W. Rüdorff, Uber die Lösung von Brom im Kristallgitter des Graphits, Bromgraphit, Z. Anorg. Allg. Chem, vol.245, pp.383-390, 1940.

A. Yaya, C. P. Ewels, I. Suarez-martinez, P. Wagner, S. Lefrant et al., Bromination of graphene and graphite, Phys. Rev. B, vol.83, p.45411, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00849388

A. E. Mansour, S. Dey, A. Amassian, and M. H. Tanielian, Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses, ACS Appl. Mater. Interfaces, vol.7, pp.17692-17699, 2015.

P. Barpanda, G. Fanchinii, and G. G. Amatucci, Structure, surface morphology and electrochemical properties of brominated activated carbons, Carbon, vol.49, pp.2538-2548, 2011.

V. O. Koroteev, W. Münchgesang, Y. V. Shubin, Y. N. Palyanov, P. E. Plyusnin et al., Multiscale characterization of 13 C-enriched fine-grained graphitic materials for chemical and electrochemical applications, Carbon, vol.124, pp.161-169, 2017.

J. F. Friedrich, S. Wettmarshausen, S. Hanelt, R. March, R. Mix et al., Plasma-chemical bromination of graphitic materials and its use for subsequent functionalization and grafting of organic molecules, Carbon, vol.48, pp.3884-3894, 2010.

A. Lippitz, J. F. Friedrich, and W. E. Unger, Plasma bromination of HOPG surfaces: a NEXAFS and synchrotron XPS study, Surf. Sci, vol.611, pp.1-7, 2013.

J. Zheng, H. Liu, B. Wu, C. Di, Y. Guo et al., Production of graphite chloride and bromide using microwave sparks, Sci. Rep, vol.2, p.662, 2012.

H. Au, N. Rubio, and M. S. Shaffer, Brominated graphene as a versatile precursor for multifunctional grafting, Chem. Sci, vol.9, pp.209-217, 2018.

N. Park, Y. Miyamoto, K. Lee, W. I. Choi, J. Ihm et al., Band gap sensitivity of bromine adsorption at carbon nanotubes, Chem. Phys. Lett, vol.403, pp.135-139, 2005.

S. Jhi, S. G. Louie, and M. L. Cohen, Electronic properties of bromine-doped carbon nanotubes, Solid State Commun, vol.123, pp.495-499, 2002.

S. Zarska, D. Kulawik, J. Drabowicz, and W. Ciesielski, A review of procedures of purification and chemical modification of carbon nanotubes with bromine, Fuller. Nanotubes, Carbon Nanostruct, vol.25, pp.563-569, 2017.

Z. Chen, X. Du, M. Du, C. D. Rancken, H. Cheng et al., Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes, Nano Lett, vol.3, pp.1245-1249, 2003.

D. Hines, M. H. Rümmeli, D. Adebimpe, and D. L. Akins, High-yield photolytic generation of brominated single-walled carbon nanotubes and their application for gas sensing, Chem. Comm, vol.50, pp.11568-11571, 2014.

J. Li, L. Vaisman, G. Marom, and J. Kim, Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites, Carbon, vol.45, pp.744-750, 2007.

I. Mazov, D. Krasnikov, A. Stadnichenko, V. Kuznetsov, A. Romanenko et al., Direct vapor-phase bromination of multiwall carbon nanotubes, J. Nanotechnol, p.954084, 2012.

A. I. Romanenko, O. B. Anikeeva, A. V. Okotrub, L. G. Bulusheva, N. F. Yudanov et al., Transport and magnetic properties of multiwall carbon nanotubes before and after bromination, Phys. Solid State, vol.44, pp.659-662, 2002.

E. Papirer, R. Lacroix, J. Donnet, G. Nanse, and P. Fioux, XPS study of the halogenation of carbon black -Part 1. Bromination, Carbon, vol.32, pp.1341-1358, 1994.

J. Colomer, R. Marega, H. Traboulsi, M. Meneghetti, G. Van-tendeloo et al., Microwave-assisted bromination of double-walled carbon nanotubes, Chem. Mater, vol.21, pp.4747-4749, 2009.

L. G. Bulusheva, A. V. Okotrub, E. Flahaut, I. P. Asanov, P. N. Gevko et al., Bromination of double-walled carbon nanotubes, Chem. Mater, vol.24, pp.2708-2715, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02409386

P. C. Eklund, N. Kambe, G. Dresselhaus, and M. S. Dresselhaus, In-plane intercalate lattice modes in graphite-bromine using Raman spectroscopy, Phys. Rev. B, vol.18, pp.7069-7079, 1978.

A. Erbil, G. Dresselhaus, and M. S. Dresselhaus, Raman scattering as a probe of structural phase transitions in the intercalated graphite-bromine system, Phys. Rev. B, vol.25, pp.5451-5460, 1982.

A. G. Souza-filho, M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim et al., Resonance Raman scattering studies in Br 2 -adsorbed double-wall carbon nanotubes, Phys. Rev. B, vol.73, p.235413, 2006.

G. M. Nascimento, T. Hou, Y. A. Kim, H. Muramatsu, T. Hayashi et al., Double-wall carbon nanotubes doped with different Br 2 doping levels: a resonance Raman study, Nano Lett, vol.8, pp.4168-4172, 2008.

A. G. Souza-filho, V. Meunier, M. Terrones, B. G. Sumpter, E. B. Barros et al., Selective tuning of the electronic properties of coaxial nanocables through exohedral doping, Nano Lett, vol.7, pp.2383-2388, 2007.

Y. K. Chen, M. L. Green, J. L. Griffin, J. Hammer, R. M. Lago et al., Purification and opening of carbon nanotubes via bromination, Adv. Mater, vol.8, pp.1012-1015, 1996.

E. Flahaut, R. Basca, A. Peigney, and C. Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Comm, pp.1442-1443, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00926035

E. V. Lobiak, L. G. Bulusheva, E. O. Fedorovskaya, Y. V. Shubin, P. E. Plyusnin et al., One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon-carbon nanotube hybrids, Beilstein J. Nanotechnol, vol.8, pp.2669-2679, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01729379

Y. Zhao and D. G. Truhlar, Hybrid meta density theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions, J. Phys. Chem. A, vol.108, pp.6908-6918, 2004.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for 94 elements H-Pu, J. Chem. Phys, vol.132, p.154104, 2010.

A. Filipponi and P. Angelo, Accurate determination of molecular structures by x-ray absorption spectroscopy, J. Chem. Phys, vol.109, pp.5356-5362, 1998.

E. Widenkvist, D. W. Boukhvalov, S. Rubino, S. Akhtar, J. Lu et al., Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene, J. Phys. D Appl. Phys, vol.42, p.112003, 2009.

L. G. Bulusheva, V. A. Tur, E. O. Fedorovskaya, I. P. Asanov, D. Pontiroli et al., Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites, Carbon, vol.78, pp.137-146, 2014.

K. L. Lu, R. M. Lago, Y. K. Chen, M. L. Green, P. J. Harris et al., Mechanical damage of carbon nanotubes by ultrasound, Carbon, vol.34, pp.814-816, 1996.

M. Li, M. Boggs, T. P. Beebe, and C. P. Huang, Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound, Carbon, vol.46, pp.466-475, 2008.

D. Yang, J. Rochette, and E. Sacher, Functionalization of multiwalled carbon nanotubes by mild aqueous sonication, J. Phys. Chem. B, vol.109, pp.7788-7794, 2005.

R. Blume, D. Rosenthal, J. Tessonnier, H. Li, A. Knop-gericke et al., Characterizing graphitic carbon with X-ray photoelectron spectroscopy: a step--by-step approach, ChemCatChem, vol.7, pp.2871-2881, 2015.

U. Dettlaff-weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim et al., Effect of SOCl 2 treatment on electrical and mechanical properties of single-walled carbon nanotube network, J. Am. Chem. Soc, vol.127, pp.5125-5131, 2005.

O. V. Sedelnikova, Y. V. Fedoseeva, A. I. Romanenko, A. V. Gusel'nikov, O. Yu et al., Effect of boron and nitrogen additives on structure and transport properties of arc-produced carbon, Carbon, vol.143, pp.660-668, 2019.

D. A. Bulushev, L. G. Bulusheva, S. Beloshapkin, T. O'conner, A. V. Okotrub et al., Pd clusters supported on amorphous, low-porosity carbon spheres for hydrogen production from formic acid, ACS Appl. Mater. Interfaces, vol.7, pp.8719-8726, 2015.

J. Zhong, L. Song, Z. Wu, S. Xie, M. Abbas et al., X-ray absorption near-edge structure and photoelectron spectroscopy of single-walled carbon nanotubes modified by a HBr solution, Carbon, vol.44, pp.866-872, 2006.

Y. V. Fedoseeva, G. A. Pozdnyakov, A. V. Okotrub, M. A. Kanygin, Y. V. Nastaushev et al., Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow, Appl. Surf. Sci, vol.385, pp.464-471, 2016.

S. Kundu, Y. Wang, W. Xia, and M. Muhler, Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces, A quantitative high-resolution XPS and TPD/TPR study, J. Phys. Chem. C, vol.112, pp.16869-16878, 2008.

L. G. Bulusheva, A. V. Okotrub, I. P. Asanov, A. Fonseca, and J. B. Nagy, Comparative study on the electronic structure of arc-Discharge and catalytic carbon nanotubes, J. Phys. Chem. B, vol.105, pp.4853-4859, 2001.

A. Yaya, C. P. Ewels, J. K. Efavi, B. Agyei-tuffour, K. Kan-dapaah et al., A study of polybromide chain formation using carbon nanomaterials via density functional theory approach
URL : https://hal.archives-ouvertes.fr/hal-01723603

P. Puech, A. Ghandour, A. Sapelkin, C. Tinguely, E. Flahaut et al., Raman G band in double-wall carbon nanotubes combining p doping and high pressure, Phys. Rev. B, vol.78, p.45413, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00806029

G. M. Nascimento, T. Hou, Y. A. Kim, H. Muramatsu, T. Hayashi et al., Comparison of the resonance Raman behavior of double-walled carbon nanotubes doped with bromine or iodine vapors, J. Phys. Chem. C, vol.113, pp.3934-3938, 2009.

A. L. Aguiar, E. B. Barros, V. P. Filho, H. Terrones, V. Meunier et al., Pressure tuning of bromine ionic states in double-walled carbon nanotubes, J. Phys. Chem. C, vol.121, pp.10609-10619, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02289392

O. V. Sedelnikova, C. P. Ewels, D. V. Pinakov, G. N. Chekhova, E. Flahaut et al., Bromine polycondensation in pristine and fluorinated graphitic carbons, Nanoscale, vol.11, pp.15298-15306, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02301196