Energetics of the exchangeable quinone, Q_B, in Photosystem II

De Causmaecker, S.1, Douglass J.1, Fantuzzi A.1, Nitschke W.2 and Rutherford A.W.1

1) Department of Life Sciences, Imperial College London, SW7 2AZ London, UK.
2) Aix Marseille Univ, CNRS, BIP/UMR7281, Marseille, France.

Abstract

Photosystem II (PSII), the light-driven water/plastoquinone photo-oxidoreductase, is of central importance in the planetary energy cycle. The product of the reaction, plastohydroquinone (PQH_2), is released into the membrane from the Q_B-site, where it is formed. A plastoquinone (PQ) from the membrane pool then binds into the Q_B-site. The thermodynamic properties of the PQ in the Q_B-site, Q_B, in its different redox forms have received relatively little attention despite their functional importance. Here we report the midpoint potentials (E_m) of Q_B in PSII from Thermosynechococcus elongatus using EPR spectroscopy: $E_m(Q_B/\text{Q}_B{}^\cdot\cdot) \approx 90$ mV and $E_m(\text{Q}_A{}^\cdot\cdot/\text{Q}_B\text{H}_2) \approx 40$ mV. These data allow the following conclusions: 1) the semiquinone, $Q_B{}^\cdot\cdot$, is thermodynamically stable under physiological conditions; 2) release of $Q_B\text{H}_2 (\text{PQH}_2)$ into the pool has a driving force of ~ 50 meV; 3) PQ is more tightly bound than PQH_2; 4) the difference between the E_m values for $Q_B/\text{Q}_B{}^\cdot\cdot$ and $\text{Q}_A/\text{Q}_A{}^\cdot\cdot$ is ~ 234 meV and represents the driving force for electron transfer from $\text{Q}_A{}^\cdot\cdot$ to Q_B. We also used the pH-dependence of the thermoluminescence associated with $Q_B{}^\cdot\cdot$ to provide a functional estimate for this energy gap and obtained a similar value (~ 230 meV). This estimate is larger than the generally accepted value (~ 80 meV). The energetics of Q_B are compared to those in homologous purple bacterial reaction centers. A recent contradictory report on the redox properties of Q_B (Kato Y, Nagao R, Noguchi T 2016 Proc Natl Acad Sci 113(3):620–625) is rationalised in terms of specific technical difficulties associated with titrating an exchangeable cofactor.

Introduction

In photosynthesis sunlight is absorbed by chlorophyll molecules resulting in charge separation within a photosynthetic reaction center. In Photosystem II (PSII), the water/plastoquinone photo-oxidoreductase, the electron hole is transferred from the chlorophyll cation radical, $\text{P}_{\text{D1}}{}^\cdot\cdot$, via a redox active tyrosine (TyrZ) to the Mn$_4$O$_5$Ca cluster. After four sequential photochemical turnovers and the resulting oxidations of the Mn$_4$O$_5$Ca cluster ($S_{0.4}$), two water molecules are oxidized (1). On the electron-acceptor side, the electron is transferred from the pheophytin anion (Pheo$_{\text{D1}}{}^\cdot\cdot$) via a
non-exchangeable plastoquinone (QA), which acts as a 1-electron relay, to an exchangeable plastoquinone (QB), the terminal electron acceptor (2).

The formation of QB•− is stabilized by the protonation of a near-by amino acid. QB•− decays in the tens of seconds timescale by charge recombination with S2 or S3 when present, but is stable for several hours if S0 or S1 are present (3). During the subsequent photochemical turnover, QB•− accepts a second electron from the newly-formed QA•−. This is accompanied by the two protonation steps, thought to occur sequentially, one before and one after the arrival of the second electron (4), as occurs in the homologous site in purple bacteria (5). The QBH2 formed is released from the site and enters the PQ/PQH2 pool, from where it can deliver electrons to the cytochrome bf complex (6–8).

Due to the two-electron chemistry of QB, the QB•− state is the only state on the electron acceptor side that cannot be stabilized by forward electron transfer, there is no “kinetic control” on this step (9). It is therefore available to back-react via QA•− with the S2 and S3 states on the donor side (3). Two main competing back-reaction pathways occur within PSII: 1) the direct route via electron tunnelling from QA•− to P•+; and 2) the indirect route via thermal repopulation of the P•+PheoD1•− state (10). Recombination from the P•+PheoD1•− state mainly forms the triplet chlorophyll state 3P680 (11), which reacts with oxygen to form highly reactive and damaging singlet oxygen 1O2 (12).

The driving force (ΔG) for electron transfer between QA and QB determines the QA•− QB ↔ QAQA•− equilibrium and therefore the extent to which back-reactions from QB•− (or QBH2) to QA can occur. This equilibrium is determined by the difference between Em(QA/QA•−) and Em(QB/QB•−) or Em(QB•−/QBH2) according to the following equation:

\[\Delta G = -nF(\Delta E) \]

(Eq. 1)

The redox state of QA can be monitored relatively easily using fluorescence measurements and a wide range of different values have been reported (13). This scatter of reported values is at least in part due to the potential being modulated to regulate forward and particularly back electron transfer reactions (9). The QA redox potential is affected by the binding of the Mn4O5Ca cluster to its site (10, 13–15) and by the bicarbonate binding to the non-heme iron (16) (see Figure 1). The redox potential of the QA/QA•− couple in the fully functional, bicarbonate-bound system is −144 mV (15, 16).
The measurement of the redox state of Q_B is more complicated than that of Q_A. Firstly, there is no easy experimental probe for the redox state of Q_B. Secondly, in contrast to Q_A, which undergoes a one-electron redox reaction forming Q_A^- without the involvement of protons, the Q_B reduction involves two electrons and two protons (see Eq. 2).

$$Q_B + e^- + H^+ \leftrightarrow Q_B^- (H^+) + e^- + H^+ \leftrightarrow Q_B H_2$$ \hspace{1cm} (Eq. 2)

Thirdly, Q_A is a tightly bound cofactor in both of its redox states, while Q_B has two of the three relevant redox states, Q_B and $Q_B H_2$, that are relatively weakly bound and exchangeable with PQ or PQH$_2$. As a consequence, for decades kinetic data were used to estimate the redox potential of Q_B by deriving the equilibrium constants for the electron transfer from Q_A^* to Q_B and $Q_B H_2^*$ (18–20). Due to the complex nature of the experiments from which those kinetic parameters were extracted, uncertainties remain within the literature (18–21). Estimates from a theoretical model based on thermoluminescence data were used to obtain the difference in energy between the Q_A^*/Q_A and $Q_B/Q_B H_2$ couples. While this model has proven insightful when used in a qualitative or comparative way, the relationship between experimental observables and thermodynamic parameters derived from this model have not been firmly established (22–24).
An experimental estimate of the two couples based on equilibrium redox titrations was published recently (25). FT/IR was used to monitor Qb\(^{•−}\) formation upon illumination by a single flash as a function of the applied potential. The data showed that Qa\(^{•−}\) was not thermodynamically stable, a surprising result, in light of the better-known homologous purple bacterial reaction centers (21, 26–28).

In summary, the mechanism and energetics of the PSII acceptor side and especially Qb are still relatively poorly understood. Specifically, the redox potentials for the two couples, E\(_{\text{m}}\)(Qb/Qb\(^{•−}\)) and E\(_{\text{m}}\)(Qb\(^{•−}\)/QbH\(_2\)), which are central to understanding charge stabilisation and recombination, have received relatively little attention.

Here we have used EPR spectroscopy to determine the redox potential of the two couples Qb/Qb\(^{•−}\) and Qb\(^{••}\)/QbH\(_2\). Two different EPR signals were measured: a Qb\(^{•−}\)Fe\(^{2+}\) semiquinone signal (29) and a Qa\(^{•−}\)Fe\(^{2+}\)Qb\(^{•−}\) biradical signal (30, 31). We also used thermoluminescence to determine empirically the energy gap between the Qa/Qa\(^{•−}\) and Qb/Qb\(^{•−}\) couples, without relying on the theoretical model previously employed. Our results differ from previous measurements and estimates and show that the semiquinone Qb\(^{•−}\) is highly stabilized thermodynamically and that the plastoquinone is preferentially bound compared to the plastoquinol.

Results

EPR spectra of PSII were measured at a series of electrode potentials. The D2-Y160F mutant lacking tyrosine D (Tyr\(_D\)) was used to eliminate the Tyr\(_D\)\(^{••}\) signal, which would otherwise dominate the PSII EPR spectrum in the radical region (32). At each potential dark spectra and spectra after illumination at 77 K were recorded. Figure 2A shows a scan of the radical region around g=2. The appearance and disappearance of the EPR signal as a function of potential can be observed. This signal has been assigned to the low-field edge of the ground state doublet of the semiquinone, Qb\(^{•−}\)Fe\(^{2+}\) (29).

Figure 2B shows a full spectrum scan of the same samples as used in Figure 2A after illumination at 77 K. A peak at 4000 gauss (g=1.66) shows a potential dependence similar to that of the Qb\(^{•−}\)Fe\(^{2+}\) signal. The g=1.66 signal has been assigned to the Qa\(^{•−}\)Fe\(^{2+}\)Qb\(^{•−}\) biradical state (30, 31). The low temperature illumination generates Qa\(^{•−}\) in nearly all of the centers. No electron transfer occurs from Qa\(^{•−}\) to Qb or to Qb\(^{•−}\) at 77 K (31), therefore the biradical signal should only be observed if Qb\(^{•−}\) were present before the 77 K illumination. Thus the biradical signal can be used to monitor the presence of Qb\(^{•−}\) independently of the Qb\(^{•−}\)Fe\(^{2+}\) signal.
To assess the proportion of Q_B^\cdot formed during the titration, the signal size of the Q_B^\cdotFe$^{2+}$ signal if present in 100% of the centers was estimated. In a dark-adapted sample Q_B^\cdot is present in \(~\sim\)40% of the centers, while Q_A is present in the rest (3, 31, 33). That proportion can be inverted by illuminating at 77 K and subsequently thawing in darkness (3). Therefore the sum of the amplitudes of the signals present before and after this treatment should yield the size of the signal when Q_B^\cdot is present in all of the centers. This experiment was done and the estimated value for 100% Q_B^\cdot was used to calibrate the amplitudes of the EPR signals in the titrations.

![Figure 2: EPR spectra of PSII poised at different potentials. A: Radical region spectra showing the Q_B^\cdotFe$^{2+}$ at $g=2.0024$ (microwave power: 205.1 mW; modulation amplitude 10.53 gauss). B: Wider scan of the same samples after 77 K illumination showing the Q_A^\cdotFe$^{2+}$ signal at $g=1.66$. (microwave power: 20 mW, modulation amplitude: 25.35 gauss)](image)

Figure 3 shows a plot of the normalized Q_B^\cdotFe$^{2+}$ and Q_A^\cdotFe$^{2+}$ signals versus the measured potential, combining data from three individual titrations. Titrations were carried out in oxidizing and reducing directions. The maximum amplitude, at 67 mV, represented about 55% of the centers in the...
stable Q

• state. Data were fitted using the model first established by Michaelis (34). The resulting potentials for the two couples were \(E_m(Q_B/Q_B^*) = 92 \pm 36 \text{ mV} \) and \(E_m(Q_B^*/Q_BH_2) = 43 \pm 36 \text{ mV} \).

![Graph showing titration of the Q

• semiquinone using two different EPR signals. Open squares: oxidizing titration of the Q

•–Fe

2+ signal; closed squares: reducing titration of the Q

•–Fe

2+ signal; closed diamonds: reducing titration of the Q

•–Fe

2+Q

• signal; open diamonds: oxidizing titration of the Q

•–Fe

2+Q

• signal.](image)

Figure 3: Titration of the Q

• semiquinone using two different EPR signals. Open squares: oxidizing titration of the Q

•–Fe

2+ signal; closed squares: reducing titration of the Q

•–Fe

2+ signal; closed diamonds: reducing titration of the Q

•–Fe

2+Q

• signal; open diamonds: oxidizing titration of the Q

•–Fe

2+Q

• signal.

The retention of the Mn

4O

5Ca cluster during the course of the titration was assessed in two ways: firstly by the presence of free “hexaquo” Mn

2+ signals in the spectra, representing a loss of the Mn

4O

5Ca cluster and secondly by the ability to form the S

2 multiline signal (35). Before adding redox mediators, no free Mn

2+ was observed. After the addition of redox mediators and equilibration in the dark, a small amount of free Mn

2+ was detected. This could arise from centres that had lost the extrinsic polypeptides at the luminal side of PSII during the purification and were thus more susceptible to reduction. The size of the free Mn

2+ signals did not increase during the redox titrations. Further evidence that the manganese cluster was retained in most centers was the ability to generate the S

2 multiline signal by illumination at 200 K. Illumination at this temperature has been shown to oxidize the Mn

4O

5Ca cluster from S

1 to S

2 but not to higher S-states (36). This is taken as an indication that the majority of the centres did not lose the Mn

4O

5Ca cluster during the course of the titration. Although the intensity of the multiline signal decreased at the lowest potentials, it partially recovered again at higher potentials (see Figure S1). The fact that the recovery is only partial is likely due to a fraction of the centers in the S

1 state being reduced to S

0 at the lowest potentials.

In addition to the redox titrations of the EPR signals associated with Q

•+, pH-dependent thermoluminescence measurements were used to determine the difference in redox potential between
the Q_A/Q_A^{\ast} and Q_B/Q_B^{\ast} couples. Thermoluminescence measures the emission of luminescence associated with the heating-induced back-reaction of a stable charge-separated state. The peak temperature of thermoluminescence is indicative of the energy stored in the charge-separated state and is determined by redox potentials of both the recombination partners, in this case S_2/S_1 and Q_B/Q_B^{\ast} (3, 23). The S_2/S_1 couple does not involve protonation and is therefore independent of pH (37). The Q_B/Q_B^{\ast} couple involves proton release when Q_B^{\ast} is re–oxidized and is expected to follow Nernst behaviour (20, 38) with the redox potential changing by $-59\, \text{mV}$ per pH–unit. Thus the pH dependence of the $S_2 Q_B^{\ast}$ recombination peak position should reflect this process and can be used as an empirical calibration of the change in emission temperature in terms of the change in the redox potential of Q_B.

Figure 4 shows the thermoluminescence curves of long dark–adapted PSII samples after one saturating flash at different pH–values. A clear shift of the peak positions to lower temperatures with increasing pH can be seen. The insert in Figure 4 shows a plot of peak temperature versus the pH, from which a linear dependence of $-11.9\, \text{\degree C}$ per pH–unit can be observed. Using the ΔE relationship given by the Nernst equation, this translates to $-4.95\, \text{meV}\, \text{\degree C}^{-1}$. A similar slope was observed by Vass and Inoue (39) in their study of the pH–dependence of thermoluminescence.

This calibration was then used to estimate the gap between the Q_A and Q_B couples. Figure 4 (red curve) shows the $S_2 Q_A^{\ast}$ recombination band at pH 7 in the presence of DCMU occurring at 14 °C. The difference in peak positions of 36 °C between the $S_2 Q_A^{\ast}$ and $S_2 Q_B^{\ast}$ peaks corresponds to an energy gap of 178 meV. Given a potential for Q_A/Q_A^{\ast} of $-144\, \text{mV}$ and taking into account the upshift caused by the binding of DCMU of $-52\, \text{mV}$ (40), this would result in a potential of $-86\, \text{mV}$ for the Q_B/Q_B^{\ast} couple, close to the value reported here from the equilibrium redox titrations.
Figure 4: Thermoluminescence of long-dark-adapted PSII cores from *T. elongatus*. Blue: after one saturating flash at different values of pH. Red: after the addition of DCMU at pH 7. The insert shows a plot of the S2Qb•− peak position versus the pH. At pH 6.5 a TL band ~70°C becomes the dominant emission but is not attributed to the S2Qb•−, it is more likely to be from the so-called C-band which has been attributed to TrypQA•− recombination (41).

Discussion

In the present work, the midpoint potential of the terminal electron acceptor of PSII, Qb, was measured with EPR. The results show that the semiquinone, Qb•−, is thermodynamically stable at pH 7. The redox potentials derived from the data for the two redox couples are Em(Qb/Qb•−) ≈ 90 mV and Em(Qb•−/QbH2) ≈ 40 mV. In addition, we have estimated the difference in redox potentials between the QA/QA•− and Qb/Qb•− couples using the pH–dependence of S2QA•− and S2Qb•− recombination measured by thermoluminescence. The energy difference obtained from this approach is ~230 meV. This value is similar to the difference between the Em = -144mV for QA/QA•− (15, 16) and +90 mV for Qb/Qb•− presented here.

The following aspects are discussed below: i) the stabilisation of the semiquinone state; ii) the preferential binding of the quinone over the quinol in the Qb site; and iii) the difference in redox potential between QA and Qb. In addition, as the results markedly contradict a recent publication (25), these discrepancies are also addressed and a potential explanation is provided.
Stabilisation of the semiquinone state within the Q$_b$ site

A fit of the Nernst model to our data shows the difference between the Q$_b$/Q$_b^+$ and Q$_b^+$/Q$_b$H$_2$ couples, ΔE_m, to be \sim+50 mV, a value that agrees with the measured maximum of \sim55% of stable Q$_b^+$ in the EPR signal generated in the titrations. This ΔE_m is indicative of the degree of stabilisation of the semiquinone radical, Q$_b^+$, in the site. When titrating a free quinone, the semiquinone is not stabilized, the redox transition occurs as a steeper $n=2$ curve, typical of a two–electron transition, no intermediate semiquinone can be observed and the ΔE_m is negative ($\Delta E_m \ll -500$ mV). Our data indicate that Q$_b^+$ is strongly bound and therefore stabilized by the Q$_b$ site. The structure of the Q$_b$ site (Fig 1) shows several features that likely contribute to the relative stability of Q$_b^+$ including: i) the proximity to the non–heme ferrous iron; ii) hydrogen bonds from to both carbonyls of the quinone; and iii) the likely protonation of the distal H–bonding D1Ser264/His252 pair (4).

This strong stabilisation can be rationalized in part as a damage–prevention mechanism. In PSII, back–reactions from P$^+$/Q$_A^+$ result in damage to the complex (9, 16). A large gap between the Q$_A$/Q$_A^-$ and Q$_b$/Q$_b^+$ couples would favor Q$_A$ reduction and lower the equilibrium concentration of Q$_A^-$, thereby diminishing the likelihood of a damaging back-reaction from Q$_A^+$. It would, therefore, be beneficial to stabilize the semiquinone to a point where the Q$_b$/Q$_b^+$ couple is more oxidizing than the Q$_b^+$/Q$_b$H$_2$ couple.

This stabilisation of the semiquinone would come at a cost because a more positive $E_m(Q_b/Q_b^+)$ must yield a more negative $E_m(Q_b^+$/Q$_b$H$_2$) in order to maintain the chemical requirement that the average E_m for the two couples remains unchanged. Back–reactions from the fully reduced quinol Q$_b$H$_2$ to Q$_A$ would therefore become more likely. These back–reactions would only occur when the plastoquinone pool is reduced because quinol/quinone exchange occurs orders of magnitude faster (≈ 10 ms, (42)) than the S$_2$Q$_b$H$_2$ back-reaction, which is predicted to decay with kinetics between the recombination rates of Q$_A^-$ and Q$_b^+$ with S$_2$ (i.e. between ~ 1 s and ~ 30 s (43)).

The high potential E_m (~ 90mV) for the Q$_b$/Q$_b^+$ also means that Q$_b^+$ is a poor reductant for O$_2$ forming superoxide (E_m(O$_2$/O$_2^+$) ≈ -160mV). It has been suggested that Q$_b^+$ may be a source of reactive oxygen species (44), however, its very long lifetime, with half-times of hours in the presence of S$_1$ and S$_0$ (3, 31, 33), has argued against this. The present work showing the thermodynamic stabilisation of Q$_b^+$ provides a good explanation for its lack of reactivity with oxygen and for its very long lifetime in the dark.

The presence of a stabilised Q$_b^+$ directly contradicts a recent report (22) (discussed in detail below) but is not without precedence. A reductive titration of the g=1.66 biradical signal with PSII particles from Phormidium laminosum was reported previously as part of the early work done to
identify the origin of the signal (30). Although no reversibility was demonstrated and the signal size was not quantified, a thermodynamically stable $Q_B^{\bullet^+}$, similar to that reported in this work, was clearly present in the reductive titration.

A thermodynamically stable $Q_B^{\bullet^+}$ was also present in the homologous purple bacterial reaction centers from *Rhodobacter sphaeroides* (26), *Chromatium vinosum* (27) and *Bastochloris viridis* (28). These titrations, which have been replotted and refitted here (supplementary material) show ~30–50% of the total quinone form as a stable semiquinone. The exact ΔE_m and E_m^{avrg} all differ from each other to some extent, perhaps reflecting different mechanistic requirements in the different species, but in all reaction centers, the semiquinone, $Q_B^{\bullet^+}$, is clearly thermodynamically stable. Together, these studies in the literature (26–28, 30) provide strong support for the current results.

Preferential binding of the quinone vs the quinol

Although the redox potential of the plastoquinone in the pool from *T. elongatus* has not been measured, it is expected to be very similar to that in other organisms, i.e. a two–electron transition at 117 mV (45, 46). The average for the two Q_B redox couples measured here ($E_m^{avrg} = 67$ mV) is therefore about 50 mV lower than that of the plastoquinone pool. This represents a significant driving force for the release of the PQH$_2$ to the pool. This should be considered as an additional energy loss in the on–going effort to understand energy use in PSII.

From the difference in redox potential, the ratio of the binding constants for the quinone and the quinol forms can be calculated (16, 47). It is found that the quinone is bound to the Q_B site about 60 times more tightly than the quinol. Since PSII is a water-plastoquinone photo-oxidoreductase, it seems appropriate that the binding of the substrate (the quinone) is favoured over that of the product (the quinol). This preferential binding of the quinone would allow PSII to function better under conditions where the pool is significantly reduced. Also this would be beneficial in terms of the stabilisation of the $Q_B/Q_B^{\bullet^+}$ couple in relation to the $Q_B^{\bullet^+}/Q_BH_2$ couple, as discussed above.

In the literature it has often been assumed that the binding constants of the quinone and quinol in the Q_B site are equal both in PSII and in purple bacterial reaction centers (e.g. (19, 21)). Nevertheless, the $Q_B^{\bullet^+}$ redox titrations in purple bacterial reaction centers clearly indicated the preferential binding of the quinone over the quinol (26) and other reports favour this binding regime (6, 48) at least in part because it seemed mechanistically more likely. The experimental findings in the present work indicate preferential binding of the quinone over the quinol.

The difference in redox potentials between Q_A and Q_B

The difference in redox potentials between the $Q_A/Q_A^{\bullet^+}$ and $Q_B/Q_B^{\bullet^+}$ couples reported here (~230 meV) is larger than previously estimated (70–80 meV) (23, 43). The earlier estimates of the energy gap between Q_A and Q_B were based on estimates of the equilibrium constant that were
obtained from the kinetics of the forward and backward electron transfer reactions between QA and QB (18–20, 43, 49, 50).

A difference between equilibrium redox potential studies and those based on kinetic estimates is that redox titrations require equilibration over a long period while the kinetic estimates represent a range of dynamic states. It has been demonstrated experimentally that the driving force (energy gap) for the QA•− to QB step in the purple bacterial reaction centers does not control the kinetics (51, 52). Instead the rate-limiting step is determined by a gating process; i.e. protein and/or cofactor movements associated with the proton-coupled electron transfer (51–53). In PSII several reports indicate a similar situation (31, 54, 55) and similar gating is assumed to be present (4, 7, 8, 31, 54, 55). This could compromise estimates of the energy gap from kinetic measurements.

Furthermore redox titrations of multi-cofactor proteins imply that the titration of lower potential components must be done in the presence of the reduced form of the, often adjacent, higher potential components. This can result in a shift in the potential of the lower potential component(s) compared to functional conditions. In this case, QB is the highest potential component in the complex, so it will not be influenced by any higher potential components. In contrast, QA will inevitably be titrated in the presence of QbH2, whilst in functional conditions QA is reduced with QB present. To explain the difference between the energy gaps based on kinetic measurements compared to those based on equilibrium redox titrations, the binding of QbH2 would have to shift the Em of QA/QA•− by ~ −150 mV. It is known that binding of herbicides in the Qb site can shift the Em(QA/QA•−) by ~50mV (56) and a change in the charge on the adjacent Fe2+ by binding of bicarbonate results in a -74 mV shift in the Em(QA/QA•−) (16). While an effect of QbH2 binding on the Em of QA/QA•− cannot be ruled out, it seems unlikely that it is responsible for such a large effect.

Here we made an independent estimate of the energy gap between QA/QA•− and Qb/Qb•− by estimating empirically the energy gap between S2QA•− and S2Qb•− as a function of pH. It was assumed that the energy gap determining the peak position of the thermoluminescence will follow Nernst behaviour and shift by 59meV per pH unit. The resulting value (~130meV) is similar to the energy gap obtained from the equilibrium redox titrations (~134meV). We remain sceptical over the closeness of these two approximations but it allows us to propose that this energy gap may be correct. Indeed a large energy gap would make sense in functional terms. As Qb•− is the terminal electron acceptor, it cannot be prevented from back-reacting by “kinetic control”, i.e. by making sure it undergoes forward electron transfer before it back-reacts (9). Thus wasteful and damaging back-reactions can be minimised by increasing the energy gap between the QA/QA•− and Qb/Qb•− couples.
Rationalizing the conflicting report in the literature

The findings in the present work differ significantly from a recently published study on the redox potentials of Q_B (25). In that work, redox titrations were performed in which the ability to form Q_B* by a single saturating flash was monitored by FTIR measurements in a spectroelectrochemical thin cell (25). Although this is not a direct measurement of Q_B*, but rather a measurement of the ability to form Q_B* upon flash illumination (or in principle to form Q_BH_2 if Q_B* were already present), this method should in principle be usable for a Q_B titration. Their results, however, showed no evidence for stable Q_B* formation, instead a redox curve was reported that was essentially indistinguishable from an n=2 curve, with an E_m = 155 mV at pH 6.5 (equivalent to 125 mV at pH 7). The E_m and the n=2 curve are both characteristic of a titration of free plastoquinone. While the PSII cores have no membrane and thus no membrane-localised quinone pool, they do contain one or two free quinones in addition to Q_B and these quinones act as a limited plastoquinone pool (31, 57).

In the present work we show that the potential of the quinone in the Q_B site is more negative than that of free quinone; therefore in a reductive titration the free quinone will be reduced before the Q_B quinone. The free quinol will equilibrate with, and eventually occupy the Q_B site. If the mediation with the Q_B site is poor, i.e. the mediators are at inappropriate redox potentials or have restricted access to the Q_B site, electrons cannot be removed from Q_BH_2 and it will remain present in the site irrespective of the potential of the Q_B*/Q_BH_2 couple. In such a case, the loss of the ability to form Q_B* with a flash would reflect the potential of the free quinone, with an n=2 Nernst dependency. Given that only three mediators were used in the titration (25), out of which only one was in the appropriate range (1-methoxy-5-methylphananazinium methosulfate, E_m =+63 mV), it seems likely that because of insufficient redox mediation, the potential of free plastoquinone was measured in the work of Kato et al. (25). The slight shift from the literature value for the pool quinone, if significant, might be attributed to the environment of the free quinone within the cavities, lipids and detergent of the isolated PSII core complex, which is likely to be slightly different to that of quinone in the lipid membrane.

The weaker binding of PQH_2 compared to PQ reported in the present work may mean that it would not fully occupy the Q_B site and it would have a tendency to leave the site vacant. This would exacerbate a poor mediation problem as any formation of Q_B* would require the oxidised mediator to encounter Q_BH_2 in the site.

Conclusion

Figure 5 summarizes the results of the present work and provides a consistent energetic description of PSII, now including the two redox potentials of the Q_B couples. This provides insights into the redox tuning of Q_B with respect to the redox potentials of its neighbouring redox partners, Q_A and free plastoquinone. The energy gap between the Q_A/Q_A* and the two Q_B redox couples reported here is
significantly larger than previously assumed. The redox potentials need to be high enough compared to that of QA to provide for sufficient driving force and to minimize back-reactions. The redox potential of the plastoquinone pool limits the average value of the two QB couples. However the measured value shows that in PSII ~50 meV of driving force is expended to ensure rapid de-binding of the quinol and the preferential binding of the quinone. These data indicate that the protein tunes the thermodynamics of the QB redox chemistry to optimise function over a wide range of plastoquinone pool reduction states while minimising back-reactions and side reactions with O2.

Figure 5: Redox scheme of PSII. Redox potentials values were taken from the present work for the QB couples and from (16) for QA, from (58) for PheoD1, from (2) for P680 and from (45, 46) for PQ.

Materials and Methods

Isolation of PSII from T. elongatus – PSII cores were isolated from (D2-Y160F; CP43-His strain (59)) using a method based on that of Sugiura and Inoue (60) with specific modifications described in the SI.

EPR-detected potentiometric titrations - Multiple PSII preparations were pooled to yield 7-10 ml of purified PSII at 0.7 mg(Chl) ml⁻¹ in titration buffer. Redox titrations were carried out essentially as described by Dutton (61) at 15 °C under a bicarbonate-enriched argon atmosphere in absolute
darkness and in the presence of the following redox mediators at 50 μM: N,N,N′,N′-tetramethyl-p-phenylenediamine (300 mV), 2,6-Dichlorophenolindophenol (217 mV), Phenazine methosulfate (80 mV), Thionine (64 mV), Phenazine ethosulfate (55 mV), Methylene blue (11 mV), Pyocyanin (−34 mV), Indigotetrasulfonate (−46 mV), Resorufin (−51 mV). Reductive titrations were carried out using sodium dithionite, oxidative titrations were carried out using potassium ferricyanide. EPR spectra were recorded on a Bruker ElexSys X-band spectrometer fitted with an Oxford Instruments liquid helium cryostat and temperature control system. Illumination at 77 K was carried out in an un-silvered dewar with a halogen lamp (LQ 2600, Fiberoptic-Heim AG, CH). Each sample was illuminated for 20 min.

Thermoluminescence - Measurements were carried out using a lab-built apparatus (62). PSII core complexes were suspended in buffer 1 (MOPS was used instead of MES at pH >7 and HEPES at pH >8, 20% glycerol instead of 10%) at a concentration of 20 μg(Chl) ml⁻¹. Samples were dark-adapted for >1 h at 4 °C, 200 μl samples were loaded in absolute darkness and if required, DCMU (dissolved in ethanol) was added to the sample on the sample plate (50 μM final concentration). Excitation flashes were provided at 4 °C by the second harmonic of a Nd-YAG laser (Minilite II, Continuum, CA, USA), using ~5 ns pulses at 532 nm and then rapidly chilled (<30 s) to 253 K with liquid N₂. The frozen samples were then heated at a constant rate of 20 °C min⁻¹ and TL emission was detected with a photomultiplier (H7422-50, Hamamatsu, Japan). The signal was amplified using a transimpedance amplifier (C7319, Hamamatsu, Japan) and digitized using a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU (Arduino Due).

Acknowledgements:

The authors are grateful for access to the EPR facilities available at the Aix-Marseille University EPR center and at the national TGE-RPE network (FR3443). This work was supported by the Royal Society Wolfson Research Merit Award to AWR and by Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/K002627/1 and BB/R00921X/ to AWR. These BBSRC grants also supported AF and SDC. SDC was also supported by an Imperial College London Scholarship during his PhD studies. J.D. was supported by EPSRC Standard Research Studentship (DTG) EP/P504953/1 from the Energy Futures Laboratory of Imperial College.

References

Supplemental Information

PSII purification:

T. elongatus cells were grown in DTN medium (63) in 5 1 Erlenmeyer flasks (2 l culture) in a rotary shaker (120 rpm) at 45 °C under continuous illumination from fluorescent white lamps (≈80 μmol of photons m⁻² s⁻¹). Typically, 18 l of cell culture were grown until OD₇₅₀ = 0.6. After harvesting by filtration with a Sartocon Hydrosart Microfiltration Cassette (0.2 μm; Sartorius Stedim UK Limited, Epsom, UK), the cells were centrifuged (11,280 g, 10 min) and washed once with buffer 1 (40 mM MES, 2.5 mM MgCl₂, 2.5 mM CaCl₂, 10% glycerol, 1 M betaine, 10 mM NaHCO₃, pH 6.5) and re-suspended in the same buffer, containing 0.2% (v/v) bovine serum albumin, 1 mM benzamidine, 50 μg ml⁻¹ DNase I and protease inhibitor cocktail (05 056 489 001; Roche, Basel, Switzerland) added, to a chlorophyll (Chl) concentration of ≈1.5 mg(Chl) ml⁻¹. The cells were ruptured by being passed twice through a high pressure (20 kpsi) cell disruption system (Constant Systems Ltd., Northants, UK). All subsequent steps were carried out in dim green light at 4 °C. Unbroken cells were removed by centrifugation (1500 g, 5 min, 4 °C). Thylakoids (1 mg(Chl) ml⁻¹, final concentration in buffer 1) were treated with 0.8% (w/v) n-dodecyl-β-maltoside (β-DM, Biomol, Germany). After brief (<10 min) and gentle mixing the suspension was centrifuged (60 min, 185000 g) to remove the non-solubilized material. Then, the supernatant was mixed with an equal volume of ProBond Ni-resin (Invitrogen, Netherlands) that had been pre-equilibrated with buffer 2 (buffer 1 + 15 mM imidazole, 0.03% (v/v) β-DM) and applied to a column. The resin was washed with buffer 2 until the OD value of the eluate at ≈670 nm decreased below 0.05. Then, PSII core complexes were eluted with buffer 3 (buffer 1 + 300 mM imidazole, 0.06% (v/v) β-DM, pH adjusted to 6.5 by adding concentrated HCl). The eluate was concentrated and washed using centrifugal filters (100 kDa Amicon Ultra-15, Millipore-Merck, Germany). PSII core complexes were re-suspended either in buffer 1 or in titration buffer (40 mM MOPS, 2.5 mM MgCl₂, 2.5 mM CaCl₂, 10% glycerol, 1 M betaine, 10 mM NaHCO₃, pH 7) at a Chl concentration of 1–1.5 mg(Chl) ml⁻¹ and stored in liquid N₂ until use. The estimate of Chl concentration was done by extracting the chlorophyll with methanol and by using an extinction coefficient of 79.95 mg⁻¹ ml cm⁻¹ at 665 nm (64).

Oxygen evolution activity of PSII samples was measured in buffer 1 supplemented with 0.5 mM 2,6-dichloro-p-benzoquinone (DCBQ) and 1 mM potassium ferricyanide (FeCN) at 2.5–10 μg(Chl) ml⁻¹ of PSII using a Clark-type electrode (Oxygraph, Hansatech Instruments Limited, UK) at 25 °C under saturating red light (>10,000 μmol m⁻² s⁻¹). The oxygen evolution activity was typically 2500–3500 μmol(O₂) mg(Chl)⁻¹.
Presence of Mn Cluster check by generation of S_2 state

All samples were exposed to light at 77 K to generate the $g=1.66$ signal. Thawing in darkness is done so that the electron from Q_A can be transferred to Q_B. In the low-potential samples, however, this does not occur because Q_B is reduced. When the samples were re-frozen and illuminated at 200 K, the samples containing PSII in which Q_A remain reduced cannot do charge separation and therefore do not show EPR signal from the S_2 state.
Fitting of experimental data.
To obtain the redox potentials of the two couples Q_B/Q_B^* and Q_B^*/Q_BH_2 the experimental data was fit with the following expression.

$$[I] = \frac{[S]}{1+10^{(E-E_m-\frac{\Delta E}{RT})}}$$

Eq. S1

Here $[I]$ is defined as the observed concentration of the intermediate semiquinone. $[S]$ is the total quinone concentration,

$$E_m = (E_1 + E_2)/2$$

Eq. S2

and

$$\Delta E = E_1 - E_2$$

Eq. S3

For more details on how this relationship is derived see either Michaelis (34) or Nitschke (65)

Calculation of dissociation constant.

Figure S2: Relationship between the equilibrium dissociation energy (ΔG_{Dis}) and redox energies of the reaction in solution and in the protein.

From Figure S2 it is apparent that

$$\Delta \Delta G_{\text{protein}} = \Delta G_{\text{protein}}^{Q_B\rightarrow Q_BH_2} - \Delta G_{\text{sol}}^{PQ\rightarrow PQH_2} = \Delta G_{\text{Dis}}^{Q_B} - \Delta G_{\text{Dis}}^{Q_BH_2}$$

Eq. S5

Because of the following relationship,

$$\Delta G_{\text{Dis}} = RT \ln (K_{\text{Dis}})$$

Eq. S6

Eq. S5 can be rearranged as follows

$$\Delta G_{\text{protein}}^{Q_B\rightarrow Q_BH_2} - \Delta G_{\text{sol}}^{PQ\rightarrow PQH_2} = RT \ln \left(\frac{K_{\text{Dis}}^{Q_B}}{K_{\text{Dis}}^{Q_BH_2}} \right)$$

Eq. S7

and the ratio of binding constants calculated:

$$\frac{K_{\text{Dis}}^{Q_B}}{K_{\text{Dis}}^{Q_BH_2}} = e^{\frac{\Delta G_{\text{protein}}^{Q_B\rightarrow Q_BH_2} - \Delta G_{\text{sol}}^{PQ\rightarrow PQH_2}}{RT}}$$

Eq. S8
Re-evaluation of literature EPR titrations
EPR-redox titrations present in the literature were re-evaluated using the correct formula for the concentration of the intermediate semiquinone.

![Graphs of Rh. sphaeroides, Bl. viridis, C. vinosum, and Ph. laminosum](image)

Fig S3: Literature titrations that were reanalysed. Data digitized from (26–28, 30).

<table>
<thead>
<tr>
<th>Organism</th>
<th>E_m (peak pos.)</th>
<th>ΔE</th>
<th>% of total Q_b</th>
<th>E_m @ pH 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Rh. sphaeroides$ pH 8</td>
<td>5±9</td>
<td>36±41</td>
<td>76</td>
<td>64</td>
</tr>
<tr>
<td>$Bl. viridis$ pH 8</td>
<td>16±11</td>
<td>-5±89</td>
<td>29</td>
<td>75</td>
</tr>
<tr>
<td>$Ch. vinosum$ pH 7</td>
<td>94±31</td>
<td>45±115</td>
<td>58</td>
<td>94</td>
</tr>
<tr>
<td>$Ph. laminosum$ pH 8</td>
<td>28±8</td>
<td>-21±82</td>
<td>27</td>
<td>86</td>
</tr>
</tbody>
</table>

Table S1. Values derived from fitting literature titrations.