2018). In this context and despite
this abundant literature, to our knowledge, results on a priori global error estimates for this type of numerical
methods are relatively scarce. This issue is therefore the subject of the present study, which is intended to be
an assessment of the questions related to global error estimations on local fields and effective properties. Note
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that, in the specific framework of the Fourier-Galerkin method, related results have been obtained in Vondrĕjc
et al. (2014, 2015).

With this aim, one focuses on the original fixed-point scheme of Moulinec and Suquet (1998) that is associated
with the Neumann series expansion. Given our objective to illustrate the convergence properties of this algorithm,
one considers the conductivity problem in laminated periodic composites. This problem is simple enough to be
solved semi-analytically but, in the mean time, it is rich enough to provide illustrative examples of the main
features of the algorithm considered. Given the iterative nature of the latter the overall numerical error is
split into two components that are studied separately: an iteration error that corresponds to the convergence
of the Neumann series expansion, and a discretization error, which is associated with the convergence of the
limit of that expansion to the exact continuous solution. Moreover, let us emphasize that, for the 1D problem
considered, the non-local Green’s operator is fully expressed in closed-form in the physical space using the
averaging operator. As a consequence, the Fourier transform is not involved in the computation of the Green’s
operator in the present study, so that the issues conventionally related to the Fourier-based approximation are
not at play here.

The conductivity problem considered is introduced in Section 2 alongside with the definition of the Green’s
operator and its key properties in connection to energetic variational principles. In this context, the Lippmann-
Schwinger equation is obtained through a first-order optimality condition and then inverted in the form of a
conditionally convergent Neumann series. These elements are then transposed in a discrete setting for which
the discretization scheme reduces to the introduction of the trapezoidal quadrature rule by consistency with the
Fourier-based implementations of the fixed-point scheme that are commonly employed. Two test cases are also
introduced, i.e. two specific spatial distributions of the conductivity field, as illustrative examples to be used
throughout the study. In the discrete setting considered, a detailed eigenanalysis of the matrix iterated in the
Neumann series expansion is provided and illustrated numerically in Section 3. With this eigendecomposition at
hand, the convergence properties of the Neumann series are investigated in Section 4, first in terms of local field
and then effective property. It is shown in particular that the solution field is constructed iteratively using a
particular subset of eigenvectors, or modes, whose associated eigenvalues being, in some cases, smaller in absolute
value than the spectral radius of the iterated matrix. This allows to provide a mode-based decomposition of the
solution that is computed using the Neumann series expansion and to characterize the associated convergence
rate, see Sec. 4.1. The convergence estimates of the iteration error are extended to the effective property by
discussing some quadratic upper and lower bounds on the latter, making use of results which are standard in the
field of numerical optimization, see Sec. 4.2. The next step in Section 5 consists in evaluating the discretization
error that characterizes the convergence of the discrete solution, computed by the Neumann series, to the exact
continuous one. This analysis relies on the evaluation of the accuracy of the trapezoidal quadrature rule that
constitutes the core of the discretization scheme considered. Reminding some key results on this numerical
integration scheme, it is shown that the discretization error is directly related to the spectral properties of the
conductivity field that characterizes the composite considered, and that high level of accuracy can be reached for
smooth material distributions. Owing to this analysis, aliasing effects are also shown to be entirely accountable
for the discretization errors. Section 6 summarizes the main points of this study on 1D laminated composites
and discusses the possible extensions of these results to other configurations. In Section 6.2, a 2D conductivity
problem, for which the exact field solution and the effective property are known analytically, and a 3D elasticity
problem are investigated numerically to illustrate this discussion.

2 Laminated composites
2.1 Problem setting and effective property
Consider an isotropic conductive material in RD, periodically laminated with layers orthogonal to the unit
direction d and ` being the period length. The conductivity field γ satisfies

γ(x) = γ(x) for all x = x · d, γ ∈ L∞per(0, `), γ(x) ≥ κ > 0.

With the same abuse of notations, the governing equations of the conductivity problem read
(i) e(x) = e+ ẽ(x), ẽ(x) = ∇u(x), u ∈ H1

per(0, `),

(ii) j(x) = γ(x)e(x),

(iii) div j(x) = 0, j(0) · d = j(`) · d,

(1)
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where e = ed+ e⊥ with d · e⊥ = 0 is the imposed macroscopic intensity.
By definition, for any scalar function w ∈ H1

per(0, `) one has ∇w(x) = dw
dx (x)d, so that one introduces the

functional space E0 of mean-free compatible gradients as:

E0 =
{
f : ∃ f ∈ L2

per(0, `) with 〈f〉 = 0 such that f(x) = f(x)d in [0, `[
}
, (2)

where the averaging operator 〈·〉 is defined by

〈f〉 = 1
`

∫ `

0
f(x) dx.

Given α > 0, one defines a weighted scalar product (·, ·)α as

(f1,f2)α = 〈f1 · αf2〉 ∀f1, f2 ∈ L2
per(0, `)D, (3)

the case α = 1 being the standard L2
per-scalar product. Equipped with the scalar product (3), the space E0 is a

Hilbert space. Its polar space S , which is defined as the space of functions h that satisfy the 〈h · f〉 = 0 for all
f ∈ E0, is given by

S =
{
h : h · d is a constant

}
. (4)

The elements of S are divergence-free fields as for any vector-valued function h(x) one has divh(x) = dh
dx (x) ·d.

Note that the spaces E0 and S differ by the physical dimension of their elements, which are intensity and current
fields respectively, and the term 〈h · f〉 constitutes a duality product. In this context, the local equations (1)
can be rewritten in the condensed form:

(i) e(x) = e+ ẽ(x), ẽ ∈ E0, (ii) j(x) = γ(x)e(x), (iii) j ∈ S . (5)

Reference can be made to, e.g., (Milton, 2002, Chap. 9) for the study of the problem (5). It is a 1D problem
where (I − d ⊗ d) · e(x) = e⊥, with I being the identity tensor. Moreover, in the direction of lamination the
solution is denoted as e(x) = e(x) · d. Since (5.iii) entails that γ(x)e(x) is a constant and given that 〈e〉 = e
from (5.i), one arrives at:

e(x) =
〈

1
γ

〉−1
e

γ(x) . (6)

The problem (5) is also equivalent to the minimum energy principle:

ẽ = arg min
e′∈E0

W (e′) with W (e′) = 1
2
〈(
e+ e′(x)

)
· γ(x)

(
e+ e′(x)

)〉
, (7)

which allows to define the effective conductivity tensor γeff from the solution e = e + ẽ using the following
identity:

e · γeff · e = 〈e(x) · γ(x)e(x)〉 . (8)
According to the solution (6), the homogenized medium is anisotropic with

γeff = γeff d⊗ d+ γ⊥eff(I − d⊗ d) where γeff =
〈

1
γ

〉−1
and γ⊥eff = 〈γ〉 . (9)

2.2 Optimization-based approach
Green’s operator Given a reference homogeneous conductivity γ0 > 0 then the corresponding Green’s
operator Γ0 is defined as:

Γ0 : s 7→ Γ0s = e′ such that e′ ∈ E0 and (γ0e
′ − s) ∈ S . (10)

By solving the problem corresponding to e′ as in Section 2.1, one can show that the Green’s operator is a
non-local operator that is given in closed-form in the physical space by

Γ0s(x) = d⊗ d
γ0

·
(
s(x)− 〈s〉

)
. (11)

The Green’s operator is self-adjoint in L2
per(0, `)D for the scalar product (3) for any α > 0 since

(Γ0s1, s2)α = α

γ0

〈(
s1 − 〈s1〉

)
s2
〉

= α

γ0

(
〈s1s2〉 − 〈s1〉 〈s2〉

)
= (s1,Γ0s2)α,

where one has noted si = si · d.
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Optimality condition It has been shown, see e.g. Bellis and Suquet (2018), that the gradient of the energy
functional W in (7) for the energetic scalar product (·, ·)γ0 is given for all e′ ∈ E0 by:

∇W (e′) = Γ0h with h(x) = γ(x)
(
e+ e′(x)

)
. (12)

Therefore, the solution ẽ ∈ E0 to the variational problem (7) satisfies the first-order optimality condition:

∇W (ẽ) = Γ0j = 0 with j(x) = γ(x)e(x) = γ(x)
(
e+ ẽ(x)

)
. (13)

Note that identities such as (12) and (13) hold beyond the scope of the case of laminates investigated in the
present study, see Kabel et al. (2014); Bellis and Suquet (2018).

It can be checked that the total field e in (13) satisfies 〈e〉 = e and (I − d⊗ d) · e(x) = e⊥. Moreover, from
the optimality condition Γ0[γ e] = 0 one gets

d⊗ d
γ0

·
(
γ(x)e(x)− 〈γ e〉

)
= 0,

so that γ(x)e(x) = 〈γ e〉. This entails that γ(x)e(x) is a constant, which can be shown to be equal to 〈1/γ〉−1
e.

Therefore the solution to (13) is the one given by (6).
From (11), it can be seen that Γ0γ0e = 0 and Γ0γ0e

′ = e′ for all e′ ∈ E0. As a consequence, the optimality
condition (13) is equivalent to the so-called Lippmann-Schwinger equation given by

e(x) = e− Γ0[δγ e](x), (14)

where δγ(x) = γ(x)− γ0.

Stationary iterative scheme: Neumann series The solution to the variational problem (7) can be
computed using a gradient-based algorithm, the simplest one being the gradient-descent scheme with fixed step
given by: {

ẽ0(x) = 0
ẽk+1(x) = ẽk(x)− tk∇W (ẽk)

with tk = 1, (15)

which has been highlighted in Kabel et al. (2014) as being equivalent to the iterative fixed-point scheme intro-
duced in Moulinec and Suquet (1998) to solve the Lippmann-Schwinger equation (14). In the sequel, one focuses
on the computation of the component e(x) of the total intensity field solution along d, so that the above scheme
reduces to: {

e0(x) = e,

ek+1(x) = e− Γ0[δγ ek](x),
(16)

where the scalar Green’s operator Γ0 is defined as

Γ0s = 1
γ0

(s− 〈s〉), i.e., Γ0s = Γ0[sd] · d. (17)

The scheme (16) guarantees that 〈ek〉 = e for all k ≥ 0. Moreover, the output at the iterate k can be expressed
as a Neumann series as:

ek(x) =
k∑
j=0

(−G)j e with G = Γ0 δγ = Γ0γ0
δγ

γ0
. (18)

Note that in (18), the notation Gj denotes the j-th composition of the operator G with itself. Introducing the
subspace of mean-free fields as

L2
per,0(0, `) =

{
f ∈ L2

per(0, `) : 〈f〉 = 0
}

(19)
and, with an abuse of notation, upon using (3) as a scalar product on the space L2

per of scalar functions, then
for all f1, f2 ∈ L2

per,0(0, `) one has

(Gf1, f2)α = α

γ0

〈(
δγf1 − 〈δγf1〉

)
f2
〉

= α

γ0

(
〈δγf1f2〉 − 〈δγf1〉 〈f2〉

)
= α

γ0
〈δγf1f2〉 = (f1,Gf2)α,

which proves the self-adjointness of G in L2
per,0. Supplementing this result with the known geometrical inter-

pretation of the Green’s operator, see Milton (2002); Bellis and Suquet (2018), one arrives at the following
property.
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Property 1. The operator G is self-adjoint from L2
per,0(0, `) into itself for any scalar product (·, ·)α. Moreover,

it can be decomposed as G = P0g where P0 = Γ0γ0 is the orthogonal projection operator from L2
per,0(0, `) onto

itself and g is the normalized material contrast defined as g(x) = δγ(x)/γ0.

Finally, the series (18) is conditionally convergent, depending on the choice of the reference value γ0 and,
when it does, it converges to the solution e = e · d of (14). For any given norm ‖ · ‖α on L2

per, evaluating the
subordinate operator norm ‖G‖α provides a valuable information as it yields an upper bound on the convergence
rate of the continuous Neumann series (18) according to the global estimate:

‖ek − e‖α ≤ ‖Gk‖α ‖e0 − e‖α.

Remark 1. According to Property 1, the case of laminated composites is peculiar in that the overall properties
of the operators considered are independent of the weight α featured in the scalar product (3). However, by
consistency with earlier studies Kabel et al. (2014); Moulinec et al. (2018); Bellis and Suquet (2018), the energetic
scalar product (·, ·)γ0 is preferred and will be used thereafter.

2.3 Discretization
Discretization grid In this study, convergence issues will be investigated at the discrete level. To do so,
consider a regular N -points discretization of the period [0, `[ with associated grid size h = `/N and points
xn = nh with n = 0, . . . , N − 1. Note that the point x = ` is not included in the discretization owing to
the periodicity of the functions considered. The notation γh is also used to denote the vector in RN whose
components are the conductivity values at the grid points, i.e. γhn = γ(xn). Moreover, one introduces the vector
gh, whose components are given by the values g(xn) of the normalized material contrast, i.e.

ghn = δγhn
γ0

for all n = 0, . . . , N − 1 (20)

where δγhn = γhn − γ0.

Material phases As some components of the conductivity vector γh can be equal, one can define a number
P of phases φp, consisting each in the union of the points xn that share a given value γhnp

. To do so one can
rearrange the values γhn for n = 0, . . . , N − 1 by indexing them by phase numbers, i.e. γhnp

for p = 1, . . . ,P with
1 ≤ P ≤ N and such that γhnp

6= γhnq
if p 6= q. This allows to define the phases as the discrete set

φp =
{
xn : γhn = γhnp

}
, (21)

with the corresponding phase fraction being equal to Np/N with Np = card(φp) and
∑P
p=1Np = N . This

definition extends to the normalized material contrast vector gh. Lastly, for further purposes, in the case where
gh takes zero values, the associated reference phase will be denoted as

φ∗ =
{
xn : ghn = 0

}
, (22)

with N∗ = card(φ∗) and, for convenience, it will then be designated by the index value p = P, i.e. φ∗ ≡ φP ,
n∗ ≡ nP and N∗ ≡ NP .

Discrete operators and scheme Considering periodic functions, one defines a discrete averaging operator
〈·〉h based on a numerical integration scheme by the trapezoidal rule, i.e.

〈f〉 ≈ 〈f〉h = 1
N

N−1∑
n=0

fn for f ∈ RN such that fn = f(xn). (23)

Since 〈f〉 = f̂(0) with f̂ being the Fourier transform of f , the approximation (23) is chosen as it coincides
with the computation of averages using the discrete Fourier transform, the latter being a widely used tool in
computational homogenization for the numerical implementation of iterative schemes such as (16), see Moulinec
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and Suquet (1998); Moulinec et al. (2018). The question of the convergence of the approximation (23) will be
returned to in Section 5. One also defines the energetic scalar product (·, ·)γ0 as(

f ,g
)
γ0

= γ0

N
f t · g ∀f ,g ∈ RN , (24)

where the exponent t denotes the transposition operator, so that the corresponding energetic norm reads

‖f‖2γ0
= γ0

N

N−1∑
n=0

(fn)2. (25)

The discrete counterpart of (19) is the subset:

RN0 =
{
f ∈ RN : 〈f〉h = 0

}
, (26)

which satisfies dim(RN0 ) = N − 1. Moreover, one introduces the following orthogonal decomposition for all
f ∈ RN :

f = A · f + P0 · f (27)
with A · f being a constant averaged vector of RN which components are equal to the mean value 〈f〉h, see (65).
Moreover, P0 is the orthogonal projection matrix onto RN0 defined by (66).

In this setting and from the definitions of Appendix A, the discrete form of the energetic variational principle
(7) reads:

ẽh = arg min
e′∈RN

0

Wh(e′) with Wh(e′) = 1
2N (e + e′)t ·Diag[γh] · (e + e′), (28)

and where e denotes the constant vector in RN whose components are equal to e. For the energetic scalar
product (24), the gradient of the energy functional Wh is defined through the following identity(

∇Wh(e′), f̃
)
γ0

= 1
N

(e + e′)t ·Diag[γh] · f̃ ∀f̃ ∈ RN0 .

As a consequence, the vector bh =
(
γ0∇Wh(e′)−Diag[γh] · (e+e′)

)
belongs to the subspace orthogonal to RN0

so that its projection onto the latter is zero, i.e. P0 · bh = 0. Since ∇Wh(e′) ∈ RN0 for all e′ ∈ RN0 one obtains
the discrete counterpart of (12) as

∇Wh(e′) = 1
γ0

P0 ·Diag[γh] · (e + e′). (29)

This shows in particular, that the matrix P0 is the discretized version of the orthogonal projection operator
P0 = Γ0γ0 introduced in Property 1. Moreover, from the definition (66) it holds

P0 · e = 0 and P0 · e′ = e′, ∀e′ ∈ RN0 .

Therefore, the first-order optimality condition ∇Wh(ẽh) = 0 associated with the variational principle (28) is
equivalent to the equation:

eh = e−Gh · eh with Gh = P0 ·Diag[gh] (30)

and where eh = e + ẽh. The matrix Gh ∈ RN×N is the discrete counterpart of the continuous operator G, as
is the equation (30) with regard to the Lippmann-Schwinger equation (14). The approximation of the solution
to (28) based on an iterative gradient-descent scheme with fixed step tk = 1 as in (15) is denoted as ẽhk for
all k ≥ 0. As in the continuous case, the corresponding total field ehk = e + ẽhk is equivalent to a fixed-point
approximation of the solution to (30) and it satisfies

ehk =
k∑
j=0

(−Gh)j · e (31)

with (Gh)j being the matrix raised to the j-th power. Lastly, one defines an approximated effective conductivity
(γeff)hk according to the energetic definition (8), which depends both on the discretization parameter h and the
iteration number k in (31) as

(γeff)hk = 2
e2 Wh(ẽhk) with ẽhk = ehk − e. (32)
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2.4 Objectives
With e being the vector of the numerical values of the continuous solution e given by (6) at the grid points, one
aims at characterizing the behavior of the overall error ‖ehk − e‖γ0 when k →∞ and h→ 0, and likewise for the
effective property (γeff)hk in relation to γeff in (9). To do so the global error is decomposed as follows:

‖ehk − e‖γ0 ≤ ‖ehk − eh‖γ0 + ‖eh − e‖γ0 (33)

where the first right-hand side term is the convergence error of the Neumann series while the second term is the
discretization error. In this context, our objectives are as follows:

1. Investigate the convergence properties of the series (31) i.e., when ehk −→
k→∞

eh, provide an estimate for
the discrete stationary iterative scheme error ‖ehk − eh‖γ0 , and likewise for the effective property (γeff)hk in
regard to its limit (γeff)h.

2. Assess the convergence of the discrete solution, i.e. evaluate the discretization error ‖eh−e‖γ0 when h→ 0,
and similarly for (γeff)h compared to γeff .

The investigation of these convergence properties will be illustrated numerically throughout the article on
two test cases of material distributions γ(x), see Section 3.2.

3 Eigendecomposition of the iterated matrix
3.1 Analysis
Upon introducing the vector fh0 = Gh · e, the series (31) can be rewritten as:

eh0 = e and ehk = e−
k−1∑
j=0

(−Gh)j · fh0 for k ≥ 1. (34)

Moreover, from the definition of Gh in (30) and using that the matrix P0 is the orthogonal projector onto the
space RN0 of mean-free vectors, see (66), one obtains the following property which is the discrete counterpart of
Property 1.
Property 2. The range of the matrix Gh satisfies R(Gh) ⊂ RN0 . Its restriction to the subspace RN0 is the
matrix Gh

0 = Gh ·P0 which is symmetric.
As a consequence of the above property it holds P0 ·Gh = Gh and thus, for all f ∈ RN0 , one has:

(Gh)j · f = (P0 ·Gh) · (P0 ·Gh) . . . (P0 ·Gh)︸ ︷︷ ︸
j

·P0 · f

since f = P0 · f . The terms Gh · P0 = Gh
0 can be grouped together in the previous identity owing to the fact

the ranges of Gh and Gh
0 are both included in RN0 , which leads to the next property.

Property 3. For all f ∈ RN0 and j ≥ 0 one has (Gh)j · f = (Gh
0 )j · f .

Based on this property and since fh0 = Gh · e ∈ RN0 , then the matrix Gh in the Neumann series (34) can
be replaced by its restriction Gh

0 . To summarize: unlike Γ0, the continuous operator G is not self-adjoint in
the whole space L2

per(0, `) and the associated matrix Gh in (30) is not symmetric. Moreover, as Gh is also
not normal, since (Gh)t · Gh 6= Gh · (Gh)t, it is not diagonalizable by a unitary matrix. However, it is its
restriction Gh

0 to the space RN0 of mean-free vectors that actually intervenes in the iterative construction of the
discrete approximate solution ehk . The matrix Gh

0 being symmetric, it is diagonalizable and the remainder of
this section focuses on the characterization of its eigenvalues and eigenvectors λhm and vhm ∈ RN0 respectively,
with m = 0, . . . , N − 1. Based on the definition of the material phases, see (21) and (22) in Section 2.3, one
arrives at the main result of this section.
Proposition 1. The spectrum of the diagonalizable matrix Gh

0 can be described as follows:
1. In the case where γ(x) and γ0 are such that ghnp

6= 0 in all phases p = 1, . . . ,P then:
The matrix null space is such that dim(N (Gh

0 )) = 1 provided that 〈1/gh〉h 6= 0 and dim(N (Gh
0 )) = 2 when

〈1/gh〉h = 0. Moreover, the eigenpairs (λh,vh) of Gh
0 such that λh 6= 0 are given by:
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(a) λh = ghnp
with multiplicity (Np − 1) for all phase p ∈ {1, . . . ,P} that satisfies Np ≥ 2.

The corresponding eigenvectors satisfy 〈vh〉h = 0 with vh 6= 0 in φp while vh = 0 in all phases φq for
q 6= p.

(b) λh is a zero of the rational fraction F (λh) =
∑P
p=1Np(ghnp

− λh)−1 provided that P ≥ 2.
The corresponding eigenvectors satisfy 〈vh〉h = 0 and they are constant in each phase.

There are
∑P
p=1(Np − 1) = (N − P) eigenvalues of type (a) and (P − 1) of type (b) counting multiplicity

when 〈1/gh〉h 6= 0 and (P − 2) else.
2. In the case where γ(x) and γ0 are such that there exist a reference phase φ∗ ≡ φP where ghn∗ = 0 then:

The null space satisfies dim(N (Gh
0 )) = N∗ while the eigenpairs with non-zero eigenvalues are these of type

(a) for all phases p ∈ {1, . . . ,P − 1} satisfying Np ≥ 2, together with these of type (b) when P ≥ 2. This
gives (N −N∗ − P + 1) and (P − 1) eigenpairs of each type respectively.

Proof. Consider the case 1 where ghn 6= 0 for all n. Assuming vh ∈ N (Gh
0 ), i.e. Gh

0 · vh = 0, entails:

Diag[gh] ·
(
vh −A · vh

)
= A ·Diag[gh] ·

(
vh −A · vh

)
(35)

where we make use of the definition (30). Based on the assumption that gh is nowhere zero then the matrix
Diag[gh] is invertible so that the above expression implies

vh = A · vh + Diag[gh]−1 ·A ·Diag[gh] ·
(
vh −A · vh

)
. (36)

Averaging this identity by multiplication by the averaging matrix A yields the following necessary condition:〈 1
gh
〉
h

〈
Diag[gh] ·

(
vh −A · vh

)〉
h

= 0,

where, by an abuse of notation, the vector 1/gh is the vector with components 1/ghn. Therefore, if 〈1/gh〉h 6= 0
then one has necessarily

〈
Diag[gh] ·

(
vh − A · vh

)〉
h

= 0, which inserted back in (36) provides vh = A · vh.
This means that the null space of Gh

0 consists only in constant vectors, with components all equal, so that
dim(N (Gh

0 )) = 1. If 〈1/gh〉h = 0, then (36) yields vh in the form vh = c1 + c2/gh with c1, c2 ∈ R. Since
(1/gh) ∈ RN0 it establishes that vh belongs to a subspace of dimension 2.

Now, for all λh 6= 0, the identity Gh
0 · vh = λhvh implies vh ∈ R(Gh

0 ) and so A · vh = 0 from Property 2.
Then it holds:

(Diag[gh]− λhI) · vh = A ·Diag[gh] · vh (37)

Therefore, the left-hand side term in (37) is constant and the two subcases below can be distinguished.
In the first subcase (a) it is assumed that there exists a phase φp for p ∈ {1, . . . ,P}, see definition (21), such

that λh = ghnp
. Then, expressing the identity (37) for the component n such that xn ∈ φp yields 〈Diag[gh] ·

vh〉h = 0, which in turn implies

(ghnp
− λh)vhnp

= 0 for all p = 1, . . . ,P,

where we use the phase indexing. As a consequence, the eigenvector vh vanishes in all phases φq when q 6= p.
Therefore, it is non-zero only in φp. As 〈vh〉h = 0, there are exactly (Np − 1) linearly independent vectors
satisfying these constraints. Note that it is possible to construct such mean-free vectors for a given phase φp
only if its dimension Np is at least such that Np ≥ 2.

In the second subcase (b), one assumes that λh 6= ghnp
for all phase p, so that from (37) one gets

vhnp
= c

ghnp
− λh

for all p = 1, . . . ,P, (38)

with c ∈ R. Averaging this identity and using again that 〈vh〉h = 0 entail

F (λh) = 0 where F (λh) =
P∑
p=1

Np
ghnp
− λh

,
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since by averaging we have to account for Np components vhnp
in (38) for each phase φp, see Section 2.3. The

rational fraction F can be rewritten as

F (λh) =
( P∑
p=1

P∏
q=1
q 6=p

Np(ghnq
− λh)

)( P∏
p=1

(ghnp
− λh)

)−1

so that it is seen that its numerator is a polynomial Q(λh) of degree (P − 1). Its term of degree zero, denoted
as Q0, is given by

Q0 =
P∑
p=1

P∏
q=1
q 6=p

Np ghnq
=
P∑
p=1

Np
ghnp

( P∏
q=1

ghnq

)
= N

〈 1
gh
〉
h

( P∏
q=1

ghnq

)
. (39)

As a consequence, for the case currently considered where ghn 6= 0 for all n and under the additional assumption
that 〈1/gh〉h 6= 0 then Q0 6= 0. Therefore, Q has (P − 1) non-zero roots which constitute the remaining
eigenvalues as long as the number P of phases is such that P ≥ 2. The corresponding eigenvectors can be
constructed point-wise using (38). In the alternative situation where 〈1/gh〉h = 0 then Q0 = 0 and one must
study the term of degree 1 in the polynomial Q(λh) which we denote as Q1λ. It can be checked that

Q1 = −
P∑
p=1

P∑
q=1
q 6=p

P∏
r=1
r 6=p
r 6=q

Np ghnr
= −

P∑
p=1

P∑
q=1
q 6=p

Np
ghnp

ghnq

( P∏
r=1

ghnr

)
= N

〈 1
(gh)2

〉
h

( P∏
r=1

ghnr

)
,

where the last equality follows algebraically when using that 〈1/gh〉h = 0. Since 〈1/(gh)2〉h 6= 0 then the term
Q1 does not vanish. This finally implies that when 〈1/gh〉h = 0 there are exactly (P − 2) non-zero roots to the
polynomial Q(λh) which are the sought eigenvalues.

Next, consider the case 2 where there exists a reference phase φ∗ ≡ φP , see (22). Any vector vh ∈ N (Gh
0 )

satisfies (35) and this identity expressed for the component n such that xn ∈ φ∗ implies
〈
Diag[gh] ·

(
vh −A ·

vh
)〉
h

= 0. Inserted back in (35) and using the phase indexing entail

ghnp

(
vhnp
− 〈vh〉h

)
= 0 for all p = 1, . . . ,P.

This identity imposes that vh = 〈vh〉h everywhere outside the reference phase φ∗ while (vh−〈vh〉h) can take any
value in φ∗. According to the orthogonal decomposition (27), the number of linearly independent vector satisfying
these constraints is equal 1 + (N∗ − 1) = N∗, i.e. the size of the reference phase, hence dim(N (Gh)) = N∗.

Now, for the non-zero eigenvalues λh, the previous developments for the case 1 remain valid for the eigenvalues
of type (a) at the exclusion of the reference phase. It provides a number

∑P−1
p=1 (Np − 1) = (N − N∗ − P + 1)

of eigenvalues. As of the eigenvalues of type (b) described previously, the corresponding developments still hold
except that the zeroth order term Q0 in (39) now reduces to

Q0 =
P∑
p=1

P∏
q=1
q 6=p

Np ghnq
= NP

P−1∏
q=1

ghnq

owing to the indexing of the reference phase as φ∗ ≡ φP . By definition of the material phases, the above
product cannot vanish. One can conclude that Q has exactly (P − 1) non-zero roots when P ≥ 2 which gives
the remaining sought eigenvalues.

3.2 Numerical examples
We now illustrate Proposition 1 for different material distributions γ(x). The period is chosen as ` = 1 and
it is discretized for a number N ∈ {64, 128, 256, 512} of points. Moreover, the reference value γ0 is set as
γ0 = (maxn(γhn) + minn(γhn))/2, a choice which will be discussed in Section 4.3. The eigendecompositions
presented hereafter are computed using Matlab, based on the Schur decomposition and the QR algorithm. Note
that the computed eigenvectors are normalized using the energetic norm (25).
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Test case 1: 3-phase laminate The material configuration is the 3-phase laminate of Fig. 1a for which
γ(x) ∈ {1, 10, 5} with the respective phases being of size {3/16, 1/2, 5/16} respectively. Therefore, one gets
〈1/γ〉 = 3/10 according to which the corresponding exact solution e and effective property γeff can be computed.
Moreover, for this material configuration, the corresponding numerical results shown in the figures 1b and 2 are
in agreement with Proposition 1.
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(a) Material distribution γ(x)
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(b) Computed eigenvalues λhm, for m = 0, . . . , N−1, of
the matrix Gh

0 . The horizontal dashed lines indicate
the maximum and minimum values of the vector gh

Figure 1: Test case 1: 3-phase laminate, shown here with N = 64.
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(a) Eigenvectors of type (a) in phase 1
(eigenvalues m = 5 and m = 10).
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(b) Eigenvectors of type (a) in phase 2
(eigenvalues m = 40 and m = 50).
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(c) Eigenvectors of type (b) (eigenvalues
m = 12 and m = 33).

Figure 2: [3-phase laminate] Example of three sets of two eigenvectors vhm of the matrix Gh
0 for the different types exposed

in Proposition 1, shown here for N = 64.

Test case 2: smooth distribution In a second example the material phase function γ(x) is defined as
the following function:

γ(x) = 1
1
z +

(
1− 1

z

)∣∣ cos(πx)
∣∣r , (40)

shown in Figure 3a using the parameter values r = 3 and z = 10. It is a smooth distribution which inverse has
a discontinuous r-th derivative when r is odd. The motivations for choosing such a function will be exposed in
Section 5.2.
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(a) Material distribution γ(x)
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(b) Computed eigenvalues λhm, for m = 0, . . . , N−1, of
the matrix Gh

0 . The horizontal dashed lines indicate
the maximum and minimum values of the vector gh

Figure 3: Test case 2: smooth distribution, shown here with N = 64.

With r = 3 one obtains analytically the exact integral value:〈
1
γ

〉
= 1
z

+ 4
3π

(
1− 1

z

)
. (41)

In this second example, the discrete distribution γ(xn) is symmetric, see Fig. 3a, so that it takes identical
values at a number (N − 2)/2 of two-points phases by the exclusion of the two extremal points xn = 0 and
xn = 1/2. With Proposition 1 at hand, some examples of associated eigenvectors with eigenvalues of type (a)
are shown in Figure 4a. There also exist eigenvalues of type (b) with some corresponding eigenvectors being
shown in Fig. 4b.
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(a) Eigenvectors of type (a) (eigenvalues
m = 10, m = 20 and m = 30).
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(b) Eigenvectors of type (b) (eigenvalues
m = 11, m = 21 and m = 31).

Figure 4: [Smooth distribution] Example of two sets of three eigenvectors vhm of the matrix Gh
0 for the different types

exposed in Proposition 1, shown here for N = 64.

4 Convergence of the discrete Neumann series
4.1 Convergence of fields
In this section, the objective is to study the convergence properties of the discrete Neumann series (31) based
on the results of Section 3. As the matrix Gh

0 is diagonalizable it can be written as Gh
0 = γ0

N Vh · Λh · (Vh)t
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with Λh and Vh being respectively the diagonal and the orthogonal matrices formed by the eigenvalues {λhm}m
and eigenvectors {vhm}m, or modes, which are described in Proposition 1. Note that the multiplicative factor
γ0/N is associated with a normalization of the eigenvectors vhm relatively to the energetic norm (25). From this
decomposition and for k ≥ 1, the equation (34) can be rewritten using the eigenbasis {(λhm,vhm)}0≤m≤N−1 of
Gh

0 as:

ehk = e−
k−1∑
j=0

N−1∑
m=0

(−λhm)j
(
vhm, fh0

)
γ0

vhm. (42)

Moreover, provided that |λhm| < 1 for all m = 0, . . . , N − 1, then this series converges when k →∞ to a limit eh
that reads:

eh = e−
N−1∑
m=0

1
1 + λhm

(
vhm, fh0

)
γ0

vhm, (43)

an identity which constitutes a closed-form expression of the solution eh to the discrete equation (30).
By definition of the matrix Gh, the initialization vector fh0 = Gh · e is constant in each phase. Therefore,

in (42) and (43), the scalar product
(
vhm, fh0

)
γ0

is zero when the eigenvector vhm has zero mean in a given phase
and is zero outside. In other words, the projection of fh0 onto the space spanned by the eigenvectors vhm of type
(a) is zero. This yields the proposition below.

Proposition 2. The vector ehk computed at any iteration k ≥ 0 and the discrete limit solution eh when k →∞
belong to the union of the null space N (Gh

0 ) and the space spanned by the eigenvectors of type (b) which are
constant in each phase.

With this result at hand, we now turn to the assessment of the properties of the convergence error. According
to (42) and (43), the error εhk = ehk − eh at step k can be expanded as

εhk =
∞∑
j=k

N−1∑
m=0

(−λhm)j
(
vhm, fh0

)
γ0

vhm, (44)

so that convergence rate of (34) is governed by the amplitude of the eigenvalues λhm. The matrix Gh
0 being

diagonalizable, its spectral radius, defined as %(Gh
0 ) = maxm |λhm|, coincides with the matrix norm induced by

(25), i.e. %(Gh
0 ) = ‖Gh

0‖. By the properties of the matrix norm one gets:

‖Gh
0‖ = ‖P0 ·Diag[gh] ·P0‖ ≤ ‖P0‖2 ‖Diag[gh]‖ = ‖Diag[gh]‖,

since P0 being a projector it satisfies ‖P0‖ = 1. Therefore, recalling the definition (20) of the vector gh, one can
obtain from the previous inequality the discrete version of the known upper bound on the norm of the continuous
operator G = Γ0γ0(δγ/γ0), see Equation (31) in Moulinec et al. (2018). In addition, from Proposition 1, it can
be seen that any value ghnp

is an eigenvalue of Gh
0 as long as the corresponding phase is composed of at least

two points, i.e. Np ≥ 2. This leads to the next property.

Property 4. The convergence rate of the Neumann series (31) is bounded by the spectral radius of the matrix
Gh

0 , which satisfies %(Gh
0 ) ≤ maxn |δγ(xn)/γ0|. Moreover, if the phase φp such that |ghnp

| = maxq |ghnq
| satisfies

Np ≥ 2 then %(Gh
0 ) = |δγ(xnp

)/γ0|.

This property implies that, without information on the material distribution γ(x), the upper bound in
Property 4 is optimal in the sense that there are some cases where it is attained. This bound could be tightened
in some cases based on Proposition 1. Indeed, for any vector f ∈ RN0 one can identify the particular linear subset
spanned by eigenvectors vhm to which it belongs and define the maximum eigenvalue %(Gh

0 , f), in absolute value,
among the corresponding eigenvalues, i.e.

%(Gh
0 , f) = max

m

{
|λhm| :

(
vhm, f

)
γ0
6= 0
}
,

with f =
∑
m(vhm, f)γ0vhm by definition. By bounding εhk in Equation (44) and owing to the expression of the

remainder of a geometric series one obtains the following convergence result.
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Proposition 3. For a given discretization parameter h = `/N , if the initialization vector fh0 = Gh · e is such
that %(Gh

0 , fh0 ) < 1 then the Neumann series (31) converges to the vector eh whose components are given by:

(eh)n =
(

1
N

N−1∑
m=0

1
γ(xm)

)−1
e

γ(xn) for all n = 0, . . . , N − 1.

As such, eh is the discrete counterpart of the analytical solution (6). Moreover, the error εhk = ehk − eh at step
k is bounded as:

‖εhk‖γ0 ≤
‖fh0 ‖γ0

1− %(Gh
0 , fh0 )

%(Gh
0 , fh0 )k.

Since by definition it holds %(Gh
0 ) ≥ %(Gh

0 , f) for all f ∈ RN0 then the above proposition shows that the
convergence of the Neumann series can be faster than what can be expected when assessing only %(Gh

0 ) jointly
with the upper bound of Property 4. The convergence will be faster than that when a particular subspace of
eigenvectors of Gh

0 associated with eigenvalues that are strictly smaller than %(Gh
0 ) in absolute value is activated

during iterations. Such a result relies on the behavior of the initialization vector fh0 relatively to the set of
eigenvectors {vhm}m of the matrix Gh

0 associated with the laminate considered.

Test case 1: 3-phase laminate For this configuration, the upper bound of Property 4 is attained.
Moreover, From the shape of the initialization vector fh0 in Figure 5a and the properties of the eigenvectors
illustrated in Fig. 2, the discrete local field vector ehk being computed by iterating in the particular subspace of
eigenvectors that are constant in each phase, see Proposition 2, it does not exhibit spurious oscillations within
the phases or at the interfaces between phases, see Fig. 5b. Moreover, the quantity %(Gh

0 , fh0 ) = 0.6187 is
computed a priori using the eigendecomposition and the corresponding slope is reported in Figure 5c alongside
with this associated with the spectral radius %(Gh

0 ) = 0.8182 for the discretization N = 64. In accordance with
Proposition 3, it is seen that the convergence rate is proportional to the former.
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(b) Numerical solution ehk at k = 100
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(c) Iteration error ‖εhk‖γ0 on the discrete
solution

Figure 5: [3-phase laminate] Computation of the numerical solution by the discrete Neumann series for various discretiza-
tions. The reference slopes reported in panel (c) are computed from the eigenanalysis.

This example illustrates that the field ehk computed by the Neumann series converges up to machine precision
to the exact discrete solution eh. Remarkably, this result does not depend on the discretization parameter.
Lastly, the convergence behavior observed in Fig. 5c is faster than the upper bound provided in Property 4 and
follows this of Proposition 3. Note that, when comparing the different resolutions, some numerical differences
are observed at convergence and at a level comparable with the machine precision. To our opinion, this is only
related to the numerical rounding error.

Test case 2: smooth distribution In this example the upper bound on the spectral radius in Property
4 is not attained and the numerical value of the corresponding gap is

(
maxq |ghnq

| − %(Gh
0 )
)

= 1.53 · 10−4 for
N = 64. In this example, the conclusions are similar to these of the previous one. However, it can be seen in Fig.
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6c that the discrete field ehk converges at a rate equal to the spectral radius %(Gh
0 ) = 0.8180, which is computed a

priori using the eigendecomposition. Indeed, for the configuration considered, the initialization vector fh0 plotted
in Figure 6a has a non-zero projection onto the eigenvector associated with the largest eigenvalue.
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(a) Initialization vector fh0
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(b) Numerical solution ehk at k = 200
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(c) Iteration error ‖εhk‖γ0 on the discrete
solution

Figure 6: [Smooth distribution] Computation of the numerical solution by the discrete Neumann series for various dis-
cretizations. The slope corresponding to the spectral radius computed from the eigenanalysis is reported in panel (c).

Remark 2 (An additional remarkable example). Based on the above developments, it is possible to design an
example for which the Neumann series converges in only one iteration. Indeed, let us consider a two phase
laminate where γ(x) = γp for p = 1, 2 and γ1 = 1, γ2 = 10 with the corresponding phase being of size c1 = 1/4
and c2 = 3/4 respectively. For this example, we would like to address the particular situation described in
Proposition 1 where dim(N (Gh

0 )) = 2. This occurs when 〈1/gh〉h = 0, i.e. when γ0 = c1γ2 + c2γ1. For such a
choice of the reference conductivity, the spectrum consists of eigenvectors of type (a) which play no role in the
construction of the solution and two vectors that span the kernel of the matrix N (Gh

0 ). For these vectors, the
radius of convergence of the Neumann series is zero by definition, so that the latter converges at the first iterate.
This astonishing property is illustrated in Figure 7 where the norm of the error on the discrete solution is plotted
as a function of the iteration number k for different values of the reference conductivity γ0 for the discretization
N = 512. As expected, convergence in only one iteration is observed when choosing γ0 = c1γ2 + c2γ1. Note that
this one-step convergence, independently of the phase conductivity values, has been described in Vinogradov and
Milton (2008) for the particular case c1 = c2 = 1/2.
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Figure 7: [2-phase laminate] A remarkable convergence result for a 2-phase laminate with γ1 = 1 and γ2 = 10. Norm ‖εhk‖γ0

of the iteration error on the discrete solution for different values of the reference conductivity γ0 and for the discretization
N = 512.
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4.2 Convergence of the effective property
In this section, the objective is to investigate the convergence rate of the discrete effective property (γeff)hk in
(32), whose limit is denoted as (γeff)h if it converges when k → ∞. Quadratic upper and lower bounds are
discussed in this section. Such bounds are classic in optimization, see e.g. Nesterov (2004), but they are derived
below for the reader’s convenience. As a starting point, owing to the identity (29) and since γ ∈ L∞per(0, `) with
γ(x) ≥ κ > 0 then f 7→∇Wh(f) is both Lipschitz continuous and coercive on RN0 , i.e. there exist two constants
M ≥ m > 0 such that for all f1, f2 ∈ RN0 :

‖∇Wh(f1)−∇Wh(f2)‖2γ0
≤M‖f1 − f2‖2γ0

and
(
∇Wh(f1)−∇Wh(f2), f1 − f2

)
γ0
≥ m‖f1 − f2‖2γ0

. (45)

The Lipschitz and coercivity constants, M and m respectively, satisfy:

M = maxn(γhn)
γ0

≤ maxx(γ(x))
γ0

and m = minn(γhn)
γ0

≥ minx(γ(x))
γ0

. (46)

From the first inequality in (45) one gets that f 7→ M
2 ‖f‖

2
γ0
−Wh(f) is convex on RN0 , from which one obtains

the following quadratic upper bound:

Wh(f1) ≤Wh(f2) +
(
∇Wh(f2), f1 − f2

)
γ0

+ M

2 ‖f1 − f2‖2γ0
∀f1, f2 ∈ RN0 . (47)

Upon setting f1 = ẽhk = ehk − e and f2 = ẽh = eh − e in this identity one gets

Wh(ẽhk)−Wh(ẽh) ≤ M

2 ‖ẽ
h
k − ẽh‖2γ0

. (48)

since, by definition, the vector ẽh being the solution to the variational principle (28) it satisfies the optimality
condition ∇Wh(ẽh) = 0. Moreover, from (47) again one has

Wh(ẽh) ≤ min
e′∈RN

0

Wh(e′) ≤ min
e′∈RN

0

{
Wh(f2) +

(
∇Wh(f2), e′ − f2

)
γ0

+ M

2 ‖e
′ − f2‖2γ0

}
∀f2 ∈ RN0 . (49)

The Euler-Lagrange equation associated with this minimization problem reads:(
∇Wh(f2) +M(e′ − f2), ẽ′

)
γ0

= 0 ∀ẽ′ ∈ RN0 .

As all the terms in this identity belongs to RN0 , the above condition implies that the minimizer in (49) is given
by:

e′ = f2 −
1
M

∇Wh(f2),

which inserted back in (49) yields the following inequality for all f2 ∈ RN0 :

Wh(f2)−Wh(ẽh) ≥ 1
2M ‖∇Wh(f2)‖2γ0

. (50)

Finally, using (50) with f2 = ẽhk and combining that inequality with (48) yield

1
2M ‖∇Wh(ẽhk)‖2γ0

≤Wh(ẽhk)−Wh(ẽh) ≤ M

2 ‖ε
h
k‖2γ0

(51)

since the error εhk on the fields satisfies εhk = ehk − eh = ẽhk − ẽh.
By using the coercivity property of (45) one can show that the functional f 7→Wh(f)− m

2 ‖f‖
2
γ0

is convex on
RN0 , from which a quadratic lower bound on Wh analogous to (47) can be obtained. The former can in turn be
used to obtain:

m

2 ‖ε
h
k‖2γ0

≤Wh(ẽhk)−Wh(ẽh) ≤ 1
2m‖∇Wh(ẽhk)‖2γ0

. (52)

Therefore, by combining the inequalities (51) and (52) together with Proposition 3 one obtains the following
result.
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Proposition 4. For a given discretization parameter h = `/N , if the initialization vector fh0 = Gh · e is such
that %(Gh

0 , fh0 ) < 1 then (γeff)hk in (32) converges to the quantity (γeff)h given by

(γeff)h =
(

1
N

N−1∑
n=0

1
γ(xn)

)−1

and there exist two constants C ≥ c > 0, which depend on γ, γ0 and e, such that the error in effective property
is bounded as

c %(Gh
0 , fh0 )2k ≤ (γeff)hk − (γeff)h ≤ C%(Gh

0 , fh0 )2k
.

Moreover, there also exist two constants C ′ ≥ c′ > 0 such that the above error satisfies:

c′‖∇Wh(ẽhk)‖2γ0
≤ (γeff)hk − (γeff)h ≤ C ′‖∇Wh(ẽhk)‖2γ0

.

As shown in the above proposition, the error associated with the computation of the effective property
converges to zero twice as fast as (in logarithmic scale) the norm of the error ‖εhk‖γ0 associated with the fields
themselves. Indeed the convergence rate is proportional to %(Gh

0 , fh0 )2k for the former and %(Gh
0 , fh0 )k for the

latter. It is worth noting that this is due to the fact that the effective property (γeff)hk is computed based on the
energetic definition (32). Alternatively, one can consider the effective property (γ̌eff)hk defined as:

(γ̌eff)hk = 〈j
h
k〉h
e

with jhk = Diag[γh] · ehk (53)

which converges to a limit (γ̌eff)h when it does converge. Owing to Property 2 and Proposition 3, it is clear
that the limits of (53) and (32) coincide, i.e. (γ̌eff)h = (γeff)h, but the convergence error associated with (53) is
bounded as: ∣∣(γ̌eff)hk − (γeff)h

∣∣ ≤ Č%(Gh
0 , fh0 )k

where Č > 0 is a constant that depends on γ, γ0 and e. This entails that, if the effective property is defined by
(53), then its convergence rate can only be bounded by this of the norm of the error on the fields. It implies
convergence at a rate possibly slower than this associated with the energetic definition (32).

Lastly, Proposition 4 confirms that the norm ‖∇Wh(ẽhk)‖γ0 yields a reliable stopping criterion to assess
numerically the convergence of the Neumann series (31) as of the computation of the effective property associated
with the discretization considered. Owing to (52), this criterion is also relevant to the convergence of the local
fields. Note finally that, if one is interested in a quantitative comparison between the convergence rates associated
with different choices of the reference medium, i.e. for different values of γ0, then the use of the energetic norm
makes it necessary in practice to consider a normalized version of the stopping criterion.
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Figure 8: [3-phase laminate] Error on the effective property measured as functions of the iteration number k. (left) Quantity
(γeff)hk from energetic definition (32) and (right) quantity (γ̌eff)hk using the alternative definition (53). The reference slopes
indicated are computed from the eigenanalysis.
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Test case 1: 3-phase laminate As seen in Fig. 5c, the Neumann series converges to the exact discrete
solution up to machine precision, in terms of the discrete field ehk , and this convergence extends to the com-
putation of the effective property (γeff)hk as well, see Fig. 8. In Figure 8, the reported slopes corresponding to
%(Gh

0 , fh0 )2 and %(Gh
0 , fh0 ) are computed a priori, based on the eigenanalysis, and the observed evolutions of the

curves confirm that their convergence rates are these described in Proposition 4 and in the ensuing discussion.

Test case 2: smooth distribution For the second test case, the numerical results illustrate again the
convergence of the effective property (γeff)hk to the discrete solution up to machine precision. In the right panel
of Figure 9 it is seen that, using the definition (53), the convergence is not monotonic, whereas it appears to be
so in the left panel, where (γeff)hk is computed based on the energetic definition (32). Again, the convergence
rate is quadratic for this latter computation and related to the upper bound associated with the spectral radius
%(Gh

0 ).
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Figure 9: [Smooth distribution] Error on the effective property measured as functions of the iteration number k. (left)
Quantity (γeff)hk from energetic definition (32) and (right) quantity (γ̌eff)hk using the alternative definition (53). Reference
slopes associated with the spectral radius are indicated.

4.3 Monotonicity properties
As discussed in Section 2.3, the iterations associated with the Neumann series (31) are equivalent to the gradient-
descent scheme with fixed step (15) for the discrete minimum energy principle (28). In this context, this section
focuses on the monotonicity properties associated with such a scheme.

First, upon setting f1 = ẽhk+1 and f2 = ẽhk in (47), then one has

Wh(ẽhk+1) ≤Wh(ẽhk)− tk
(

1− Mtk
2

)
‖∇Wh(ẽhk)‖2γ0

,

where we made use of the relation ẽhk+1 = ẽhk − tk∇Wh(ẽhk) that holds between two successive iterates in terms
of a generic fixed step tk > 0. As a consequence, the discrete energy Wh is guaranteed to decrease monotonically
at each iterate provided that tk ≤ 2/M , where the Lipschitz constant M is given by (46). With the Neumann
series (31) corresponding to tk = 1, the next property summarizes this discussion.

Property 5. The energy Wh(ẽhk) associated with the iterates of the Neumann series (31) is a strictly decreasing
function of k as long as the reference medium is such that γ0 > maxn(γhn)/2. This is satisfied in particular when
γ0 = (maxn(γhn) + minn(γhn))/2, and in which case one has:

Wh(ẽhk+1)−Wh(ẽhk) ≤ −
(
1 + max

n
(γhn)/min

n
(γhn)

)−1‖∇Wh(ẽhk)‖2γ0
.

Property 5 concerns the monotonicity property of the energy functional. Hereafter, we discuss the fact that
the iterated vector ẽhk is itself characterized by a monotonic convergence. This relies on the coercivity property
in (45), which entails that the functional K : f 7→ Wh(f) − m

2 ‖f‖
2
γ0

is convex on RN0 as seen previously. In
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turn, this implies that f 7→ ∇K(f) is Lipschitz continuous with constant (M −m). As a consequence, ∇K is
co-coercive, i.e. it satisfies(

∇K(f1)−∇K(f2), f1 − f2
)
γ0
≥ 1
M −m

‖∇K(f1)−∇K(f2)‖2γ0
∀f1, f2 ∈ RN0 .

By making the expression for ∇K explicit into this inequality one finally obtains(
∇Wh(f1)−∇Wh(f2), f1−f2

)
γ0
≥ mM

M +m
‖f1−f2‖2γ0

+ 1
M +m

‖∇Wh(f1)−∇Wh(f2)‖2γ0
∀f1, f2 ∈ RN0 . (54)

With this result at hand, let consider the residual, with respect to the solution ẽh of the minimum energy
principle (28), of the gradient-descent scheme at step k + 1, i.e.

‖ẽhk+1 − ẽh‖2γ0
= ‖ẽhk − ẽh − tk∇Wh(ẽhk)‖2γ0

= ‖ẽhk − ẽh‖2γ0
+ t2k‖∇Wh(ẽhk)‖2γ0

− 2tk
(
∇Wh(ẽhk), ẽhk − ẽh

)
γ0

By using the inequality (54) with f1 = ẽhk and f2 = ẽh, which satisfies the optimality condition ∇Wh(ẽh) = 0,
then the previous inequality finally entails:

‖ẽhk+1 − ẽh‖2γ0
≤
(

1− 2mMtk
M +m

)
‖ẽhk − ẽh‖2γ0

+ tk

(
tk −

2
M +m

)
‖∇Wh(ẽhk)‖2γ0

. (55)

As a consequence of this inequality, when the step satisfies 0 < tk ≤ 2/(M+m) then the field error εhk = ẽhk−ẽh =
ehk − eh satisfies ‖εhk+1‖2γ0

< ‖εhk‖2γ0
. Moreover, given that the multiplicative factor in the first right-hand side

term of (55) satisfies

1− 2mMtk
M +m

= 1− maxn(γhn) minn(γhn)
maxn(γhn) + minn(γhn)

tk
γ0

then two different strategies can be adopted to optimize the convergence rate of the gradient-descent scheme
with fixed step (15): (i) Maximize tk while the reference medium γ0 is chosen arbitrarily. This leads to the
optimal value of the fixed step tk = 2γ0/(maxn(γhn) + minn(γhn)). (ii) Set tk = 1 and minimize γ0, which leads
to the optimal value of the reference medium conductivity γ0 = (maxn(γhn) + minn(γhn))/2. As the case tk = 1
is the one corresponding to the Neumann series, one obtains the next property.
Property 6. The residual error ‖εhk‖γ0 on the field computed by the Neumann series (31) is a strictly decreasing
function of k as long as γ0 ≥ (maxn(γhn)+minn(γhn))/2. In the optimal case where γ0 = (maxn(γhn)+minn(γhn))/2
then one has:

‖εhk+1‖γ0 ≤ β‖εhk‖γ0 with β = maxn(γhn)−minn(γhn)
maxn(γhn) + minn(γhn) .

Property 6 shows that the Neumann series converges towards the discrete solution as a geometric series with
ratio β. However, it yields an upper-bound on the converge rate that coincides exactly with this of Property 4, as
it can be checked. Therefore, this property provides a key information on the monotonicity of the convergence of
the iterates while the convergence rate itself is better estimated in Proposition 3 based on the eigendecomposition
of the iterated matrix Gh

0 .

Test cases The numerical results associated with the test cases 1 and 2 are in agreement with the properties
5 and 6. First, the choice of the reference medium γ0 = (maxn(γhn) + minn(γhn))/2 is justified by Property 6
and both the field error and the energy-based effective property are then observed to converge monotonically up
to the machine precision, see the figures 5c, 6c and the left panel of the figures 8 and 9 respectively. It is also
remarkable that, for the alternative definition (53) of the effective property, the associated behavior in the case
of the second material distribution (40) is not monotonic, see the right panel of Figure 9.
Remark 3. In the developments of this section, it is implicitly assumed that minn(γhn) > 0, a requirement which
is self-evident for the 1D material setting considered. In 2D and 3D such an assumption will however be violated
in the case of porous materials. In such a case, the results of Section 4.2 have to be revised too, since the energy
functional Wh is no longer coercive with m = 0 in (45).
Remark 4. To conclude, it should be noted that the results of the sections 4.2 and 4.3 are classic in optimization,
see e.g. Nesterov (2004) and they stem from the properties (45) of the energy functional Wh. While the results
of these sections are investigated here within a discretized setting and in the case of conductive laminates, it is
straightforward to obtain them at the continuous level too and for any constitutive relations provided that the
gradient ∇W of the corresponding energy functional is both coercive and Lipschitz continuous.
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5 Convergence of the discrete solution
5.1 Fourier-based analysis
Now that the convergence of the discrete Neumann series has been investigated, this section focuses on the
convergence of the discrete solution with regard to the evaluation e of the exact continuous solution at the grid
points. The propositions 3 and 4 show that evaluating the error ‖eh − e‖γ0 in (33) boils down to assessing the
following approximation error:

εh = |Ih − I| where Ih = 1
N

N−1∑
n=0

1
γ(xn) and I =

〈
1
γ

〉
(56)

owing to the definition (23) of the numerical integration scheme using the trapezoidal rule. This quadrature is
exact for functions that are piecewise constant or linear on the discretization grid. It is also known to be such
that the numerical integration error εh decreases at worst as O(1/N2) if γ−1 is twice differentiable. However,
depending on the smoothness properties of γ−1 the convergence can be much faster, see e.g. Boyd (2000), even
exponential if γ−1 is analytic Trefethen and Weideman (2014). In fact, this convergence rate can be driven by
the decaying behavior of the Fourier transform of the integrand, which can be shown using simple arguments
that we produce hereafter for the reader’s convenience. Upon setting ρ = γ−1 then ρ ∈ L2

per(0, `) and one
introduces its Fourier series S[ρ] as

S[ρ](x) =
∑
ν∈Z/`

ρ̂(ν)e2iπνx with ρ̂(ν) = 1
`

∫ `

0
ρ(x)e−2iπνx dx, (57)

so that 〈ρ〉 = ρ̂(0). Assuming that S[ρ] converges pointwisely to ρ at the discretization points xn, then the
approximation Ih of the integral I of ρ over the interval (0, `) using the trapezoidal rule satisfies

Ih = 1
N

N−1∑
n=0

ρ(xn) = 1
N

N−1∑
n=0

∑
ν∈Z/`

ρ̂(ν)e2iπνxn = 1
N

∑
ν∈Z/`

ρ̂(ν)
N−1∑
n=0

e2iπνn `
N ,

which can be rewritten as

Ih = I + 1
N

∑
ν∈Z/`
ν 6=0

ρ̂(ν)
N−1∑
n=0

e2iπνn `
N . (58)

In the last term, the second sum is zero unless ν = mN/` with m ∈ Z, in which case it is equal to N . This is the
phenomenon of aliasing, which is characterized by the fact that the functions x 7→ e2iπmNx/` are indistinguishable
from the constant function 1 on the grid considered so that, in (58), they are accountable for the integration
error in the trapezoidal rule. As a consequence, one arrives at the property below.

Property 7. The discretization error (56) satisfies εh ≤
∣∣∑∞

m=1
(
ρ̂(m/h) + ρ̂(−m/h)

)∣∣ with h = `/N .

Property of continuous function ρ(x) Behavior of Fourier coefficient ρ̂(ν)

Piecewise continuous and of bounded variation O
(
|ν|−1)

ρ ∈ Cr−1
per (0, `) and ρ(r) ∈ L1

per(0, `) O
(
|ν|−r

)
ρ ∈ Cr−1

per (0, `) and ρ(r) of bounded variation O
(
|ν|−(r+1))

C∞per(0, `) O
(
|ν|−r

)
for all r ≥ 0

Table 1: Examples of convergence rates of Fourier coefficients.

This property implies that, if the integrand in (23) were a trigonometric polynomial of the form e±2iπnx/`

with n ≥ 0, then the trapezoidal rule would be exact for all N > n. This result seems in contradiction with the
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Nyquist criterion of sampling a band-limited function at twice its cut-off frequency. Yet, this apparent paradox
has been extensively discussed and resolved in Trefethen and Weideman (2014).

According to Property 7, the error εh converges to zero at a rate that is governed by the decay of the
Fourier coefficients ρ̂(±m/h) for m ≥ 1. The properties of these coefficients are well-known for a broad class of
functions, see e.g. Gottlieb and Orszag (1977); Boyd (2000), and some classic results are collected in Table 1 to
help evaluate the discretization error.

Aliasing and the Gibbs phenomenon For the 1D problem considered and according to the preceding
developments, the aliasing effects are entirely accountable for the error between the discrete solution eh and the
theoretical one e, and likewise for (γeff)h with respect to γeff . To prove this, the starting point is the assumption
that the Fourier series (57) converges pointwisely to ρ at the grid points xn. Excluding some very atypical
functions, this assumption is valid as long as the spatial discretization is compatible with the function ρ. For
example, if ρ were discontinuous then, in a standard discretization, the discontinuity would be placed in-between
two grid points so that the infinite Fourier series S[ρ] would converge to ρ at these points.

In this context, if one considers the M -th partial sum SM [ρ] of the Fourier series of ρ, i.e. a finite truncated
version of (57), then SM [ρ](x) can exhibit a local oscillatory behavior near discontinuities. This is the Gibbs
phenomenon that depends both on the discretization and truncation parameters N and M respectively. It can
occur in particular when using the Discrete Fourier Transform (DFT) while interpolating on refined grids, i.e.
evaluating the discrete fields in-between grid points. That being said, neither the DFT nor truncated Fourier
series are used in the present study and the Gibbs phenomenon plays no role in it.

5.2 Numerical examples
Test case 1: 3-phase laminate Considering the material distribution of Figure 1a, the corresponding
function 1/γ is integrated exactly by the trapezoidal rule. The errors quantifying the discrepancy between the
discrete iterated solution and the theoretical one are plotted in Figure 10. As expected, these errors do not
depend on the discretization parameter N and convergence to the exact solution is obtained up to machine
precision, see also Fig. 11.
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Figure 10: [3-phase laminate] Numerical errors to the analytical solution as functions of the iteration number k and when
varying the discretization as N ∈ {64, 128, 256, 512}. (left) Global field error ‖ehk − e‖γ0 and (right) global error on the
effective property using its energetic definition (32).

Test case 2: Smooth distribution In the second example, the material distribution defined by (40)
and shown in Fig. 3a is chosen so that, when r is odd, the function ρ = γ−1 belongs to Cr−1

per (0, `) but not to
Crper(0, `) due to a singularity of the derivative ρ(r) at x = 1/2. However, ρ(r) is of bounded variation. As a
consequence, from the analysis of Section 5.1 and the properties reported in Table 1, the discretization error
associated with the trapezoidal rule (23) is expected to decay as O

(
1/Nr+1). Global errors are computed from

the identity (41) and shown in Figure 12 as functions of the iteration number k and for various values of the
discretization parameter N . Unlike in the example of the 3-phase laminate, a dependence on N is observed as
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Figure 11: [3-phase laminate] Errors values obtained at k = 100 from Figure 10 as functions of the discretization parameter
N ∈ {64, 128, 256, 512}.

expected. Reminding that one considers (40) with r = 3, Figure 13 shows the associated errors obtained at
convergence, i.e. at k = 200, along with the slopes corresponding to 1/N2 and 1/N4 for comparison. A global
convergence rate as O

(
1/N4) is obtained, which is in agreement with the preceding Fourier-based analysis.

Note finally that the right panel of Figure 12 shows the evolution of the error between the energy-based
effective property (γeff)hk and the exact continuous solution γeff . The absolute value being taken, this error
appears to be not monotonic. This is not however in contradiction with the results of Section 4.3 that pertain
to the discrete solution and state that the discrete energy Wh(ẽhk) decreases monotonically to its limit Wh(ẽh).
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Figure 12: [Smooth distribution] Numerical errors to the analytical solution as functions of the iteration number k and
when varying the discretization as N ∈ {64, 128, 256, 512}. (left) Global field error ‖ehk − e‖γ0 and (right) global error on the
effective property using its energetic definition (32).

6 Discussion
The preceding study focuses on conductive laminated composites. The associated homogenization problem is
solved using the stationary iterative scheme of Moulinec and Suquet (1998), which main properties are inves-
tigated analytically in a discrete setting. The latter are illustrated numerically on two test cases. This allows
to shed light on a number of interesting features that we summarize below. In this context, the question of
extending these results to other configurations is also discussed qualitatively in this section on a set of additional
numerical examples for 2D and 3D microstructures but without going through a detailed analysis as before.
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Figure 13: [Smooth distribution] Errors values obtained at k = 200 from Figure 12 as functions of the discretization
parameter N ∈ {64, 128, 256, 512}. The slopes corresponding to 1/N2 and 1/N4 are shown for comparison.

6.1 Highlights of the study on laminated composites
1. Eigendecomposition.

Considering the Neumann series (31), the eigendecomposition of the iterated operator is investigated in
Section 3. This analysis is performed in a particular context with three main characteristics: (i) The
eigendecomposition problem is addressed in a discrete setting in RN , by focusing on the matrix Gh in
(30), which is the discrete counterpart of the operator G = Γ0 δγ. (ii) The continuous Green’s operator
Γ0 reduces to the rather simple expression (17) for laminated composites. (iii) The space RN can be
decomposed as RN = R ⊕ RN0 using the orthogonal matrix decomposition (27), with R and RN0 being
respectively the discrete versions of the spaces S in (4) and E0 in (2). Extending the study of Section 3
to other configurations can be achieved by revisiting one or more of these points.
For the purposes of the discussion, let us consider here a completely general configuration with a composite
material being characterized by a constitutive tensor denoted as γ, while γ0 is a uniform reference tensor.
The continuous Green’s operator Γ0 being defined through Γ0 in (10), the featured functional spaces E0
and S have to be redefined in a more general framework as admissibility spaces of mean-free gradients
and diverge-free fields respectively, see Milton (2002). In this context, S being the polar space of E0, see
Bellis and Suquet (2018), then the orthogonal subspace E⊥0 is a space much larger than before as, now, it
no longer only includes the uniform fields. This also pertains to the discrete versions of these functional
spaces and, in particular, the averaging matrix A must be replaced in (27) by the projection matrix P⊥0
associated with E⊥0 . As the orthogonal decomposition (27) plays a key role in the proof of Proposition 1,
generalizing the latter would imply the study of a larger number of subcases and the variety of eigenvectors
is expected to be enriched. In this process, the particular form (17) of the Green’s operator would no longer
holds so that the eigenvectors have to be constructed based on the definition (10) and either the discrete
version of the local equations (1) or a discrete Fourier transform-based expression of Γ0. To conclude this
paragraph, let us mention that characterizing the spectrum of the continuous operator Γ0(γ − γ0) would
be a task much more involved Reed and Simon (1980) than diagonalizing the symmetric matrix Gh

0 and
it requires using the self-adjointness property of the operator Γ0γ0 that holds in a suitable Hilbert space,
see Bellis and Suquet (2018).

2. Case-dependent convergence rate of the Neumann series.
Property 4 recalls an upper bound on the convergence rate of the Neumann series (31) that is governed
by the spectral radius %(Gh

0 ). In turn, %(Gh
0 ) is bounded by the supremum norm of the material property

vector (20), which therefore yields the well-known bound on the convergence rate of (31) in terms of
the material contrast only, see Property 4. This is a conservative bound that is independent of the
microstructure but it is optimal in the sense that it is attained for some microstructures. Finally, let
us mention that the reference conductivity value γ0 can be chosen so as to minimize this upper bound.
This optimization can be done without information on the microstructure but the bound could be further
improved if geometrical information on the microstructure is actually used, see Moulinec et al. (2018).
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In this context and based on the eigendecomposition of the matrix featured in the discrete Neumann series
(31), one also establishes in Proposition 2 that the vector ehk computed at each iteration and its limit eh
are both expressed in term of a particular subset of eigenvectors. This allows to show in Proposition 3
that the actual convergence rate of the Neumann series is potentially smaller than %(Gh

0 ) and governed by
the largest eigenvalue associated with the subset of eigenvectors that is activated during iterations. This
results is illustrated numerically on the two test cases considered.

3. Quadratic convergence of the energy-based effective property.
With these results on the fields ehk at hand, we turn to the convergence properties of the energy-based
effective conductivity (γeff)hk in (32). For the material configuration considered, the discrete energy func-
tional is coercive and Lipschitz, see (45). Based on these inequalities, Proposition 4 establishes that (γeff)hk
converges to its limit (γeff)h at a quadratic rate compared to this governing ehk . Moreover, it is observed
that this convergence is monotonic for the example considered. These properties are all the more remark-
able as they are not shared with the alternative definition (53) of the effective conductivity (γ̌eff)hk . Indeed,
although the latter converges to (γeff)h as well, it does so at a rate only proportional to this of ehk .
Finally, as already pointed out in Remark 4, the quadratic convergence of the discrete energy-based effective
property is a classic result from optimization Nesterov (2004) and the starting point to derive the associated
estimates are the inequalities (45). In this derivation, the fact that the composite considered is a laminate
is not used. Therefore, these results are also valid for other microstructures and in any dimension provided
that (45) holds. Moreover, as the corresponding coercive and Lipschitz properties also hold for the energy
functional W in (7), the developments of Section 4.2 can easily be extended at the continuous level. Note
finally, that such properties do not make use of the linearity of the constitutive relations per se. As a
consequence, they could also be established in the case of non-linear composites as long as energy bounds
such as (45) are valid.

4. Stopping criterion.
In Proposition 4, it is also established that the convergence error |(γeff)hk− (γeff)h| in the effective property,
can be bounded using ‖∇Wh(ẽhk)‖2γ0

. Note, that from the identity (29), one has

‖∇Wh(ẽhk)‖γ0 =
∥∥∥ 1
γ0

P0 · jhk
∥∥∥
γ0

with jhk = Diag[γh] · (e + ẽhk). (59)

As the matrix P0/γ0 is the discretized counterpart of the Green’s operator Γ0, one arrives here at a
convergence criterion that has already been discussed in a number of studies, see Moulinec et al. (2018)
and the references therein. In (59), the featured norm is the energetic norm defined by γ0. Although the
choice of the norm is not critical for the 1D conductivity problem considered here, see Remark 1, it is
actually of prime importance for other material configurations, see Moulinec et al. (2018) and Bellis and
Suquet (2018). Finally, as an added value to these latter references, let us point out that Proposition 4
provides, not only a stopping criterion for the discrete Neumann series, but both an upper and a lower
bound on the error in the effective property.

5. Monotonicity properties
Revisiting the Neumann series (31) as the gradient-descent scheme with fixed step (15) allows to highlight a
number of monotonicity properties. These properties stem from the Lipschitz continuity and the coercivity
of the gradient of the discrete energy functional Wh, see (45). In this context and using an approach which
is standard in the field of optimization, a sufficient condition on the reference medium conductivity γ0 is
obtained to ensure that Wh decreases monotonically. In addition, the residual error ‖εhk‖γ0 on the field
is also shown to converge monotonically under a slightly more constraining condition. Lastly, the choice
γ0 = (maxn(γhn) + minn(γhn))/2, proposed in Moulinec and Suquet (1998) and which is used in the present
study, is shown to be the optimal value that satisfies these conditions. It is straightforward to extend these
results in 2D or 3D and other material configurations. Care must be exercised however if the composite
considered includes some cavities, a case which would be characterized by a lack of coercivity of the energy
functional. Extensions to continuous formulations are also straightforward.

6. Discretization error estimation.
With the convergence properties of the Neumann series being assessed, one focuses in a second step on the
estimation of the discretization error, i.e. the evaluation of the second right-hand side term in the error
estimate (33). In this study on laminated composites, the discretization scheme is entirely encapsulated in

23



the definition of the discrete averaging operator 〈·〉h. Numerically, such integrals are computed using the
trapezoidal rule (23) due to its link to the discrete Fourier transform and therefore by consistency with the
FFT-based computational homogenization methods. It should be noted, however, that the present study
on laminates relies directly on the particular form (17) of the Green’s operator and does not make use of
the discrete Fourier transform. In this setting, it is shown that the discretization error can be driven by
the decay rate of the Fourier coefficients ρ̂(ν) of the resistivity field ρ = γ−1, see Property 7. Recalling this
result, which may seem astonishing, the scheme considered can reach high levels of accuracy for smooth
material distributions, while the overall numerical error can be estimated for a broad class of functions

7. Assessment of aliasing and Gibbs phenomena.
Lastly and in connection with discussions in the FFT-based computational homogenization literature, the
possible effects of the aliasing and Gibbs phenomena are assessed. In the particular context of laminated
composites, where the action of the Green’s operator Γ0 is directly computed in the physical space using
(17), it is shown that the discretization error is entirely due to aliasing effects, see Property 7. Obviously,
as the computation of Γ0 does not rely neither on the discrete Fourier transform nor on truncated Fourier
series, the Gibbs phenomenon is not at play here. In particular, it is shown in Proposition 2 that the com-
puted local field ehk is constant in each phase at any iteration k. For other material configurations however,
Fourier-based computational homogenization methods make an intensive use of the FFT. In this context,
potential undesirable fields oscillations near material discontinuities and the possible manifestations of the
Gibbs phenomenon have then been pointed out in W. H. Müller (1996); C. M. Brown and W. W. Dreyer
and W. H. Müller (2002); Willot et al. (2014); Schneider et al. (2016). In order to reduce these spurious
effects, the strategy of using modified Green operators has been proposed, see e.g. W. H. Müller (1996);
Brisard and Dormieux (2012); Willot (2015); Schneider et al. (2016).

6.2 Extension to other configurations: numerical examples
In this section, we illustrate on a set of additional examples some of the key features of the stationary iterative
scheme of Moulinec and Suquet (1998) that have been highlighted previously in the case of laminated composites.
While the objective is not to go through the same type of detailed analysis, the examples of this section, which
pertain to other material configurations, may serve as an illustrative guidance for future studies.

6.2.1 2D conductivity: the Obnosov problem

2 1

Figure 14: Double-periodic array of square inclusions with volume fraction 0.25.

In a first example, we consider the 2D isotropic conductivity problem that has been investigated analytically
in Obnosov (1992, 1999). It consists of a double-periodic array of unit square inclusions with volume fraction
0.25, see Figure 14, where the conductivity field is piecewise constant with γ(x) = γp in each phase φp for
p = 1, 2. For this problem, the exact field e(x) solution of (1) and the effective conductivity γeff can be found
analytically, see Obnosov (1992, 1999), and they are provided in Appendix B for the reader’s convenience. As
previously, the notation e is used to denote the map of the numerical values of the continuous solution e at the
2D grid points. While this analytical continous solution is available, we do not have at our disposal neither the
closed-form expression of the discrete solution eh, which is defined as the limit of the discrete Neumann series,
nor the associated expression (γeff)h of the effective property.
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Figure 15: [2D conductivity] (left) Error on the effective property at each iteration relatively to the value computed at
iterate k = 100 for the corresponding discretization. Solid lines correspond to the energetic definition (32) and dashed
lines to the alternative definition (53), i.e. (γeff)hk being replaced by (γ̌eff)hk . (right) Convergence indicator for the discrete
Neumann series.

The numerical results presented here are obtained using a Fourier-based implementation of the stationary
iterative scheme (16) in the case γ1 = 1, γ2 = 10 and with a discretization of the cell [−2; 2] × [−2; 2] of
Figure 21a using N ×N pixels. The formalism described previously is formally extended in 2D with γh being
the discrete conductivity map, γ0 = (γ1 + γ2)/2 the reference isotropic conductivity and Γh0 the corresponding
discrete Green’s operator that is computed using discrete Fourier series, taking into account all of the frequencies
associated with the discretization considered, and the FFT algorithm. In this setting, Figure 15 illustrates the
convergence of the Neumann series, which is ensured by the choice of γ0, through the behavior of the error
on the effective property. For a given discretization, the value computed at each iteration is compared to the
numerical value obtained at the iterate k = 100, which we consider to be the discrete limit value in the absence
of the explicit form of the discrete solution (γeff)h. As in the case of 1D laminates, convergence is achieved up
to machine precision. However, for a given discretization parameter N , two distinct slopes are observed, i.e.
the Neumann series is governed by two different convergence rates. The error seems to be independent of N
in the first stage and correlated to it in the second stage. When the energy-based effective property (γeff)hk is
replaced by the alternative definition (γ̌eff)hk using (53) then the convergence rate decreases in accordance with
the previous results, see dashed lines compared to solid ones.

Drawing from the previous eigenanalysis, and for the sake of the discussion, consider that the iteration error
εhk in (44) for the discrete solution has the following form in the 2D case:

εhk =
∞∑
j=k

( N1∑
m=1

(−λhm)j
(
vhm, fh0

)
γ0

vhm +
N2∑
m=1

(−µhm)j
(
wh
m, fh0

)
γ0

wh
m

)
, (60)

with N1 +N2 = 2N2 being the total number of components in the field ehk , while {λhm, µhm} and {vhm, wh
m} are

respectively the sets of eigenvalues and eigenvectors of the iterated matrix for the 2D configuration considered.
Having (wh

m, fh0 )γ0 � (vhm, fh0 )γ0 with in the mean time |λhm| < |µhm| would be compatible with a two-stage
convergence behavior as this observed in Figure 15. Indeed, this would mean that the eigenvectors vhm, or
modes, are predominant in the discrete solution ehk and they converge at a faster rate compared to some other
minor modes wh

m. The slower convergence of the latter being accountable for the iteration error in the second
stage. This can only be justified rigorously by performing the eigenanalysis of the 2D Obnosov problem.

To get rid of the comparison with the numerical value at the iterate k = 100, one can use instead the quantity
‖∇Wh(ẽhk)‖2γ0

as a convergence indicator for the discrete Neumann series. Owing to (25) and (29), this indicator
is computed in the 2D setting as

‖∇Wh(ẽhk)‖2γ0
=
〈
Γh0 jhk · γ0Γh0 jhk

〉
h

with jhk = γh
(
e + ẽhk

)
, (61)

in the energetic norm weighted by γ0. As expected, there is an excellent agreement between this indicator,
shown in the right panel of Fig. 15, and the convergence error on the effective property obtained at the discrete
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level (left panel). This is all the more interesting as the indicator (61) can be fully computed numerically from
the quantities available at the current iterate.
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Figure 16: [2D conductivity] Numerical errors to the exact analytical solution as functions of the iteration number k and
when varying the discretization as N ∈ {128, 256, 512, 1024}. (left) Global field error ‖ehk − e‖γ0 and (right) global error on
the effective property. Solid lines correspond to the energetic definition (32) and dashed lines to the alternative definition
(53), i.e. (γeff)hk being replaced by (γ̌eff)hk .

Turning to the assessment of the discretization error, comparisons with the exact analytical solution of
Appendix B are shown in Figure 16. The energetic norm of the field error is plotted in the left panel of Fig.
16 and comparisons with the exact effective property γeff are shown in the right panel for both definitions (32)
and (53). The corresponding final errors at the iterate k = 50 are reported in Figure 17. In these results
the discretization plays a key role similar to this it has for the smooth material distribution of the test case
2, see Section 5.2 and figures 12 and 13. Errors rapidly reach a plateau whose height is correlated to the
discretization parameter N . Note that these asymptotic values are attained within the first convergence stage
where the convergence rate appears to be independent of N . Moreover, for a given value N , the effective
property obtained asymptotically is the same for both definitions (γeff)hk and (γ̌eff)hk but it is attained with
different convergence rates, as previously discussed. Overall, these errors with respect to the analytical solutions
e and γeff could be due to the integrable corner singularities contained in the exact field solution, see Obnosov
(1992, 1999). Indeed, the global convergence of the discrete solution ehk is expected to be penalized due to its
behavior within the corner regions, see the local error maps of Figure 18.
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Figure 17: [2D conductivity] Errors values obtained at k = 50 from Figure 16 as functions of the discretization parameter
N ∈ {128, 256, 512, 1024}.
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(a) |ehk(xn)− e(xn)|γ0 (b) |ehk(xn)− e(xn)|γ0 close-up in corner region

Figure 18: [2D conductivity] Maps of local numerical error of the discrete solution ehk with respect to the theoretical solution
e, computed at the iteration k = 100 and for the discretization parameter N = 128.

6.2.2 3D elasticity

Figure 19: Triple-periodic array of spherical elastic inclusions with volume fraction 0.25 discretized using N3 voxels.

In a second example we consider a triple-periodic array of spherical elastic inclusions with Young modulus
E2 = 10 and Poisson’s ratio ν2 = 0.2 embedded in an isotropic elastic matrix with parameters E1 = 1 and
ν1 = ν2. The volume fraction of the inclusions is 0.25. Correspondingly, this material configuration defines a
fourth-order and isotropic elasticity tensor L(x). Accordingly, the local problem (1) has to be recast using L(x)
and a second-order strain tensor ε(x) instead of γ(x) and e(x) respectively. Moreover, one introduces a reference
homogenous tensor L0. Numerically, a unit cubic cell is considered and discretized using N ×N ×N voxels, see
Figure 19. For this example, we do not have at our disposal neither the discrete solutions εh, (Leff)h obtained at
convergence of the discrete Neumann series, nor the exact continuous solutions ε, Leff of the problem. Therefore,
as in the previous example, for each discretization the convergence of the discrete Neumann series is assessed
by comparing numerical quantities computed at each iteration k relatively to their corresponding values at the
iteration k = 100 at the same discretization. More precisely, for this elastic case, one considers the discrete
macroscopic energy defined as the quantity

Wh(ε̃hk) = 1
2
〈(
ε+ ε̃hk

)
:Lh :

(
ε+ ε̃hk

)〉
h
, (62)

which is expressed as a function of the fluctuating part ε̃hk of the discrete strain field computed at each iteration
of the scheme (16) and that features the imposed macroscopic strain ε, the discretized elasticity tensor Lh and
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uses a 3D discrete averaging operator 〈·〉h and, by an abuse of notation, a doubly contracted product “:”. As
such, this definition is consistent with (32). For comparison, and with consistency with the alternative definition
(53) considered previously, one introduces a second definition of the discrete energy as

W̌h(ε̃hk) = 1
2
〈(
ε+ ε̃hk

)〉
h

:
〈
Lh :

(
ε+ ε̃hk

)〉
h
. (63)

Based on Hill’s lemma, which pertains to the continuous solution of the problem (1), the energies computed
according to (62) and (63) are expected to be equal at convergence of the discrete scheme. However, as in
Section 4.2, the evolutions of these quantities with iterations provide us with information on the convergence of
the discrete Neumann series.
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Figure 20: [3D elasticity] (left) Error on the macroscopic energy computed at each iteration relatively to the values at
iterate k = 100, for the corresponding discretization, using either the definition (62) or the alternative definition (63), i.e.
Wh(ε̃hk) being replaced by W̌h(ε̃hk). (right) Convergence indicator for the discrete Neumann series.

The errors on the quantities (62) and (63), relatively to their values computed at the iteration k = 100 for each
discretization, are shown in Figure 20a. These results illustrate that, again, convergence of the Neumann series
up to machine precision is achieved and the convergence rate using the definition (62) is quadratic compared
to (63). Note that, as in the 2D conductivity problem above, two regimes are observed, with the same type of
dependence on the discretization parameter N .

Lastly, to avoid assessing the convergence of the discrete Neumann series by comparison with values obtained
at the iteration k = 100, one considers instead in Fig. 20b the indicator function ‖∇Wh(ε̃hk)‖2γ0

that can be
fully computed from quantities available at the current iterate. In the elastic case, by consistency with (25) and
(29), this indicator is computed as

‖∇Wh(ε̃hk)‖2γ0
=
〈
Γh0σhk :L0 :Γh0σhk

〉
h

with σhk = Lh :
(
ε+ ε̃hk

)
, (64)

and where Γh0 denotes the discrete elastic Green’s operator associated with L0, which is computed using the
complete discrete Fourier series of the discretization considered and the FFT algorithm. In (64), one makes
use of an energetic norm weighted by L0. As in Section 6.2.1, there is a good agreement between the results
in Figure 20b and those in Fig. 20a associated with the definition (62) of the energy, in the sense that the
evolutions of the corresponding curves are comparable. Therefore, the indicator function (64) can be used as a
stopping criterion as of the convergence of the discrete Neumann series.

7 Conclusions
This study focuses on the conductivity problem in laminated periodic composites. Its aim is to examine the con-
vergence properties of the field and effective property that are computed through the inversion of the Lippman-
Schwinger equation by a Neumann series. For the configuration considered, the conventional Fourier-based
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formulation is avoided as the Green’s operator is obtained in closed-form in the physical space. In this context,
both the iteration error and the discretization error are evaluated within a discrete setting.

The main points of this study are as follows. (1) The eigendecomposition of the matrix iterated within
the Neumann series, which provides a detailed description of the eigenvectors, or modes, that are used in the
construction of the solution, together with the associated eigenvalues. This allows next (2) to quantify precisely
the convergence rate of the Neumann series for the specific material distribution characterizing the laminate
considered. In connection to this result, one discusses (3) quadratic upper and lower bounds on the energy-based
effective property, which provide a convergence result for the latter and lead to (4) a stopping criterion for the
iterative scheme, in a form that has already been discussed in the literature. (5) The monotonicity properties of
both the energy functional and the residual error on the field are also discussed in relation with the choice of the
reference medium conductivity γ0. With these results at hand, the next step is (6) to evaluate the discretization
error, which is achieved by assessing the spectral properties of the conductivity field, thus showing how the
global accuracy of the scheme considered is related to the smoothness of the spatial distribution of the material
considered. Although the present study does not make use of the Fourier transform, a connection with the latter
is established at this point through the study of the trapezoidal quadrature rule. This also leads to (7) the
assessment of the role of aliasing in the discretization error and to confirm that the Gibbs phenomenon is not
at play in the performed computations.

This study constitutes a first step towards studying a priori global error estimates for iterative schemes in
computational homogenization. The configuration considered is rather simple but the intent here is to provide
some illustrations of the phenomena at play in the construction of the approximated solution and to quantify
them precisely through a semi-analytical analysis. In a more general context, a systematic derivation of a priori
global error estimates is much needed. Extending the eigenanalysis of the present study to other 2D and 3D
configurations would be a next step in this direction. For such configurations, Fourier-based implementations
would be obvious choices and their performance could be evaluated using error analysis tools that have been
developed for spectral methods.
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A Mathematical definitions
A.1 Functional spaces
For x = x · d with x, d ∈ RD and p ∈ {1, 2}, define spaces of periodic scalar functions and vector fields as:

L∞per(0, `) = {f : ∃C ≥ 0 such that |f(x)| ≤ C a.e. x ∈ R, f(x+ `) = f(x) a.e. x ∈ R} ,
Lpper(0, `) = {f ∈ Lploc(R) : f(x+ `) = f(x) a.e. x ∈ R} ,
Lpper(0, `)D =

{
f = (fj)|1≤j≤D : fj ∈ Lpper(0, `)

}
,

H1
per(0, `) =

{
f ∈ H1

loc(Rd), f ∈ L2
per(0, `), ∂xjf ∈ L2

per(0, `), 1 ≤ j ≤ D
}
.

A.2 Matrices
For all vector f ∈ RN , we introduce the following notation

Diag[f ] =


f0 0 . . . 0

0 f2
. . .

...
...

. . . . . . 0
0 . . . 0 fN−1

 .

Moreover, one defines the discrete averaging matrix A ∈ RN×N as

A = 1
N


1 1 . . . 1
1 1 . . . 1
...

...
...

...
1 1 . . . 1

 (65)

Since A2 = A, the matrix A is the orthogonal projector onto R, i.e. the space of constant vectors. The
orthogonal projection matrix P0 onto RN0 in (26) is given by:

P0 = I−A (66)

with I being the identity matrix. It can indeed by checked that (P0)2 = P0 and that its range satisfies
R(P0) = RN0 . Moreover, one has A · P0 = P0 · A = 0 so that one can formally use the notation A = P⊥0 .
Lastly, it should be reminded that from Property 1, the matrix P0 is the discretized version of the orthogonal
projection operator P0 = Γ0γ0 from L2

per,0(0, `) onto itself.
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B Exact solution for the Obnosov problem
We consider here the exact field solution of the 2D conductivity problem of Section 6.2.1 for a configuration where
the inclusions, i.e. phase 2, are unit squares. The explicit solution for a double-periodic array of rectangular
inclusions has been derived in Obnosov (1992, 1999) and we reproduce it below for the particular configuration
considered for the reader’s convenience. Reference to Abramowitz and Stegun (1974) can be made for details
on the special functions that are used below.

First, the effective conductivity is isotropic and given by:

γeff = γ1

√
γ1 + 3γ2

γ2 + 3γ1
. (67)

(a) γ(x) (b) ex(x) (c) ey(x)

Figure 21: Physical configuration considered and the corresponding exact field solution when e = (1, 0). In the second and
third panels the vertical green lines indicate branch cuts. The color scale has been adjusted to enhance the readability of
the figures.

Next, introducing the complex variable z = x+ iy for x = (x, y) ∈ R2, let v(z) = γ(x, y)
(
ex(x, y)− iey(x, y)

)
be a complex-valued field where ex and ey are the components of e in the canonical basis of R2 and ex, ey are
these of the imposed macroscopic intensity e. The field v is given analytically in each phase by

v(z) = Λ1e
iπαχ(z) + Λ2e

−iπαχ(z)−1 in φ1,

v(z) = −(1 + ∆)
[
Λ1e

−3iπαχ(z) + Λ2e
3iπαχ(z)−1] in φ2.

The parameter in the above identities are given by:

∆ = γ−1
1 − γ−1

2
γ−1

1 + γ−1
2
, λ = 2

π
arcsin

( |∆|
2

)
, α = 1

4
(
λ+ sign(∆)

)
.

Moreover, one defines

Λ1 =
γeffθ

(
ex − ey sign(∆)

)
√

2 + ∆
, Λ2 =

γeffθ
(
ex + ey sign(∆)

)
√

2 + ∆
,

where the denominators are based on the corresponding expressions in Obnosov (1992) because of a typo in
Obnosov (1999). The effective conductivity γeff is given by (67) and one has

θ = 2 Γ(1/4)2
(√

4−∆2 Γ
(1− λ

4

)
Γ
(1 + λ

4

))−1
,

which is expressed using the standard gamma function that, in this appendix only, is denoted as Γ. In addition,
one has

χ(z) =
(

(1 + i) dn(Kz/2 | 1/2)2 − 1√
2 dn(Kz/2 | 1/2)2 − (1 + i)/

√
2

)λ
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where K = Γ(1/4)2/(4
√
π) and dn(z̃|m) is the Jacobian elliptic delta function that, for the complex argument

z̃ = x̃+ iỹ and parameter m, is given by

dn(z̃|m) = dn(x̃|m) cn(ỹ|m1) dn(ỹ|m1)− im sn(x̃|m) cn(x̃|m) sn(ỹ|m1)
cn(ỹ|m1)2 +m sn(x̃|m)2 sn(ỹ|m1)2

with cn, sn and dn being the Jacobian elliptic functions for real arguments and m1 = 1 − m. Note that the
function χ(z) is single-valued with branch cuts along the vertical segments of ∂φ2. In the homogeneous case
γ1 = γ2, calculating the limit of the above identities yields the correct homogeneous solution. In the case where
γ1 = 1, γ2 = 10 and e = (1, 0), this exact analytical solution is plotted Figure 21.
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