M. G. Jackson and A. M. Jellinek, Major and trace element composition of the high 3He/4He 689 mantle: Implications for the composition of a nonchonditic Earth, Geochem. Geophys, 2013.

, Geosystems, vol.14, pp.2954-2976

S. B. Jacobsen and G. J. Wasserburg, A two-reservoir recycling model for mantle-crust evolution, 1980.

, Proc. Natl. Acad. Sci, vol.77

M. Javoy, The integral enstatite chondrite model of the Earth, Geophys. Res. Lett, vol.22, pp.2219-694, 1995.

R. E. Jones, P. E. Van-keken, E. H. Hauri, J. M. Tucker, J. Vervoort et al., Origins of 696 the terrestrial Hf-Nd mantle array: Evidence from a combined geodynamical-geochemical 697 approach, Earth Planet. Sci. Lett, vol.518, pp.26-39, 2019.

S. Labanieh, C. Chauvel, A. Germa, X. Quidelleur, and E. Lewin, Isotopic hyperbolas constrain 699 sources and processes under the Lesser Antilles arc, Earth Planet. Sci. Lett, vol.298, pp.35-46, 2010.


T. Lyubetskaya and J. Korenaga, Chemical composition of Earth's primitive mantle and its 702 variance: 1. Method and results, J. Geophys. Res. Solid Earth, vol.112, 2007.


A. Makishima and A. Masuda, Ce isotope ratios of N-type MORB, Chem. Geol, vol.118, pp.1-8, 1994.


W. F. Mcdonough and S. Sun, The composition of the Earth, Chem. Geol, vol.120, pp.223-253, 1995.

, , pp.140-144

J. O'neil and R. W. Carlson, Building Archean cratons from Hadean mafic crust, Science, vol.355, p.1199, 2017.

J. O'neil, R. W. Carlson, D. Francis, and R. K. Stevenson, , 2008.

, Mafic Crust. Science, vol.321, pp.1828-1831

J. O'neil, R. W. Carlson, D. Papineau, E. Y. Levine, and D. Francis, , p.713, 2019.

N. Belt-;-van-kranendonk and M. J. , A Glimpse of Earth's Earliest Crust, p.714

V. C. Bennett and . Hoffmann, Earth's Oldest Rocks, pp.349-715

J. O'neil, R. W. Carlson, J. Paquette, and D. Francis, Formation age and metamorphic history 717 of the Nuvvuagittuq Greenstone Belt, Precambrian Res, pp.23-44, 2012.


J. O'neil, D. Francis, and R. W. Carlson, Implications of the Nuvvuagittuq Greenstone Belt for the 720 Formation of Earth's Early Crust, J. Petrol, vol.52, pp.985-1009, 2011.


H. O'neill, . C. St, and H. Palme, Collisional erosion and the non-chondritic composition of the 723 terrestrial planets, Philos. Trans. R. Soc. Math. Phys. Eng. Sci, vol.366, pp.4205-4238, 2008.


H. Palme and H. O'neill, Cosmochemical Estimates of Mantle Composition, 2014.


T. Plank, The chemical composition of subducting sediments. Treatise Geochem, vol.4, pp.607-629, 2014.


A. Pourmand, N. Dauphas, and T. J. Ireland, A novel extraction chromatography and MC-ICP-MS 730 technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and, 2012.

, Australian Shale (PAAS) abundances, Chem. Geol, vol.291, pp.38-54

S. Fig and . Barrat, Rare earth element patterns of OIBs, MORBs, and chondrites. Concentrations are normalised to CI chondrite values, 2012.

. Bellot, The most rigorous method for comparison is the use of CHUR values measured under the same analytical conditions (i.e., mass spectrometer, cup configuration, analytical protocol, etc.), Ce/ 142 Ce ratios and data normalisation: example with MORB We prefer to use the epsilon notation when comparing data from the literature, 2015.

. Fig and . S5, Ce isotopic compositions of MORB samples from the literature normalised either to BCR-2 or to CeAMES and compared to data from this study

, Ce/ 142 CeAMES normalised Willig and Stracke, 2019.

. Bellot, , 2015.

C. J. Allègre and É. Lewin, Chemical structure and history of the Earth: evidence from global nonlinear inversion of isotopic data in a three-box model, Earth Planet. Sci. Lett, vol.96, pp.90124-90130, 1989.

J. Barrat, B. Zanda, F. Moynier, C. Bollinger, C. Liorzou et al., Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes, Geochim. Cosmochim. Acta, vol.83, pp.79-92, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00670053

N. Bellot, M. Boyet, R. Doucelance, P. Bonnand, I. P. Savov et al., Origin of negative cerium anomalies in subduction-related volcanic samples: Constraints from Ce and Nd isotopes, Chem. Geol, vol.500, pp.46-63, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02110867

N. Bellot, M. Boyet, R. Doucelance, C. Pin, C. Chauvel et al., Ce isotope systematics of island arc lavas from the Lesser Antilles, Geochim. Cosmochim. Acta, vol.168, pp.261-279, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01635988

C. Chauvel, E. Lewin, M. Carpentier, N. T. Arndt, and J. Marini, Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array, Nat. Geosci, vol.1, pp.64-67, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00353702

A. P. Dickin, N. W. Jones, M. F. Thirlwall, and R. N. Thompson, A Ce/Nd isotope study of crustal contamination processes affecting Palaeocene magmas in Skye, Contrib. Mineral. Petrol, vol.96, pp.455-464, 1987.

Y. Gao, W. Ling, X. Qiu, Z. Chen, S. Lu et al., Decoupled Ce-Nd isotopic systematics of the Neoproterozoic Huangling intrusive complex and its geological significance, eastern Three Gorges, South China, J. Earth Sci, vol.27, pp.864-873, 2016.

T. Hayashi, M. Tanimizu, and T. Tanaka, Origin of negative Ce anomalies in Barberton sedimentary rocks, deduced from La-Ce and Sm-Nd isotope systematics, Precambrian Res, vol.135, pp.345-357, 2004.

S. Lee, Y. Asahara, T. Tanaka, N. H. Kim, K. H. Kim et al., La-Ce and Sm-Nd isotopic systematics of early Proterozoic leucogranite with tetrad REE pattern, Chem. Geol, vol.276, pp.360-373, 2010.

S. Lee, A. Masuda, H. Shimizu, and Y. Song, Crustal evolution history of Korean Peninsula in East Asia: The significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneisses, Geochem. J, vol.35, pp.175-187, 2001.

C. Liu, H. Shimizu, S. Nakai, G. Xie, and A. Masuda, Isotopic and trace element studies for Cenozoic volcanic rocks from western China: implication for a crust-like enriched component in the mantle, Geochem. J, vol.24, pp.327-342, 1990.

A. Masuda, H. Shimizu, S. Nakai, A. Makishima, and S. Lahti, 138La ?-decay constant estimated from geochronological studies, Earth Planet. Sci. Lett, vol.89, pp.316-322, 1988.

M. Minami, H. Shimizu, A. Masuda, and M. Adachi, Two Archean Sm-Nd ages of 3.2 and 2.5 Ga for the Marble Bar Chert, Warrawoona Group, Geochem. J, vol.29, pp.347-362, 1995.

R. L. Rudnick and S. Gao, Composition of the continental crust, Treatise on Geochemistry, pp.1-64, 2003.

H. Shimizu, S. Lee, A. Masuda, and M. Adachi, Geochemistry of Nd and Ce isotopes and REE abundances in Precambrian orthogneiss clasts from the Kamiaso conglomerate, central Japan, Geochem. J, vol.30, pp.57-69, 1996.

H. Shimizu, S. Nakai, S. Tasaki, A. Masuda, D. Bridgwater et al., Geochemistry of Ce and Nd isotopes and REE abundances in the Amitsoq gneisses, West Greenland. Earth Planet. Sci. Lett, vol.91, pp.159-169, 1988.

H. Shimizu, N. Umemoto, A. Masuda, P. W. Appel, S. Sun et al., Sources of iron-formations in the archean isua and malene supracrustals, West Greenland: Evidence from La-Ce and sm-nd isotopic data and REE abundances, Geol. Soc. Lond. Spec. Publ, vol.54, pp.313-345, 1989.

T. Tanaka, H. Shimizu, Y. Kawata, and A. Masuda, Combined La-Ce and Sm-Nd isotope systematics in petrogenetic studies, Nature, vol.327, pp.113-117, 1987.

H. Tazoe, H. Obata, and T. Gamo, Determination of cerium isotope ratios in geochemical samples using oxidative extraction technique with chelating resin, J. Anal. At. Spectrom, vol.22, p.616, 2007.

M. Willig and A. Stracke, Earth's chondritic light rare earth element composition: Evidence from the Ce-Nd isotope systematics of chondrites and oceanic basalts, Earth Planet. Sci. Lett, vol.509, pp.55-65, 2019.