
HAL Id: hal-02412580
https://hal.science/hal-02412580v2

Submitted on 9 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Note on time-regularity for weak solutions to parabolic
systems of p-Laplace type

Simon Bortz, Moritz Egert, Olli Saari

To cite this version:
Simon Bortz, Moritz Egert, Olli Saari. Note on time-regularity for weak solutions to parabolic systems
of p-Laplace type. Proceedings of the American Mathematical Society, 2021, 149 (4), pp.1677-1685.
�10.1090/proc/15344�. �hal-02412580v2�

https://hal.science/hal-02412580v2
https://hal.archives-ouvertes.fr


NOTE ON TIME-REGULARITY FOR WEAK SOLUTIONS TO

PARABOLIC SYSTEMS OF p-LAPLACE TYPE

SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

Abstract. We show that local weak solutions to parabolic systems of p-Laplace

type are Hölder continuous in time with values in a spatial Lebesgue space and

Hölder continuous on almost every time line. We provide an elementary and

self-contained proof building on the local higher integrability result of Kinnunen

and Lewis.

1. Introduction

Let d ě 2 and 2d{pd ` 2q ă p ă 8 and N ě 1. Consider the following parabolic

system of p-Laplace type:

(1)
Bui

Bt
“ div Aipt, x,∇uq ` Bipt, x,∇uq, i “ 1, . . . ,N, in I ˆ Q,

where I Ă R is an interval, Q Ă Rd a cube, and Ai and Bi satisfy certain structural

conditions. These are the same as in [5] and do not require any smoothness of Ai

and Bi, see Section 2.1. In a celebrated paper, Kinnunen and Lewis have obtained

the higher integrability of the gradient of weak solutions.

Theorem 1 (Theorem 2.8 in [5]). There exists δ ą 0 depending on p, d and the

structural constants c1, c2 and c3 such that if u P L2pI ˆ Qq X LppI; W1,ppQqq is a

weak solution to (1), I1 Ť I and Q1 Ť Q, then

u P Lp`δpI1; W1,p`δpQ1qq.

The norm of u in Lp`δpI1; W1,p`δpQ1qq depends on the same constants, on N, I, I1,

Q, Q1, the structural constant c4 and the norms }u}L2pIˆQq and }u}LppI;W1,ppQqq.

The case p “ 2 is due to earlier work of Giaquinta and Struwe [4]. The signif-

icance of these results is highlighted by the otherwise lacking regularity for solu-

tions to parabolic systems, which can be essentially discontinuous.

In this short note we prove the following in-time Hölder continuity as an adden-

dum to the Kinnunen–Lewis result.

Theorem 2. Let α :“ 1
2
p 1

p
´ 1

p`δq and q :“ 2
1´2α

, where δ ą 0 is from Theorem 1.

If u P L2pI ˆ Qq X LppI; W1,ppQqq is a weak solution to (1), I1 Ť I and Q1 Ť Q,

then there is a representative

u P CαpI1; LqpQ1qq.
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The norm of u in CαpI1; LqpQ1qq has the same dependencies as in Theorem 1. More-

over, for a.e. x P Q1 the restriction u|I1ˆtxu is α-Hölder continuous.

Experts in interpolation theory of vector-valued Triebel–Lizorkin type spaces

(see [3]) will realize that Theorem 2 can be obtained from midway complex inter-

polation of the smoothness properties

u P Lp`δpI1; W1,p`δpQ1qq & u P W1,p1
pI1; W´1,p1

pQ1qq,

where the second one follows from the equation (1). Since 2{q “ 1{pp`δq`1{p1,

we find u P H1{2,qpI1; LqpQ1qq. As time is a one-dimensional variable, this breaks

the threshold 1 ´ q{2 ă 0 in embeddings of such vector-valued Bessel potential

spaces and leads to Hölder continuity. Still, we believe that an elementary and

self-contained proof to deduce Theorem 2 from Theorem 1 will be of interest for a

broader audience and the purpose of our note is to provide such an argument.

The abstract strategy sketched above is our guide in doing so. First, we smooth

and localize the weak solution u and use the equation to write the t-derivative of

the approximant as a global negative order Bessel potential (Lemma 3). Second,

we use the scalar-valued Mihlin Fourier multiplier theorem and Hadamard’s three

lines theorem from complex analysis to bound a fractional order potential (Propo-

sition 6). Third, a Fourier analytic characterization of Hölder continuity can be

used to obtain the desired regularity of the approximant and further that of the

local solution itself (Section 5).

We close this introduction with a brief comparison to our previous work with

P. Auscher in [2], where we obtained regularity as in Theorem 2 for linear operators

and p “ 2 by a more involved approach. See also [9] for a generalization to higher

order systems. The flexibility in the definition of the structure functions A and B,

allows us to use Theorem 2 for inhomogenous linear systems of the form

Bui

Bt
´ div Aipt, x,∇uq ´ Bipt, x,∇uq “ div Fi ` fi, i “ 1, . . . ,N, in I ˆ Q,

where F, f P L2`η for some η ą 0. The condition on f is more restrictive than

in [2]. This is needed here – as in the classical Lions theory [6] – because we use

u P W1,p1
pI1; W´1,p1

pQ1qq as a priori information.

Acknowledgement. This research was supported by the CNRS through a PEPS

JCJC project and by DFG through DFG SFB 1060 and DFG EXC 2047.

2. Preliminaries

2.1. Structural assumptions. We summarize the assumptions of [5]. The matrix-

valued function A : I ˆ Q ˆ pRdqN Ñ RdˆN has columns given by

Ai “ Aipt, x,Vq, i “ 1, . . . ,N

and the vector-valued function B : I ˆ Q ˆ pRdqN Ñ RN has scalar entries

Bi “ Bipt, x,Vq, i “ 1, . . . ,N.

Both are (Lebesgue) pd `1q-measurable functions on I ˆ Q, whenever V “ Vpt, xq
is pd ` 1q-measurable on I ˆ Q. For example, A and B could be of Carathéodory
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type. We also assume there are positive constants c j, j “ 1, 2, 3, such that for

almost every pt, xq P I ˆ Q and every V P pRdqN ,

|Aipt, x,Vq| ď c1|V|p´1 ` h1pt, xq,

|Bipt, x,Vq| ď c2|V|p´1 ` h2pt, xq,

for i “ 1, . . .N and

N
ÿ

i“1

xAipt, x,Vq,Viy ě c3|V|p ´ h3pt, xq.

Here x¨, ¨y is the standard inner product on Rd and h j, j “ 1, 2, 3, are measurable

functions on I ˆ Q satisfying

}p|h1| ` |h2|qp{pp´1q ` |h3|}Lq̂pIˆQq “ c4 ă 8,

for some q̂ ą 1.

2.2. Weak solutions. The space LppI; W1,ppQqq consists of all functions f P LppIˆ
Qq so that for almost every t P I the function f pt, ¨q is in the usual Sobolev space

W1,ppQq and

} f }LppI;W1,ppQqq :“ } f }LppIˆQq ` }|∇ f |}LppIˆQq ă 8.

We use the same notation for RN valued functions with the obvious interpretation.

We then say that u is a weak solution to (1) if u P L2pI ˆ Qq X LppI; W1,ppQqq and

if
ż

I

ż

Q

N
ÿ

i“1

ˆ

´ui

Bφi

Bt
` xAipt, x,∇uq,∇φiy ´ Bipt, x,∇uqφi

˙

dx dt “ 0

holds for all φ “ pφ1, . . . , φNq P C8
c pI ˆ Qq.

2.3. Potential spaces. We define the Fourier transform on the Schwartz space

SpRd`1;Cq as usual by

F f pτ, ξq “

ĳ

e´iτt´ixξ,xy f pt, xq dx dt

and extend it to the tempered distributions by duality. The partial Fourier trans-

forms with respect to only space or time variables are denoted by the subscripts x

and t. We define the Bessel potentials of order s P C through

Js f “ F ´1pp1 ` | ¨ |2q´s{2
F f q.

Again, a subscript x or t tells with respect to which variable the potential is taken.

If s ą 0 and f P LppRdq for some p P p1,8q, then Js
x f is given as a convolution

with an integrable function

Js
x f “ Gs

x ˚x f , Gs
xpxq “

1

p4πq
s
2Γp s

2
q

ż 8

0

δ
s´d

2 e
´π|x|2

δ
´ δ

4π
dδ

δ
.(2)

See Section V.3.1 in [8] for this classical formula. The Bessel potential space

H1,ppRdq “ tJ1
x f : f P LppRdqu with norm g ÞÑ }J´1

x g}LppRdq coincides with

W1,ppRdq up to equivalence of norms. See Section V.3.3 in [8].
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2.4. Mollification. The definition of weak solutions does not imply any a priori

regularity in time direction. This causes technical problems, which in the context of

this paper can be overcome through a mollification argument. Let ϕ P C8
c pRd`1q

be an even function with integral one that we fix from this point on. For ǫ ą 0 we

denote the mollification of a function g with ϕ by

gǫpt, xq :“

ĳ

1

ǫn`1
ϕ

ˆ

t ´ s

ǫ
,

x ´ y

ǫ

˙

gps, yq dy ds.

3. A priori potential estimate

We rephrase integrability and differentiability of localized weak solutions to (1)

using Bessel potentials. The first inequality below is a reference to Theorem 1

whereas the second one expresses the regularity of the time derivative of the lo-

calized solution that follows from the equation. We call a constant admissible if

it depends on p, d, N, I, Q, c1, . . . , c4, }u}L2pIˆQq, }u}LppI;W1,ppQqq and the chosen

cut-off function χ P C8
c pI ˆ Q;Rq.

Lemma 3. Let χ P C8
c pI ˆ Qq. Let u be a weak solution to (1) in I ˆ Q and define

v :“ χu. Then there is an admissible constant C such that for any ǫ ą 0,

}J´1
x pvǫq}Lp`δpRd`1q ď C,

}J´1
t J1

xpvǫq}
Lp1 pRd`1q ď C.

Proof. We use the symbol À for inequalities that hold up to a multiplicative admis-

sible constant. We obtain from Young’s inequality, the choice of χ and Theorem 1

that

}vǫ}Lp`δpR;W1,p`δpRdqq À }u}Lp`δpI;W1,p`δpQqq ď C.

By coincidence of Sobolev and potential spaces, the left-hand side is comparable

to }J´1
x pvǫq}Lp`δpRd`1q. Hence, we have the first estimate.

To prepare the second estimate, we fix φ P SpRd`1;RNq normalized such that

}φ}LppR;W1,ppRdqq “ 1. By Hölder’s inequality we have that

ˇ

ˇ

ˇ

ˇ

ĳ

xvǫ , φy dx dt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ĳ

xv, φǫy dx dt

ˇ

ˇ

ˇ

ˇ

À }u}L8pI;L2pQqq}φǫ}LppI;L2pQqq.

The Caccioppoli inequality (Lemma 3.2 in [5] with a “ 0) yields

}u}L8pI;L2pQqq À }u}L2pIˆQq ` }u}LppI;W1,ppQqq.

Since p ě 2d
d`2

, we have the Sobolev embedding W1,ppQq Ď L2pQq. Thus,

}φǫ}LppI;L2pQqq À }φǫ}LppI;W1,ppQqq ď }φ}LppR;W1,ppRdqq “ 1.

Altogether, we have found that
ˇ

ˇ

ˇ

ˇ

ĳ

xvǫ , φy dx dt

ˇ

ˇ

ˇ

ˇ

À }u}L2pIˆQq ` }u}LppI;W1,ppQqq.(3)
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Next, we get from the equation for u, using the summation convention for i “
1, . . . ,N and omitting the variable of integration dx dt for the sake of readability,

´

ĳ

xBtpvǫq, φy “

ĳ
ˆ

xu, Btpχφǫqy ´ xu, pBtχqφǫy

˙

“

ĳ
ˆ

xAipt, x,∇uq,∇pχφǫqiy ´ Bipt, x,∇uqpχφǫ qi ´ xu, pBtχqφǫy

˙

“

ĳ

xpχAipt, x,∇uqqǫ ,∇φiy `

ĳ

xAipt, x,∇uq, p∇χqpφǫ qiy

´

ĳ

Bipt, x,∇uqpχφǫqi ´

ĳ

xu, pBtχqφǫy

“: I ` II ´ III ´ IV.

Using Hölder’s inequality and the upper bound for A, we have

|I| À pc4 ` c1}∇u}
p´1

LppIˆQqq}∇φ}LppIˆQq ď c4 ` c1}∇u}
p´1

LppIˆQq.

Similarly, replacing ∇φ by φ, we get

|II| ` |III| À c4 ` pc1 ` c2q}∇u}
p´1

LppIˆQq.

For IV, we can argue as in (3) with φǫ replaced by pBtχqφǫ , in order to give

|IV| À }u}L2pIˆQq ` }u}LppI;W1,ppQqq.

Summarizing these estimates, we get
ˇ

ˇ

ˇ

ˇ

ĳ

xvǫ , φy dx dt

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ĳ

xBtpvǫq, φy dx dt

ˇ

ˇ

ˇ

ˇ

ď C

This is true for any φ P SpRd`1q normalized in LppR; W1,ppRdqq. In view of

the equivalence of Sobolev and potential spaces on Rd, this is the same as taking

φ “ J1
xψ, where ψ P SpRd`1q is normalized in LppRd`1q. Hence, we get

ˇ

ˇ

ˇ

ˇ

ĳ

xJ1
xvǫ , ψy dx dt

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ĳ

xBtpJ1
xvǫq, ψy dx dt

ˇ

ˇ

ˇ

ˇ

ď C

Since SpRd`1q is dense in Lp1
pRd`1q, we obtain

}J1
xvǫ}LppRd`1q ` }BtpJ1

xvǫq}LppRd`1q ď C

Now, we invoke the equivalence of Sobolev and potential spaces in t and apply

Fubini’s theorem to conclude the bound for }J´1
t J1

xpvǫq}LppRd`1q. �

4. Interpolation estimate of a mixed potentials

We begin by recalling (a simple version of) the Mihlin multiplier theorem.

Proposition 4 (Theorem 8.2 in [7]). Let n ě 1, let m : Rn Ñ C satisfy, for all

multi-index of order |α| ď n ` 2 and all ξ ‰ 0,

|Bαξ mpξq| ď M|ξ|´|α|.

Then, for any q P p1,8q there is a constant C “ Cpn, qq, such that for all φ P
SpRnq and for F the Fourier transform on SpRnq,

}F ´1pmF φq}LqpRnq ď CM}φ}LqpRnq.
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The multiplier theorem entails quantitative bounds for Bessel potentials.

Lemma 5. Let a P r0,8q and b P R. For all q P p1,8q there is a constant

C “ Cpd, qq such that for all φ P SpRdq,

}J2a`2ib
x φ}LqpRdq ď Cp1 ` a ` |b|qd`2}φ}LqpRdq.

The same holds for J2a`2ib
t upon replacing d by 1.

Proof. We put hpσq “ p1 ` σq´a´ib. According to the Mihlin multiplier theorem,

we have

}J2a`2ib
x φ}LqpRdq ď CM}φ}LqpRdq,

where

M “ max
|α|ďd`2

sup
ξ‰0

|ξ||α||Bαξ php|ξ|2qq|.

Let α be any multi-index. By induction on the length of α, we find numerical

constants cβpαq, one for each multi-index β with 2βi ď αi, i “ 1, . . . , d, such that

Bαξ php|ξ|2qq “
ÿ

β

cβpαqhp|α|´|β|qp|ξ|2qξα´2β.

Since the higher order derivatives of h satisfy

|hpkqpσq| ď cpkqp1 ` a ` |b|qkp1 ` σq´a´k,

we can take M “ Cpdqp1 ` a ` |b|qd`2. The one dimensional case is clearly

included in the computation. �

We deduce the following interpolation inequality. In the proof we shall use the

notion of holomorphic functions f : Ω Ă C Ñ L2pRd`1;CNq. Holomorphy is

defined via convergence of difference quotients. If f is locally bounded, then it

is equivalent to holomorphy of z ÞÑ
ť

f pzqφ dx dt for all φ P SpRd`1;CNq. The

reader can refer to Appendix A of [1] for further background.

Proposition 6. Let f P SpRd`1;CNq, let θ P p0, 1q and let q0, qθ, q1 P p1,8q be

such that 1{qθ “ p1 ´ θq{q0 ` θ{q1. Then there is a constant C “ Cpd,N, q0, q1q
such that

}J2θ´1
x J´θ

t f }LqθpRd`1q ď C}J´1
x f }1´θ

Lq0 pRd`1q
}J1

x J´1
t f }θ

Lq1 pRd`1q.

Proof. By duality, we have

}J2θ´1
x J´θ

t f }LqθpRd`1q “ sup
φ

ˇ

ˇ

ˇ

ˇ

ĳ

xpJ2θ´1
x J´θ

t f qpx, tq, φpx, tqy dx dt

ˇ

ˇ

ˇ

ˇ

,(4)

where the supremum is taken over all φ P SpRd`1;CNq normalized in Lq1
θpRd`1q.

The idea of proof, coming from the Riesz–Thorin theorem, is to use a holomorphic

parametrization of the duality pairing for fixed φ via functions defined on the strip

S :“ ta ` ib : a P p0, 1q, b P Ru. More precisely, we define whenever z P S ,

Fpzq :“ epz´θq2

J2z´1
x J´z

t f , Gpzq :“ |φ|

p1´zqq1
θ

q1
0

`
zq1
θ

q1
1
φ

|φ|
,

where the expression for Gpzq is interpreted as 0 on the set where φ vanishes.
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We derive properties of F. For z “ a ` ib we have

Fpzq “
´

epa´θq2´b2

ei2bpa´θq
¯

J2a`2ib
x J

p1´aq´ib
t pJ´1

x J´1
t f q.(5)

Since J´1
x J´1

t f is a Schwartz function, Lemma 5 applied componentwise in com-

bination with Fubini’s theorem yields that F is qualitatively bounded on S with

values in L2pRd`1;CNq. (The polynomial growth in b is compensated by the ex-

ponential function.) Again using Lemma 5, we have the following quantitative

bounds on BS :

}Fpibq}Lq0 pRd`1q ď Cpd,N, q0q}J´1
x f }Lq0 pRd`1q,

}Fp1 ` ibq}Lq1 pRd`1q ď Cpd,N, q1q}J´1
t J1

x f }Lq1 pRd`1q.
(6)

Next, it follows from F f P SpRd`1;CNq and dominated convergence, that we have

a continuous function

F F : S Ñ L2pRd`1;CNq, z ÞÑ epz´θq2

p1 ` |ξ|2q
1´2z

2 p1 ` |τ|2q
z
2F f pτ, ξq.

Since the Fourier transform is isometric on L2pRd`1;CNq, the same follows for

F. Finally, F is holomorphic in S . Indeed, for any ψ P SpRd`1;CNq we can use

Parseval’s formula to give
ĳ

xFpzq, ψy dx dt “

ĳ

@

epz´θq2

p1 ` |ξ|2q
1´2z

2 p1 ` |τ|2q
z
2F f ,Fψ

D

dξ dτ

and the integral in z along any triangle △ Ť S vanishes by Fubini’s theorem and

holomorphy of the integrand for fixed pτ, ξq.

The function G : S Ñ L2pRd`1;CNq enjoys the same kind of properties. Here,

boundedness follows directly from φ P SpRd`1;CNq, continuity and holomorphy

are obtained as before, and on BS we get from Hölder’s inequality and the normal-

ization of φ that

}Gpibq}
L

q1
0 pRd`1q

ď 1, }Gp1 ` ibq}
L

q1
1 pRd`1q

ď 1.(7)

Now, define a scalar-valued function on S by

Hpzq :“

ĳ

xFpzq,Gpzqy dx dt.

The L2pRd`1;CNq-valued properties for F and G above imply that H is bounded

and continuous on S and holomorphic in S . (The inner product preserves continu-

ity and holomorphy by nearly the same proof as for products of scalar functions.)

On the boundary, we conclude from (6), (7) and Hölder’s inequality that

|Hpibq| ď Cpd,N, q0q}J´1
x f }Lq0 pRd`1q “: M0,

|Hp1 ` ibq| ď Cpd,N, q1q}J´1
t J1

x f }Lq1 pRd`1q “: M1.

Hadamard’s three lines theorem yields |Hpθq| ď M1´θ
0 Mθ

1. This means that
ˇ

ˇ

ˇ

ˇ

ĳ

xJ2θ´1
x J´θ

t f , φ y dx dt

ˇ

ˇ

ˇ

ˇ

ď C}J´1
x f }1´θ

Lq0 pRd`1q
}J´1

t J1
x f }θ

Lq1 pRd`1q

and the claim follows since φ was arbitrary and normalized in Lq1
θpRd`1q. �
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5. Proof of Theorem 2

Let u be a weak solution to (1) in I ˆ Q. We define nested intervals and cubes I2 Ť
I1 Ť I and Q2 Ť Q1 Ť Q and pick a smooth function 1I2ˆQ2 ď χ ď 1I1ˆQ1 . Define

a localized version v “ χu as in Lemma 3. Since the nested sets are arbitrary, it

suffices to obtain the continuity statements on I2 ˆ Q2.

Step 1: Hölder continuity with values in spatial Lq. Lemma 3 justifies applying

Proposition 6 to f “ vǫ with q0 “ p ` δ and q1 “ p1. Thus, setting θ “ 1
2

in

Proposition 6, we have

}J
´1{2
t vǫ}LqpRd`1q ď C,(8)

for some admissible C. The exponent q ą 2 is given by

1

q
“

1

2
`

1

2

ˆ

1

p ` δ
´

1

p

˙

.(9)

We have pJ
´1{2
t vǫqp¨ , xq “ J

´1{2
t pvǫp¨ , xqq P LqpRq for every x P Rd since vǫ is a

Schwartz function, but (8) gives a quantitative bound.

Fix x P Rd. As q1 ă 2, we obtain from Minkowski’s inequality that G
1{2
t P

Lq1
pRq. This Bessel kernel was defined in (2). Hence, we have by Young’s convo-

lution inequality that

}vǫp¨ , xq}L8pRq ď }G
1{2
t }Lq1 pRq}J

´1{2
t vǫp¨ , xq}LqpRq.(10)

Now, we appeal to a Fourier analytic characterization of Hölder continuity. This

uses a smooth function ψ with support in the set t1
2

ď t ď 4u with the property

that
ř

jPZ ψ jptq “ 1 for all t ‰ 0, where ψ jptq “ ψp2´ jtq. For one construction see

Lemma 8.1 in [7].

Lemma 7 (Lemma 8.6 in [7]). Let f P SpRq and let 0 ă α ă 1. There is a

constant C “ Cpαq such that for all t ‰ s,

| f ptq ´ f psq|

|t ´ s|α
ď C sup

jPZ
2 jα}F´1

t pψ jFt f q}L8pRq.

We put f :“ vǫp¨ , xq. Since F´1
t pψ jFt f q has a Fourier transform with support

in p´2 j`2, 2 j`2q, Bernstein’s inequality (Lemma 4.13 in [7]) yields

}F´1
t pψ jFt f q}L8pRq ď c2 j{q}F ´1

t pψ jFt f q}LqpRq

ď c2 j{qCpp, ψq2mint´ j{2,1u}J
´1{2
t vǫp¨ , xq}LqpRq,

where c is a numerical constant and the second step is due to the Mihlin multiplier

theorem applied to mpτq “ ψ jpτqp1 ` |τ|2q´1{4. The computation of the Mihlin

norm is done verbatim as in the proof of Lemma 5, taking into account that on the

support of ψ j we have 2 j´1 ď |τ| ď 2 j`2 in order to obtain the decay in j.

The assumptions of Theorem 4 are hence satisfied. Consequently, we can take

α “ 1
2

´ 1
q

“ 1
2
p 1

p
´ 1

p`δq in Lemma 7. In view of (10) we find for all t ‰ s and

all x P Rd that

|vǫpt, xq| `
|vǫpt, xq ´ vǫps, xq|

|t ´ s|α
ď C}J

´1{2
t vǫp¨ , xq}LqpRq.(11)
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We fix a representative for v, a subsequence of ǫ and a set E of pd ` 1q-measure

zero such that vǫpt, xq Ñ vpt, xq as ǫ Ñ 0, whenever pt, xq P Rd`1zE. Then we

integrate the q-th power in x, use (8) and pass to the limit via Fatou’s lemma, to get

sup
tPR

ˆ
ż

Rd

|vpt, xq|q
˙1{q

` sup
t,sPR
t‰s

ˆ
ż

Rd

|vpt, xq ´ vps, xq|q

|t ´ s|αq

˙1{q

ď C.

Since v “ u on I2 ˆ Q2, we obtain u P CαpI2; LqpQ2qq as required.

Step 2: Hölder continuity on almost all segments in time. Since the Fourier trans-

form turns convolutions into products, we obtain for all ϕ P SpRd`1q that

xJ
´1{2
t vǫ , ϕy “ xJ

´1{2
t v, ϕǫy,(12)

where we use the duality pairing on S1pRd`1q. In the limit as ǫ Ñ 0, we have

ϕǫ Ñ ϕ in SpRd`1q and therefore J
´1{2
t vǫ Ñ J

´1{2
t v in S1pRd`1q. On the other

hand, this sequence is bounded in LqpRd`1q by (8) and hence admits a weakly

convergent subsequence. Identifying the limits, we get J
´1{2
t v P LqpRd`1q. Now,

we can use (12) to write J
´1{2
t vǫ “ pJ

´1{2
t vqǫ and obtain strong convergence in

LqpRd`1q. This implies that }J
´1{2
t vǫ}LqpRq Ñ }J

´1{2
t v}LqpRq in LqpRdq. Hence, we

can pass to a subsequence such that for almost every x P Rd,

}J
´1{2
t vǫp¨ , xq}LqpRq Ñ }J

´1{2
t vp¨ , xq}LqpRq.

Fix x with this property and such that Ex :“ tt : pt, xq P Eu has 1-measure zero,

where E is as in Step 1. Passing to the limit in (11), we obtain that vp¨ , xq satisfies

the α-Hölder condition on Ex. Hence, we can re-define vp¨ , xq so that it is α-Hölder

continuous. Since all modifications take place in E, we obtain a representative for

v that is α-Hölder continuous on Rˆ txu for a.e. x P Rd. We conclude again since

v “ u on I2 ˆ Q2. �

References

[1] W. Arendt, C. Batty, M. Hieber and F. Neubrander. Vector-valued Laplace transforms and

Cauchy problems. Second edition. Monographs in Mathematics, vol. 96. Birkhäuser/Springer,
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