Y. Li, G. Huang, X. Zhang, B. Li, Y. Chen et al., Magnetic Hydrogels and Their Potential Biomedical Applications, Adv. Funct. Mater, vol.23, pp.660-672, 2013.

C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo et al., Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins

, J. Am. Chem. Soc, vol.126, pp.3392-3393, 2004.

R. Sensenig, Y. Sapir, C. Macdonald, S. Cohen, and B. Polyak, Magnetic nanoparticlebased approaches to locally target therapy and enhance tissue regeneration in vivo, Nanomedicine, vol.7, pp.1425-1467, 2012.

L. Rödling, E. M. Volz, A. Raic, K. Brändle, M. Franzred et al.,

, Macroporous Hydrogels as a Novel Approach for Perfused Stem Cell Culture in 3D Scaffolds via Contactless Motion Control, Adv. Healthc. Mater, vol.7, p.1701403, 2018.

V. Du, N. Luciani, S. Richard, C. Gay, F. Mazuel et al.,

C. Wilhem, A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation, Nature Comm, vol.8, p.400, 2017.

X. Guan, M. Avci-adali, E. Alarçin, H. Cheng, S. S. Kashaf et al.,

A. Jang and . Khademhosseini, Development of hydrogels for regenerative engineering, Biotechnol. J, vol.12, 2017.

S. Gil and J. F. Mano, Magnetic composite biomaterials for tissue engineering, Biomater. Sci, vol.2, pp.812-818, 2014.

S. Panceri, A. Russo, M. Sartori, G. Giavaresi, M. Sandri et al.,

A. Shelyakova, A. Ortolani, V. Visani, A. Dediu, M. Tampieri et al., Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds, Bone, vol.56, pp.432-439, 2013.

Y. Xia, J. Sun, L. Zhao, F. Zhang, X. Liang et al., Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration, Biomaterials, vol.183, pp.151-170, 2018.

J. Kim, J. R. Staunton, and K. Tanner, Independent Control of Topography for 3D Patterning of the ECM Microenvironment, Adv. Mater, vol.28, pp.132-137, 2016.

D. Yang, B. Lu, Y. Zhao, and X. Jiang, Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning, Adv. Mater, vol.19, pp.3702-3706, 2007.

J. D. Kiang, J. H. Wen, J. C. Del-alamo, and A. J. Engler, Dynamic and reversible surface topography influences cell morphology, J. Biomed. Mater. Res. A, vol.101, pp.2313-2321, 2013.

C. Guo and L. J. Kaufman, Flow and magnetic field induced collagen alignment, Biomaterials, vol.28, pp.1105-1114, 2007.

A. B. Bonhomme-espinosa, F. Campos, I. A. Rodriguez, V. Carriel, J. A. Marrins et al.,

J. D. Zubarev, M. T. Duran, and . Lopez-lopez, Effect of particle concentration on the microstructural and macromechanical properties of biocompatible magnetic hydrogels, Soft Matter, vol.22, pp.2928-2941, 2017.

A. Sharma, M. D. Divito, D. E. Shore, A. D. Block, K. Pollock et al.,

J. Feinberg, C. H. Modiano, A. Lam, B. J. Hubel, and . Stadler, Alignment of collagen matrices using magnetic nanowires and magnetic barcode readout using first order reversal curves (FORC), J. Magn. Magn. Mater, vol.459, pp.176-181, 2018.

M. M. Abrougui, M. T. Lopez-lopez, and J. D. Duran, Mechanical properties of magnetic gels containing rod-like composite particles, Phil. Trans. R. Soc. A, vol.377, 2019.

L. Suber, O. Imperatori, G. Ausanio, F. Fabbri, and H. Hofmeister, Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes, J. Phys. Chem. B, vol.109, pp.7103-7109, 2005.

Y. Zhao, Y. Li, R. Z. Ma, D. G. Mccartney, and Y. Q. Zhu, Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction, Small, issue.3, pp.422-427, 2006.

J. Mohapatra, A. Mitra, H. Tyagi, D. Bahadur, and M. Aslam, Iron oxide nanorods as highperformance magnetic resonance imaging contrast agents, Nanoscale, vol.7, pp.9174-9184, 2015.

Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, and J. I. Zink, Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev, vol.41, pp.2590-25605, 2012.

Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li et al.,

. Wang, Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomedicine, vol.11, pp.313-327, 2015.

M. Vallet-regi, M. Colilla, I. Izquierdo-barba, and M. Manzano, Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights, Molecules, vol.23, p.47, 2018.

S. A. Corr, Y. K. Gun'ko, A. P. Douvalis, M. Venkatesan, R. D. Gunning et al.,

, From Nanocrystals to Nanorods: New Iron Oxide? Silica Nanocomposites From Metallorganic Precursors, J. Phys. Chem. C, vol.112, issue.23, pp.1008-1018, 2008.

B. P. Burke, N. Baghdadi, A. E. Kownacka, S. Nigam, G. S. Clemente et al.,

J. Domarkas, M. Lorch, M. Pickles, P. Gibbs, R. Tripier et al., Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions, Nanoscale, vol.7, pp.14889-14869, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01537630

S. Giri, B. G. Trewyn, M. P. Stellmaker, and V. S. Lin, Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles

, Angew. Chem. Int. Ed. Eng, vol.44, pp.5038-5044, 2005.

R. Parenteau-bareil, R. Gauvin, and F. Berthod, Collagen-Based Biomaterials for, Tissue Engineering Applications. Materials, vol.3, pp.1863-1887, 2010.

E. E. Antoine, P. P. Vlachos, and M. N. Rylander, Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport, Tissue Eng. Part B Rev, vol.20, pp.683-696, 2014.

J. Torbet and M. Ronzière, Magnetic alignment of collagen during self-assembly
URL : https://hal.archives-ouvertes.fr/hal-00314203

, Biochem. J, vol.219, pp.1057-1059, 1984.

N. S. Murthy, Liquid crystallinity in collagen solutions and magnetic orientation of collagen fibrils, Biopolymers, vol.23, pp.1261-1267, 1984.

J. Torbet, M. Malbouyres, N. Builles, V. Justin, O. Damour et al., Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction, Biomaterials, vol.28, pp.4268-4276, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00315147

S. Chen, N. Hirota, M. Okuda, M. Takeguchi, H. Kobayashi et al.,

, Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields, Acta Biomater, vol.7, pp.644-652, 2011.

S. Guido and R. T. Tranquillo, A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels, J. Cell Sci, vol.105, pp.317-331, 1993.

R. B. Dickinson, S. Guido, and R. T. Tranquillo, Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels, Ann. Biomed. Eng, vol.22, pp.342-356, 1994.

G. S. Shannon, T. Novak, C. Mousoulis, S. L. Voytik-harbin, and C. P. Neu, Temperature and concentration dependent fibrillogenesis for improved magnetic alignment of collagen gels, RSC Adv, vol.5, pp.2113-2121, 2015.

T. Novak, S. L. Voytik-harbin, and C. P. Neu, Cell encapsulation in a magnetically aligned collagen-GAG copolymer microenvironment, Acta Biomater, vol.11, pp.274-282, 2015.

M. Antman-passig and O. Shefi, Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration, Nano Lett, vol.16, pp.2567-2573, 2016.

A. Tampieri, M. Iafisco, M. Sandri, S. Panseri, C. Cunha et al., Magnetic bioinspired hybrid nanostructured collagen-hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative process, ACS Appl. Mater. Interfaces, pp.15697-15707, 2014.

M. Vedhanayagam, B. U. Nair, and K. J. Sreeram, Collagen-ZnO Scaffolds for Wound Healing Applications: Role of Dendrimer Functionalization and Nanoparticle Morphology

, ACS Appl. Bio. Mater, 1942.

Y. Shi, C. Hélary, and T. Coradin, Exploring the cell-protein-mineral interfaces: Interplay of silica (nano)rods@collagen biocomposites with human dermal fibroblasts, Mater. Today Bio, vol.1, p.100004, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02171970

S. Heinemann, T. Coradin, and M. F. Desimone, Bioinspired silica-collagen materials: applications and perspectives in the medical field, Biomater. Sci, vol.1, pp.688-702, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01461408

A. M. Mebert, G. S. Alvarez, R. Peroni, C. Illoul, T. Coradin et al., Collagensilica nanocomposites as dermal dressings preventing infection in vivo, Mater. Sci. Eng. C, vol.93, pp.170-177, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02135821

A. Kuijk, A. Van-blaaderen, and A. Imhof, Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio, J. Am. Chem. Soc, vol.133, pp.2346-2349, 2011.

H. Qu, S. Tong, K. Song, H. Ma, G. Bao et al., Controllable in situ synthesis of magnetite coated silica-core water-dispersible hybrid nanomaterials, Langmuir, vol.29, pp.10573-10578, 2013.

M. Blondeau, Y. Guyodo, F. Guyot, C. Gatel, N. Menguy et al.,

E. Durand-dubief, R. Alphandery, T. Brayner, and . Coradin, Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria, Sci. Rep, vol.8, p.7699, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02124288

T. Radu, C. Iacovita, D. Benea, and R. Turcu, X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles, Appl. Surf. Sci, pp.337-343, 2017.

R. M. Fratila, S. Rivera-fernandez, and J. M. De-la-fuente, Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials, Nanoscale, vol.17, pp.8233-8260, 2015.

Z. Zhou, X. Zhu, D. Wu, Q. Chen, D. Huang et al., Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects, Chem. Mater, vol.27, pp.3505-3515, 2015.

G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys, vol.94, p.3520, 2003.

H. Yang, L. Duan, Q. Li, Z. Tian, and G. Li, Experimental and modeling investigation on the rheological behavior of collagen solution as a function of acetic acid concentration, J. Mech

, Behav. Biomed. Mater, vol.77, pp.125-134, 2018.

C. Rodriguez-rivero, L. Hilliou, E. M. Martin-del-valle, and M. A. Galan, Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows

, Rheol. Acta, vol.53, pp.559-570, 2014.