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When a half-empty bottle of water is pushed to roll on a flat surface, the oscillations of the
fluid inside the bottle induce an overall jerky motion. These velocity fluctuations of the bottle are
studied through simple laboratory experiments accessible to undergraduate students and can help
them grasp fundamental concepts in mechanics and hydrodynamics. We first demonstrate through
an astute experiment that the rotation of the fluid and the bottle are decoupled. The equations of
motion are then derived using a mechanical approach while the hydrodynamics of the fluid motion
is explained. Finally the theory is tested against two benchmark experiments.

I. INTRODUCTION

The phenomenon

When a half-empty bottle initially resting horizontally
on a flat table is pushed, the fluid it contains is set into
motion, which leads to an oscillatory rolling motion of the
bottle. Figure 1 shows an example of the trajectory of
a 1L glass bottle half-filled with water, manually pushed
at the time indicated by the dashed line. The space-time
diagram showing the position of the cap as a function
of time clearly illustrates the intermittent overall motion
of the bottle. In the particular case shown in Figure 1,
the bottle undergoes a stop-and-go motion with a typical
frequency of a few Hertz. The goal of the present paper
is to understand and model this oscillatory motion.

The phenomenon of surface gravity waves on water and
oscillations of fluid has been studied for a wide variety
of container shapes1,2 and the dependence of frequency
on curvature in a vertical cylinder is known3. However,
when the container is subjected to an external force and
free to move, the problem becomes more complex and the
free surface of the fluid adopts different shapes, depend-
ing on the excitation and the geometry of the container.
This issue is of great importance in a wide range of ap-
plications involving liquid transport, from the problems
encountered by space agencies in aerospace vehicles4,5,
to tank carriages on highway or rail roads6,7.

The motion of a soft-drink can on an incline was stud-
ied by Jackson et al.8. The authors used water (and
varied the filling fraction of the can) as well as granu-
lar matter (lead shots and glass marbles) and proposed a
model which describes the limiting cases of non-viscous
and infinitely viscous fluids. Later, Lin9 compared the
rolling dynamics of cans fully filled with liquid water and
solid ice, Ireson and Twidle10 showed that shaking a can
of soda noticeably affects its rolling speed and Micklavz-
ina11 investigated the influence of the fluid viscosity.

In this article the bottles are modeled by simpler
cylindrical tubes. The main goal of this article is to
study the oscillating speed of a half-empty bottle. The
ratio of filling is therefore fixed to one half and the fluid
used in all of our experiments is tap water.

What students can learn from this problem
The oscillatory motion of a bottle is a simple hands-on

experiment which can illustrate important concepts in
solid and fluid mechanics. The Euler-Lagrange equa-
tions12 are used to investigate the motion of a coupled
system, and the conservation of energy during an elastic
shock allows one to predict the bounce of a bottle on a
wall. Moreover, the phenomenon exposes hydrodynam-
ics concepts to explain a fluid motion: characteristic
times relevant to the phenomenon are identified, the
validity of a potential flow approach13 is discussed and
the eigenmodes of fluid motion in a container are studied.

FIG. 1. Top: picture of a half-empty glass bottle. Bottom:
space-time plot showing the motion of the cap after the bottle
was given a push. The oscillations in speed, adding to the
overall forward motion at constant velocity, are clearly visible.
Diagram obtained from a 1500-pixel line video at 500 FPS.
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Outline of the paper
In order to model the overall oscillating motion of a

half-empty cylinder, we will first focus in part II on the
coupling between the water and the solid and show that
their rotation are decoupled for short times. The motion
of the fluid within a half-empty still cylinder, known as
sloshing, is presented in part III, and allows one to define
the moment of inertia of the water, which can be used in
the equations of motion derived from the purely mechan-
ical model developed in section IV. Finally, part V will
show experimental results of oscillations obtained when
a bottle bounces on a wall or rolls down a steep slope.

II. ROTATIONAL COUPLING

A. Race down a slope

The study of a bottle rolling down an incline8–11 is
extremely informative regarding the motion of the fluid
inside the rolling container. Jackson et al.8 in particular,
showed that the velocity of an empty can is noticeably
less than that of a can filled with water. This indicates
that the relative moment of inertia of an empty can (i.e.
normalized by mass × radius 2) must be larger than that
of a full or half-empty can. Indeed, although the fluid
clearly contributes to the overall mass of the system (and
therefore its weight), it may not contribute significantly
to the total moment of inertia since, in general, it is not
in solid-body rotation within the container.

FIG. 2. Picture showing four bottles racing down a 2◦ slope.
The initial positions are shown by the dashed line and the
picture is taken after 2s of rolling. The race shows that the
moments of inertia of half-empty and full bottles are lower
than that of the solid cylinder, which indicates that the water
undergoes little rotation but only a simple translation.

We have reproduced the experiments by releasing four
’bottles’ of identical radius (3 cm) and length (12 cm)
on a 2◦ slope: a hollow tube (or empty bottle), a solid
Plexiglass cylinder, a half-empty bottle and a full bottle.

Note that on this gentle slope, all objects roll with no
slip. A picture taken 2s after the start of the race is
shown in figure 2 while figure 3 displays the positions
in time of the various bottles, measured from particle
tracking (using the ’Analyze Particle’ tool of ImageJ, a
free software developed by NIH, on a 1500× 1000 pixels
video at 30 FPS).

As expected, the hollow tube is visibly slower than the
solid cylinder. Figure 3 shows that the velocity increases
roughly linearly in time, which indicates that friction
plays no role. The behavior of the half-empty and full
bottles is remarkable: both roll down the slope at greater
speeds than the hollow tube and the empty bottle, which
indicates a smaller moment of inertia. Their motion is
close to that of a simple friction-free sliding block (indi-
cated by a dashed line in figure 3). Again, these results
indicate that the water inside the bottle (whether half-
empty or full) undergoes little rotation but is instead
simply translated. In conclusion, this simple experiment
shows that the rotation of the bottle is decoupled from
that of the fluid (over the short duration of the race).
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FIG. 3. Top: position along the 2◦ slope for an empty, half-
empty and full bottles and a solid cylinder. Bottom: velocity
computed as the derivative of the position. The full and half-
empty bottles are the fastest whereas the empty bottle is the
slowest. The greater acceleration of the half-empty and full
bottles is due to their reduced moment of inertia. The dashed
line indicates a constant acceleration: g sin 2◦.
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B. Diffusion time

Results from the previous paragraph indicate that a
bottle can spin without inducing rotation within the wa-
ter. This only holds for short times, less than the typical
diffusion time of momentum. Indeed, over longer times
the viscosity of the fluid should induce motion of the
fluid. In this paragraph we discuss the momentum dif-
fusion in a vertical rotating bottle. We have performed
a simple experiment in which a tall cylinder (of height
400 mm and radius R = 50 mm) is placed on a ro-
tating table (an old record-player). The motion of the
water is followed using neutrally buoyant tracers (700
µm polystyrene beads) from a 1000 × 1000-pixel video
recorded at 30 FPS. At time t = 0, the rotation is started
(at 33 RPM).
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FIG. 4. Rotation speed of water (measured at R/10, R/5 and
R/2 from the wall) in a tall vertical cylinder initially at rest
at set into rotation at t = 0. The lines are guides for the eye.

Figure 4 shows the time evolution of the local rotation
speed of the water (normalized by that of the rotating
support) measured at various distances from the outer
wall (R/10 = 5mm, R/5 = 10mm and R/2 = 25mm).
It takes about 30s for the fluid at R/2 (i.e. half-way
from the wall to the center) to start rotating and 50s
to reach a steady velocity. Even more interestingly, it
takes typically 10s for the fluid near the bottle wall (at
R/10) to be set into motion. Therefore, one can conclude
that over short times (typically a few seconds) the vast
majority of the fluid is not affected by the rotation of the
bottle.

An estimate of the diffusion length of the velocity
within the fluid (or its momentum), δ, over the duration,
T , of a typical experiment can be given knowing the kine-
matic viscosity, ν, of the fluid14,15: δ =

√
νT ' 3 mm

for T = 10 s, which is compatible with the experimental
data of figure 4 and negligible compared to the radius of
the bottle. For an oscillatory motion of typical frequency
1/T = 3 Hz (see figure 1), the boundary layer is given
by penetration length14,15 (analogous to the electromag-

netic skin-depth16–18): δ =
√
νT/π ' 0.3 mm, which is

an order of magnitude smaller.
In conclusion, we have shown that the rotation of the

fluid and of the bottle are decoupled as long as the ex-
periment lasts typically for less than 10 s.

III. SLOSH DYNAMICS IN A STILL BOTTLE

In this section the motion of the fluid in a still bottle
is discussed. This slosh dynamics was studied as early as
the XIXth century by Rayleigh19 and a comprehensive
review can be found in Lamb20 and Ibrahim21.

A. Potential flow

In a horizontal cylinder the first eigenmode of sloshing
displays a flat (although not constantly horizontal) free
surface which oscillates up and down. Rayleigh19 showed
that under the assumption of a potential flow (where in
particular the viscosity of the fluid can be neglected) the
velocity field can be written with separated variables, i.e.
as a product of a function of time and a second function
of the position. This allows to define the moment of
inertia for the rotation of the fluid around the center of
the bottle:

Is = πρR4L

(
4

π2
− 1

4

)
' 0.31mR2,

where ρ is the density of the fluid and L the length of the
bottle.

FIG. 5. a. Picture of the sloshing motion of water with a still
cylinder (radius R = 5cm). Exposure time = 1/10 s. The
picture shows neutrally buoyant tracers (polystyrene spheres
of density 1.06 g/cm3 and diameter 700µm). b. Velocity field
computed from the potential flow given by Ibrahim21. Note
that the velocity decreases with increasing distance from the
free surface.

The potential from which the velocity is derived is
given in terms of a series20,21 and the corresponding
velocity field is plotted in figure 5b. A few comments
can highlight the differences with a rigid-body rotation.
First, the velocity clearly decays with increasing distance
from the free surface whereas it increases linearly in the
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case of a rigid-body rotation. Second, one can notice that
the streamlines are not half-circles centered on the center
of the bottle. Instead, the streamlines are flatter near the
free surface. Finally, the velocity at the center of the bot-
tle is not zero. It is purely horizontal and oscillates back
and forth. The theoretical velocity field is remarkably
similar to the experimental observations. The picture in
figure 5a shows neutrally buoyant markers indicating the
motion of the fluid in a bottle pushed and held against a
wall. This excellent agreement supports the assumption
that the viscosity of the fluid plays no major role in the
slosh dynamics, aside from the boundary layer discussed
earlier.

B. Experimental validation

Experiments were performed by pushing a half-empty
cylinder against a wall in order to induce fluid motion.
The cylinder is then firmly held still against the wall and
the slosh dynamics of the water is studied. The altitude
of the free surface against the curved side of the cylinder
was recorded (at a frame rate of 500 FPS) and measured
through particle tracking (see inset in figure 6).

A simple way to check whether the potential flow is an
accurate description of the actual flow is to measure the
frequency of the oscillations. The Fourier transform of
the signal is shown in figure 6. The frequencies of the first
three modes of sloshing can be analytically predicted21

(ω1 ' 1.17
√
g/R, ω2 ' 2.17

√
g/R and ω3 ' 2.82

√
g/R)

and are indicated by red lines.
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FIG. 6. Fourier power spectrum of the motion of the free
surface in a bottle first pushed and then held still. The ex-
perimental maximum coincides with the theoretical frequency
of the first sloshing mode. The inset shows the damping of
the amplitude over long times.

A decay of the amplitude of oscillations is visible on the
inset and is a long-term effect of the viscosity of the fluid.
However, the agreement between the observed frequency
and the prediction under the assumption of an ideal fluid
is excellent, again supporting the hypothesis that the vis-
cosity plays no major part in the flow (although it causes

a slow damping). Moreover, even if the force initially
applied to the bottle induces a sloshing motion which is
more complex that an oscillating flat surface, the first
sloshing mode is always dominant. The second or third
modes could be observed if the cylinder were shaken at
the corresponding resonance frequency, but in the case
of an inherently asymmetrical initial push mode 1 always
dominates. Therefore in the following only the first mode
(in which the free surface remains flat although obviously
not horizontal) will be considered.

IV. A SOLID BODY TOY MODEL

Having understood that the rotation of the fluid and
of the bottle are decoupled over short times (less than
10s) one can propose a mechanical model for the motion
of a half-empty bottle in which the fluid is seen as a solid
half-cylinder. This simplification is obviously inappropri-
ate (as discussed in section III) but allows for a derivation
and analysis of the equations of motion of a half-cylinder,
representing the water, mounted on wheels, representing
the bottle (see figure 7a). The mass and moment of iner-
tia of the water are denoted m and IG (computed around
its center of mass, G) while those of the bottle alone are
denoted M and J . The horizontal position of the bottle
is noted x, and the inclination of the half-cylinder θ. The
distance between the center of the bottle and the center
of mass of the water is noted l = OG = 4R/3π. The
model presented here is very similar to that of Jackson8

in which further technical details can be found.

FIG. 7. a): Schematics of a half-cylinder mounted on wheels
equivalent to a pendulum attached to a sliding block (b) with
effective moment of inertia and masses.

Assuming a slip-free rotation of the bottle allows one
to express its rotation speed: ẋ/R. If all sources of dissi-
pation are neglected (air drag, solid and rolling friction,
viscosity of the fluid etc) the equations of motion can
be derived from the Euler-Lagrange equations using the
kinetic energy T and potential energy V :T =

1

2
Mẋ2 +

1

2
J

(
ẋ

R

)2

+
1

2
m
(
~̇x+

~
lθ̇
)2

+
1

2
IGθ̇

2

V = mgl(1− cos θ).

(1)

In the small-angle approximation, the equations of mo-
tion therefore read:
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(
M +

J

R2

)
ẍ+m(ẍ+ lθ̈) = 0,

(IG +ml2) θ̈ = −mglθ −mlẍ.
(2)

Interestingly these equations are equivalent to those of
an analogue system consisting in a pendulum with an
effective moment of inertia Ieff = IG + ml2 attached to
a block sliding with no friction (see figure 7b) with an
effective mass Meff = M + J/R2. Note that the effective
moment of inertia, Ieff , is simply equal to the moment of
inertia of the half-cylinder around the center of the bottle
O: IO. The equations of motion can be easily combined
and solved (see8 for details):


θ̈ = A sin(Ωt+ ϕ)

ẍ = −A m

m+Meff
l sin(Ωt+ ϕ)

where Ω−2 =
l

g

(
IO
ml2
− m

Meff +m

)
.

(3)

where A (in rad.s−1) and ϕ (in rad) are constants which
depend on the initial conditions.

V. SLOSH DYNAMICS IN A ROLLING BOTTLE

A. Adaptation of the theory to a rolling bottle

The results presented above can be combined to study
the motion of a half-empty bottle. The moment of inertia
IO in equation 3 simply needs to be replaced by that
of the first mode of sloshing given in section III: Is =
πρR4L

(
4
π2 − 1

4

)
. Moreover, for simplicity, the moment

of inertia of the bottle itself is assumed to be J = MR2

and the effective mass defined in section IV is then simply
Meff = 2M . The angular frequency of the oscillations is
therefore given by:

Ω−2 =
l

g

(
Is
ml2
− m

2M +m

)
. (4)

Note that the ratio Is/ml
2 is only a geometrical con-

stant (' 1.72) since l = 4R/3π. Moreover, the right-hand
term is ensured to be positive since the term in paren-
thesis can be rewritten as: IG/ml

2 + 2M/(2M +m).

Knowing the initial conditions therefore allows one to
determine the constants A and ϕ in equation 3 and to
integrate them. The following paragraphs will discuss
the motion in two different setups: a half-empty bottle
bouncing on a wall and a half-empty bottle rolling down
a steep slope.

B. Soft collision of a half-empty bottle

1. Initial conditions

As explained above, the motion strongly depends on
initial conditions. When a bottle is manually pushed,
it is difficult to properly determine what force (i.e. ac-
celeration) or velocity is imposed and the corresponding
initial conditions remain unclear. In order to study a
well-defined set of initial conditions, a half-empty bottle
rolling on a flat surface without any oscillations is sent to
bounce on a wall (figure 8). The initial steady velocity,
v0, is achieved by letting the bottle slowly accelerate on a
gentle slope (less than 1◦). The wall is made of soft wood
in order to minimize the energy dissipation. Although
the collision must be somewhat inelastic we found that
an empty bottle loses less than 5% of its speed after a
collision against the wall. Moreover, very little energy
is dissipated in the fluid boundary layer. Therefore, all
sources of dissipation during the collision are neglected.

When the bottle hits the wall (and while it remains
in contact with the wall), the water rises as the initial
kinetic energy is converted into potential gravitational
energy. The surface then recoils back to horizontal at
which time (t = 0) the bottle leaves the wall and rolls
forward while the fluid keeps oscillating. However, an
empty bottle tends to almost instantly bounce off the
wall. There is therefore a competition between the rel-
atively slow rise of the water (which tends to pull the
system against the wall) and the rapid rebound of the
bottle itself (which tends to pull the system away from
the wall). If the mass of the water dominates, only the
first mode of sloshing is triggered and a set of initial con-
ditions can be determined. In this case, the initial kinetic
energy of the bottle itself prior to the collision not only
does not contribute to the rise of the water but instead
must be subtracted. This procedure is a reproducible and
controlled way to set initial conditions: x0 = 0, ẋ0 = 0,
θ0 = 0 and where θ̇0 is given by

1

2
Isθ̇

2
0 =

1

2
mv2

0 −
1

2
Mv2

0 . (5)

2. Analytical solution

Under these conditions the motion of the fluid and of
the bottle is given by the solutions of equation 3:

θ̇ = θ̇0 cos Ωt

ẋ = β v0
(m−M)1/2

2M +m
(1− cos Ωt),

(6)

where β = 8
3
√

2
1√

16−π2
' 0.76.

Note that neglecting the mass of the end-caps, the ratio
of masses can be expressed in terms of thickness, e, and
density (relative to that of water), d, of the bottle itself:
M/m = 4e/R d.
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FIG. 8. A half-empty bottle is sent to bounce on a wall.
During the impact the fluid is set into rotation which triggers
oscillations in the velocity when the bottle leaves the wall.

3. Experimental validation

A cylindrical bottle of radius R = 50mm and length
L = 70cm, made of Plexiglas, was used to validate the
theoretical predictions. The mass of the empty bottle is
M=0.910kg and the mass of water used (corresponding
to a half-empty bottle) is m=2.780kg. The motion of the
bottle was recorded at 30 FPS and the position was mea-
sured using particle tracking and the velocity was com-
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FIG. 9. Velocity of the half-empty bottle experiencing a soft
collision against a wall. The velocity is constant before the
impact (first dashed line) and oscillations are triggered after
the bottle leaves the wall (second dashed line). The red line
shows the velocity predicted using equation 6. There are no
fitting parameters and the agreement is excellent.

puted as its numerical derivative. The results are pre-
sented in figure 9. The velocity prior to the impact, v0,
is rather constant (with small fluctuations, in part due to
the image processing) while after the impact (indicated
by the two dashed lines) the velocity largely oscillates.
One can see that the bottle undergoes a stop-and-go mo-
tion since the velocity periodically reaches zero. This
feature is visible on the space-time diagram in figure 1.

This motion is also predicted by our theory (red line).
It is worth noting that there are no fitting parameters.
The initial velocity is measured as the average before
the impact, and the amplitudes, frequency and phase are
those predicted by equation 6. The duration of the im-
pact itself is given by a half-period of the oscillations.
The agreement between the experimental data and the
theory is excellent, supporting the validity of the numer-
ous hypotheses made (first mode of sloshing, small an-
gles, energy conservation and inviscid fluid). Knowing
the time of impact, one can therefore entirely determine
the motion of the bottle after the bounce.

C. Half-empty bottle on a steep slope

1. Analytical solution

Another protocol used to produce reproducible and
controlled initial conditions consists in letting a half-
empty bottle roll down an incline plane of slope α, which
must remain small enough to ensure a slip-free rolling
motion of the bottle. The inclination of the free surface,
θ, is measured in the frame of reference on the plane.
The gravitational potential energy of the bottle and the
fluid needs to be included in the Euler-Lagrange equa-
tions which yield (in the small-angle approximation):

{
2Mẍ+m(ẍ+ lθ̈) = (M +m)gα,

Is θ̈ = −mgl(θ − α)−mlẍ.
(7)

For a bottle initially (t = 0) at rest:

ẋ =
M +m

2M +m
gαt+

m (M +m)

(2M +m)2
αlΩ sin Ωt

(8)

The velocity is composed of two separate terms: the
first one is the average constant acceleration (smaller
than αg as discussed in section II), while the second in-
dicates the velocity fluctuations.

It may seem counter-intuitive that releasing the bottle
initially at rest should trigger oscillations, but it can be
understood with a hand-waving argument. In the mov-
ing non-inertial frame of reference of the bottle an inertial
force applies to the water, shifting the equilibrium posi-
tion to θeq = αM/(M +m). The amplitude of the oscil-
lations (of the inclination of the free surface) is therefore
given by θ0 − θeq = αm/(M +m).
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2. Experimental validation

A cylindrical bottle of radius R = 44mm and length
L = 170mm, made of Plexiglas, was used to validate the
theoretical predictions. The mass of the empty bottle is
M = 0.140kg and the mass of water used (corresponding
to a half-empty bottle) is m = 0.510kg. The motion of
the bottle on a table inclined at an angle of α = 15◦

was recorded at 500 FPS and the position was measured
using particle tracking and the velocity was computed
as its numerical derivative. The results are presented in
figure 10.
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FIG. 10. Top: velocity of a bottle released on a 15◦ slope.
On average the bottle undergoes a constant acceleration but
oscillations in the velocity are visible. The red line shows
the predicted average acceleration. Bottom: deviation from
the constant acceleration highlighting the oscillations: exper-
imental data (black) and theoretical prediction (red).

The experimental data confirms the theoretical pre-
dictions: the bottle rolls down the slope with an aver-
age constant acceleration and oscillations in speed are
clearly visible. The experimental acceleration is in ex-
cellent agreement with the predicted value. However,
for longer times a discrepancy appears and might be at-
tributed to the air drag acting on the bottle or to the
failure of the decoupling assumption. The velocity fluc-
tuations, ∆ẋ defined as the difference in velocity from
the linear behavior, are shown in the bottom of Figure 10
where the red line shows the theoretical predictions. It
should be emphasized once again that there are no fit-
ting parameters: all values are deduced from the simple
measurement of the masses and sizes. The amplitude,
frequency and phase are those given by equation 8. The

fluctuations are small (typically 5% of the speed) and
very sensitive to the imperfections of either the table or
the bottle. Still, the experimental data shows a good
agreement with the theory. One can see that the am-
plitude decays but the initial magnitude of the first few
oscillations is well captured while the initial phase and
the frequency are very well predicted. Again, the agree-
ment between these experimental results and the theory
validates the seemingly strong assumptions made.

VI. CONCLUSION

In conclusion we were able to successfully model the
motion of a half-empty bottle rolling on a flat surface.
We showed that over the duration of a typical exper-
iment the rotation of the water and of the bottle are
decoupled, which can also be predicted from the Navier-
Stokes equation. A simple mechanical toy-model allowed
for the derivation of the equation of motion while the ex-
act motion of the fluid is well described by the first mode
of sloshing under the assumption of an inviscid fluid. Ex-
periments performed on a bottle bouncing on a wall and
on a steep slope provided experimental validation of the
predicting power of the theoretical predictions.

The limitations of our work could deserve further at-
tention. It is clear that the decoupling of the rotation of
the fluid and the bottle should not hold for smaller radii:
if a test-tube of radius R = 1cm is used, the diffusion time
is of the order of a few seconds and the whole fluid can be
set into a rigid-body rotation. The same conclusion can
be drawn if a more viscous fluid is used: vegetable oils
are typically 50 times more viscous than water, leading
to a diffusion time of the order of one second. Finally
we should recall that the equations were derived in the
small-angle approximation and that an exact study of
larger amplitudes might reveal surprising results.

The potential flow gives an accurate description of the
motion of the water in the bottle but the effect of the
viscosity is visible in figure 6. A comprehensive study
of the viscous dissipation in the boundary layer might
deserve further attention. Similarly, the effect of static
and rolling friction of a bottle rolling on a surface, as well
as that of drag caused by the surrounding air, could be
studied to provide one with a more realistic description
of the motion over long times.

It would be interesting to vary the filling fraction of
the bottle. Obviously, there can be no oscillations in a
bottle either completely full or empty. Therefore, there
must exist an optimal filling fraction for the oscillatory
motion studied in this paper. It is unclear whether the
optimal value should correspond to a filling fraction of
one half.
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