Skip to Main content Skip to Navigation
Journal articles

Eigendecomposition-based convergence analysis of the Neumann series for laminated composites and discretization error estimation

Abstract : In computational homogenization for periodic composites, the Lippmann-Schwinger integral equation constitutes a convenient formulation to devise numerical methods to compute local fields and their macroscopic responses. Among them, the iterative scheme based on the Neumann series is simple and efficient. For such schemes, a priori global error estimates on local fields and effective property are not available, and this is the concern of this article , which focuses on the simple, but illustrative, conductivity problem in laminated composites. The global error is split into an iteration error, associated with the Neumann series expansion, and a discretization error. The featured nonlocal Green's operator is expressed in terms of the averaging operator , which circumvents the use of the Fourier transform. The Neumann series is formulated in a discrete setting, and the eigendecomposition of the iterated matrix is performed. The ensuing analysis shows that the local fields are computed using a particular subset of eigenvectors, the iteration error being governed by the associated eigenvalues. Quadratic error bounds on the effective property are also discussed. The discretization error is shown to be related to the accuracy of the trapezoidal quadrature scheme. These results are illustrated numerically, and their extension to other configurations is discussed.
Complete list of metadata

Cited literature [28 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02413035
Contributor : Cédric Bellis <>
Submitted on : Thursday, December 19, 2019 - 12:46:16 PM
Last modification on : Wednesday, March 24, 2021 - 1:58:08 PM
Long-term archiving on: : Friday, March 20, 2020 - 4:36:57 PM

File

Article_Laminates_vHAL.pdf
Files produced by the author(s)

Identifiers

Citation

Cédric Bellis, Hervé Moulinec, Pierre Suquet. Eigendecomposition-based convergence analysis of the Neumann series for laminated composites and discretization error estimation. International Journal for Numerical Methods in Engineering, Wiley, 2020, 121 (2), pp.201-232. ⟨10.1002/nme.6206⟩. ⟨hal-02413035⟩

Share

Metrics

Record views

128

Files downloads

195