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Ridge reconstruction of partially observed functional data is
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Abstract: When functional data are observed on parts of the domain, it is of interest to recover the
missing parts of curves. Kraus (2015) proposed a linear reconstruction method based on ridge regular-
ization. Kneip and Liebl (2020) argue that an assumption under which Kraus (2015) established the
consistency of the ridge method is too restrictive and propose a principal component reconstruction
method that they prove to be asymptotically optimal. In this note we relax the restrictive assump-
tion that the true best linear reconstruction operator is Hilbert–Schmidt and prove that the ridge
method achieves asymptotic optimality under essentially no assumptions. The result is illustrated in
a simulation study.
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1 Introduction

We consider functional data consisting of continuous curves in the separable Hilbert space
L2(I) with inner product 〈·, ·〉 and norm ‖ · ‖, where I is a compact interval. Each of the n
independent curves X1, . . . , Xn is observed on a set Oi ⊆ I, while no information about the
curves is available on the missing sets Mi = I \Oi. This type of partially observed functions
was previously considered by, e.g., Bugni (2012), Delaigle and Hall (2013), Liebl (2013), Gellar
et al. (2014), Goldberg et al. (2014), Kraus (2015), Delaigle and Hall (2016), Gromenko et al.
(2017), Dawson and Müller (2018), Mojirsheibani and Shaw (2018), Stefanucci et al. (2018),
Descary and Panaretos (2019), Kneip and Liebl (2020), Kraus (2019), Kraus and Stefanucci
(2019) or Liebl and Rameseder (2019). In this paper we deal with function reconstruction
(completion), that is, with the task to estimate, or rather predict the missing parts of curves
from the observed parts.

We assume that the curves have finite fourth moments and that the observation domains
Oi, consisting of finite unions of intervals, are mutually independent random sets that are
independent of Xi.
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To simplify the presentation, we study the reconstruction of the missing part XM using the
observed part XO of a new curve X that is not part of the observed dataset X1O1 , . . . , XnOn

used for the training of the prediction method. Our results apply to the usual case, where one
reconstructs the curves in the training sample, as well. To further simplify the presentation
we assume without loss of generality that the curves have mean zero.

In general, the best reconstruction of XM as a function of XO is the conditional expec-
tation, which is usually difficult to analyze. An optimal solution is, therefore, sought among
linear reconstructions. That is, one seeks to minimize the mean squared reconstruction error
E(‖XM −A (XO)‖2) over linear operators A : L2(O)→ L2(M).

Motivated by the similarity of the linear reconstruction problem with linear function-on-
function regression, Kraus (2015) solved the theoretical optimization task over bounded linear
operators. The solution to the normal equation A ROO = RMO is A = RMOR−1OO, provided
it is bounded. Here we denote by ROO : L2(O) → L2(O) and RMO : L2(O) → L2(M)
the integral operators with kernels ρOO(s, t) = ρ(s, t), s, t ∈ O and ρMO(s, t) = ρ(s, t),
s ∈ M , t ∈ O, respectively, where ρ(s, t) = cov{X(s), X(t)} is assumed to be continuous.
Since this linear inverse problem is ill-posed (R−1OO is unbounded because ROO is compact),

Kraus (2015) proposed to employ ridge regularization and use A (α) = RMOR
(α)−1
OO , where

R
(α)
OO = ROO + αIO with α > 0 being a parameter and IO the identity operator on L2(O).

In the empirical version of the problem, the covariance function is replaced by the estimator
(4) defined below, leading to the estimator of the optimal reconstruction X̃M = A (XO) by

X̂
(α)
M = Â (α)(XO) = R̂MO(R̂OO + αIO)−1XO. (1)

Under the additional assumption that A = RMOR−1OO is a Hilbert–Schmidt operator, Kraus

(2015) proved that the estimated reconstruction X̂
(αn)
M consistently (in the mean square sense)

estimates the best linear reconstruction X̃M , that is, E(‖X̂(αn)
M − X̃M‖2) → 0 as n → ∞,

provided that αn → 0 at an appropriate rate, namely, αn satisfies αnn
1/3 → ∞. In the

general case of processes with non-zero mean the reconstruction is X̂
(α)
M = µ̂M +R̂MO(R̂OO+

αIO)−1(XO − µ̂O), where µ̂ is defined in (3) and µ̂O(t) = µ̂(t), t ∈ O, µ̂M (t) = µ̂(t), t ∈M .
Kneip and Liebl (2020) revisit the problem of function reconstruction and argue that op-

timal linear reconstruction generally need not be achievable by a Hilbert–Schmidt or even
bounded linear operator. Therefore, they consider general linear operators from L2(O) to
L2(M) with the minimal restriction that var A (XO)(u) < ∞ for all u ∈ M (they call
such operators reconstruction operators). They show that any such operator can be rep-
resented as A (XO)(u) = 〈bu, XO〉ROO

, where bu is a unique element of the Reproduc-
ing Kernel Hilbert Space {f ∈ L2(O) : ‖f‖ROO

< ∞} with inner product 〈f, g〉ROO
=∑∞

j=1〈f, ϕOOj〉〈g, ϕOOj〉/λOOj and norm ‖f‖ROO
= 〈f, f〉1/2ROO

. Here λOOj and ϕOOj are the
eigenvalues and eigenfunctions of ROO. The optimal reconstruction operator then takes the
form

X̃M (u) = A (XO)(u) = 〈ρuO, XO〉ROO
=

∞∑
j=1

〈ρuO, ϕOOj〉〈XO, ϕOOj〉/λOOj , (2)

where ρuO(t) = ρ(u, t), t ∈ O. See also Section 2.4.1 of Berlinet and Thomas-Agnan (2004)
for such results in the general setting and Shin and Hsing (2012) in the context of linear
prediction from functional data.
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Since Hilbert–Schmidt operators from L2(O) to L2(M) (considered in Kraus, 2015) corre-
spond to integral operators, such a reconstruction operator takes the form X̃M = A (XO) =∫
O a(·, t)XO(t)dt, where a is a square integrable function on M × O. In particular, the re-

construction of XM (u) is the bounded linear functional X̃M (u) = A (XO)(u) = 〈au, XO〉,
where au = a(u, ·) ∈ L2(O). If the optimal reconstruction operator A = RMOR−1OO is
Hilbert–Schmidt, then its kernel can be written in terms of principal components of ROO as
a(u, t) =

∑∞
j=1〈ρuO, ϕOOj〉ϕOOj(t)/λOOj . Hence

X̃M (u) = 〈au, XO〉 = 〈R−1OOρuO, XO〉 =
∞∑
j=1

〈ρuO, ϕOOj〉〈XO, ϕOOj〉/λOOj .

The latter form of the series is the same as (2) in the general case but the property
au = R−1OOρuO ∈ L2(O) in the Hilbert–Schmidt case is stronger than the general property

ρuO ∈ RKHS(ROO), which is equivalent to R
−1/2
OO ρuO ∈ L2(O). Equivalently, for the optimal

reconstruction operator to be Hilbert–Schmidt it must hold that
∑∞

j=1〈ρuO, ϕOOj〉2/λ2OOj <
∞, while in general the less restrictive condition

∑∞
j=1〈ρuO, ϕOOj〉2/λOOj < ∞ is needed.

Kneip and Liebl (2020) discuss a prominent example of non-Hilbert–Schmidt optimal recon-
struction depending on the evaluation of the observed function at a single impact point.

Motivated by the series form (2) of the optimal reconstruction, Kneip and Liebl (2020)
offer a solution based on spectral truncation, i.e., they take K < ∞ terms in the series
in (2) and replace unknown quantities by consistent estimators (namely local linear kernel
estimators). Under regularity assumptions they establish that such a reconstruction, say

X̂
(K)
M , consistently estimates the true optimal reconstruction as n → ∞ and K → ∞ at an

appropriate rate.

It is interesting to notice that the spectrally truncated reconstruction X̂
(K)
M is in fact

Hilbert–Schmidt but it nevertheless consistently estimates the optimal reconstruction X̃M

even if the latter is not even a bounded operator of XO. The ridge reconstruction X̂
(α)
M

of Kraus (2015) given in (1) is also Hilbert–Schmidt but its asymptotic optimality was es-
tablished in that paper under the additional assumption that the optimal reconstruction is
Hilbert–Schmidt too. It is worth investigating whether this additional assumption is redun-
dant and ridge reconstruction method also asymptotically achieves optimality in the general
case. The answer we give in the next section is positive. We show that from this point of
view the ridge method is not inferior to the principal component method of Kneip and Liebl
(2020).

Section 2 gives the main theoretical result on the asymptotic optimality of ridge recon-
struction and Section 3 illustrates this property by simulation under scenarios not covered by
the theory in Kraus (2015).

2 Main result

We provide a proof of the asymptotic optimality result that, unlike in Kraus (2015), does not
require the restrictive assumption of point reconstructions being bounded linear functionals
(or A being a Hilbert–Schmidt operator). The reconstruction method based on ridge regu-
larization that we analyze here is the same as in Kraus (2015) but the theoretical result is
stronger than the one in Kraus (2015).
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We denote by Oi(t) the indicator that the value of Xi(t) is observed and use the following
estimators in the empirical reconstruction operator. The mean function is estimated by the
cross-sectional average of available observations

µ̂(t) =
J(t)

N(t)

n∑
i=1

Oi(t)Xi(t), (3)

where N(t) =
∑n

i=1Oi(t) and J(t) = 1[N(t)>0]. The covariance function is estimated by the
empirical covariance using pairwise complete observations

ρ̂(s, t) =
I(s, t)

M(s, t)

n∑
i=1

Ui(s, t){Xi(s)− µ̂st(s)}{Xi(t)− µ̂st(t)}, (4)

where Ui(s, t) = Oi(s)Oi(t), M(s, t) =
∑n

i=1 Ui(s, t), I(s, t) = 1[M(s,t)>0] and

µ̂st(s) =
1[M(s,t)>0]

M(s, t)

n∑
i=1

Ui(s, t)Xi(s).

The estimator R̂ with kernel ρ̂ has been shown to be root-n consistent for R in Kraus (2015,
Proposition 1) under the assumption on the observation mechanism that

there exists δ > 0 such that sup
(s,t)∈I2

P

(
n−1

n∑
i=1

Ui(s, t) ≤ δ
)

= O(n−2) as n→∞. (5)

A further study of the asymptotic distribution of R̂ and related tests can be found in Kraus
(2019).

Our main result is as follows. Note that it holds without any restrictive assumptions on
the optimal reconstruction operator or, for example, on the eigenvalue sequence.

Theorem 1. Assume that E(‖Xi‖4) < ∞ and the observation pattern satisfies (5). Then,

with X̂
(αn)
M , X̃M defined in (1), (2), respectively, for αn → 0 such that αnn

1/3 → ∞ as
n→∞,

E[{X̂(αn)
M (u)− X̃M (u)}2]→ 0

for all u ∈ M , and also E{‖X̂(αn)
M − X̃M‖2} → 0. The result holds regardless of whether

the optimal linear reconstruction operator XO 7→ X̃M is Hilbert–Schmidt (i.e., whether the
optimal linear reconstruction functionals XO 7→ X̃M (u) are bounded) or even bounded.

Proof. Denote X̃
(αn)
M = A (αn)XO. Compute the regularization error

E[{X̃(αn)
M (u)− X̃M (u)}2] = E{〈ROOR

(αn)−1
OO ρuO − ρuO, XO〉2ROO

}

= ‖ROOR
(αn)−1
OO ρuO − ρuO‖2ROO

=

∞∑
j=1

〈ROOR
(αn)−1
OO ρuO − ρuO, ϕOOj〉2

λOOj

=
∞∑
j=1

(
λOOj

λOOj + αn
− 1

)2 〈ρuO, ϕOOj〉2

λOOj

=

∞∑
j=1

(
αn

λOOj + αn

)2 〈ρuO, ϕOOj〉2

λOOj
.
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This converges to 0 as n → ∞ by the dominated convergence theorem because∑∞
j=1〈ρuO, ϕOOj〉2/λOOj <∞. We now turn to the estimation error

E[{X̂(αn)
M (u)− X̃(αn)

M (u)}2] = E{〈R̂(αn)−1
OO ρ̂uO −R

(αn)−1
OO ρuO, XO〉2}

= E{‖R1/2
OO(R̂

(αn)−1
OO ρ̂uO −R

(αn)−1
OO ρuO)‖2}

≤ E[{‖R1/2
OOR̂

(αn)−1
OO (ρ̂uO − ρuO)‖+ ‖R1/2

OO(R̂
(αn)−1
OO −R

(αn)−1
OO )ρuO‖}2].

First, using ‖ · ‖∞ for the operator norm, we see that

E{‖R1/2
OOR̂

(αn)−1
OO (ρ̂uO−ρuO)‖2} ≤ E{‖R1/2

OO‖
2
∞‖R̂

(αn)−1
OO ‖2∞‖ρ̂uO−ρuO‖2} = λOO1α

−2
n E{‖ρ̂uO−ρuO‖2},

which converges to 0 because E{‖ρ̂uO − ρuO‖2} = O(n−1). Second, compute

E{‖R1/2
OO(R̂

(αn)−1
OO −R

(αn)−1
OO )ρuO)‖2} = E{‖R1/2

OOR
(αn)−1
OO (R̂OO −ROO)R

(αn)−1
OO ρuO‖2}

≤ E{‖R1/2
OOR

(αn)−1
OO ‖2∞‖R̂OO −ROO‖2∞‖R

(αn)−1
OO ‖2∞‖ρuO‖2}

= α−1n E{‖R̂OO −ROO‖2∞}α−2n ‖ρuO‖2,

which also converges to 0 due to the n1/2-consitency of R̂OO. This completes the proof for

point reconstructions. The fact that E{‖X̂(αn)
M − X̃M‖2} → 0 follows from the dominated

convergence theorem.

The theorem shows that even if the optimal solution is not a regression (i.e., Hilbert–
Schmidt integral) operator, one can proceed as if it was, using ridge regularization, and
asymptotically achieve optimality. The method of Kneip and Liebl (2020) is also of this kind:
they use principal component regression (with some modifications) to construct a sequence
of regression operators that asymptotically performs optimally. A similar phenomenon was
observed in Kraus and Stefanucci (2019) for linear classification of functional data. The
common property of all these situations is that the goal is prediction, that is, one is interested
in the value of a linear functional or operator at a random process rather than in estimating
the (possibly non-existent) regression functional or operator itself.

In addition to the revealing discussion of optimal reconstruction in RKHS terms and de-
velopment and analysis of the principal component method, Kneip and Liebl (2020) proposed
certain adjustments beyond the direct empirical plug-in approach to mainly ensure continuity
of the reconstructed trajectory. First, they use local linear kernel estimators of the mean and
covariance function rather than the empirical moment estimators (3), (4). Second, they verti-
cally shift the reconstructed missing parts of curves to achieve continuity at the endpoints of
observation intervals. Third, they consider applying principal component regularization also
to the observed parts of curves to improve their estimation. All these modifications can be
used in connection with ridge regularization as well.

3 Numerical illustration

Our simulation study illustrates the asymptotic optimality of the ridge reconstruction method
in situations that are covered by the present results but not by the results in Kraus (2015).
Under two scenarios the optimal reconstruction operator is a bounded linear operator but
not a Hilbert–Schmidt integral operator (hence point reconstructions are not bounded linear
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functionals), and under another scenario the optimal reconstruction operator is not even
bounded.

We consider functional data on I = [0, 1] evaluated on a grid of 500 equidistant points.
For different training sample sizes n (e.g., n = 50, 100, 200, 400) we repeat 10 000 times the
following steps. We generate a function X to be reconstructed on the missing set M = (0.5, 1].
We generate a set of n independent random trajectories Xi and independent observation sets
Oi. We estimate the mean and covariance function using the fragments XiOi and build the
ridge reconstruction operator (using generalized cross-validation as described in Kraus, 2015)
for predicting functions on M from their observations on the complement. Then we compute
the prediction of XM . Finally we combine the results of the 10 000 replications to estimate the
mean squared reconstruction error at each u ∈ M by the average of the squared differences
of the reconstructed value and the true value.

The observation sets Oi for 20 % of the training data are equal to [0, 1], i.e., these curves
are observed completely. For the remaining curves we independently generate Ui1 and Ui2
from the uniform distribution on [0, 1] and denote by Ai and Bi their minimum and maximum,
respectively. Then we set with equal probability either Oi = [Ai, Bi] or Oi = [0, 1] \ (Ai, Bi).
Among the incomplete curves, the percentage of complete pairs of observations at pairs of
time points ranges from 25 % for |s− t| = 0.5 to 50 % for s = t.

We consider three models for training and test random functions. Let U(t) be the
Ornstein–Uhlenbeck process with mean 0 and covariance exp(−|s−t|) and W (t) the Brownian
motion with covariance min(s, t) independent of U(t).

Case 1 Set X(t) = U(t) + U(1 − t). Since the process is symmetric about 0.5, the optimal
reconstruction of XM is given by A (XO)(u) = XO(1− u), u ∈M . The reconstruction
operator A is bounded but not Hilbert–Schmidt and point reconstructions A (XO)(u),
being evaluation functionals, are not bounded linear functionals. The optimal recon-
struction error is 0 (perfect reconstruction) for all u ∈M .

Case 2 Set X(t) = U(t)+U(1−t)+W (t−0.5)1{t≥0.5}. This is a symmetric process about 0.5
with additional independent noise on [0.5, 1], hence the optimal reconstruction of XM is
again given by A (XO)(u) = XO(1−u), u ∈M . The reconstruction operator is bounded
but not Hilbert–Schmidt and point reconstruction functionals are not bounded. The
optimal reconstruction error is varW (u− 0.5) = u− 0.5 for u ∈M .

Case 3 Set X(t) = W (t). In this case the best reconstruction is given by A (XO)(u) =
XO(0.5), u ∈ M . The reconstruction functionals are the evaluation functional at 0.5,
hence they are unbounded. Unlike in the previous cases, the reconstruction operator is
not even bounded, since the whole reconstructed trajectory depends on one impact point
in the observation set. The error of the optimal reconstruction is var{W (u)−W (0.5)} =
u− 0.5, u ∈M .

None of these cases is covered by the theory in Kraus (2015) because the optimal recon-
struction operator is not a Hilbert–Schmidt operator. Case 3 was considered by Kneip and
Liebl (2020) as an example of situation, where the optimal reconstruction operator is not
a regression operator. Despite the same optimal reconstruction error in Cases 2 and 3 the
properties of the optimal reconstruction operators are different (the former is bounded, the
latter is not).
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Figure 1: Mean squared reconstruction error for different sample sizes and the optimal mean
squared reconstruction error

The results of the simulation are plotted in Figure 1. It confirms the theoretical findings
of this paper that the error of the ridge reconstruction method converges to the optimal error
as the sample size grows. This empirical study further illustrates the remarkable theoretical
fact that a sequence of Hilbert–Schmidt operators asymptotically achieves the performance
of the optimal operator that may not be Hilbert–Schmidt or even bounded.
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