D. Baruah, D. Baruah, and M. Hazarika, Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers, Biomass Bioenergy, vol.98, pp.264-271, 2017.

R. B. Bird, W. E. Stewart, E. N. Lightfoot, and D. J. Klingenberg, Transport Phenomena, 2015.

C. Bohn, S. A. Scott, J. S. Dennis, and C. Müller, Validation of a lattice boltzmann model for gas-solid reactions with experiments, J. Comput. Phys, vol.231, pp.5334-5350, 2012.

I. Calmet and J. Magnaudet, Large-eddy simulation of high-schmidt number mass transfer in a turbulent channel flow, Phys. Fluids, vol.9, pp.438-455, 1997.

R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles. Courier Corporation, 2005.

F. Dierich, A. Richter, and P. Nikrityuk, A fixed-grid model to track the interface and porosity of a chemically reacting moving char particle, Chem. Eng. Sci, vol.175, pp.296-305, 2018.

A. G. Dixon, M. E. Taskin, M. Nijemeisland, and E. H. Stitt, Cfd method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field, Ind. Eng. Chem. Res, vol.49, pp.9012-9025, 2010.

Z. G. Feng and E. E. Michaelides, A numerical study on the transient heat transfer from a sphere at high reynolds and peclet numbers, Int. J. Heat Mass Transfer, vol.43, pp.219-229, 2000.

D. Gunn, Transfer of heat or mass to particles in fixed and fluidised beds, Int. J. Heat Mass Transfer, vol.21, pp.467-476, 1978.

T. M. Ismail, M. A. El-salam, E. Monteiro, and A. Rouboa, Fluid dynamics model on fluidized bed gasifier using agro-industrial biomass as fuel. Waste Manage, 2017.

A. T. Jarullah, N. A. Awad, and I. M. Mujtaba, Optimal design and operation of an industrial fluidized catalytic cracking reactor, Fuel, vol.206, pp.657-674, 2017.

G. Juncu, The influence of the henry number on the conjugate mass transfer from a sphere, Heat Mass Transfer, vol.37, pp.519-530, 2001.

G. Juncu, The influence of the henry number on the conjugate mass transfer from a sphere: II -Mass transfer accompanied by a first-order chemical reaction, Heat Mass Transfer, vol.38, pp.523-534, 2002.

L. S. Kleinman and X. J. Reed, Interphase mass transfer from bubbles, drops, and solid spheres: diffusional transport enhanced by external chemical reaction, Ind. Eng. Chem. Res, vol.34, pp.3621-3631, 1995.

M. W. Losey, M. A. Schmidt, and K. F. Jensen, Microfabricated multiphase packedbed reactors: characterization of mass transfer and reactions, Ind. Eng. Chem. Res, vol.40, pp.2555-2562, 2001.

J. Lu, S. Das, E. Peters, and J. Kuipers, Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems with surface reactions, Chem. Eng. Sci, vol.176, pp.1-18, 2018.

J. Magnaudet, M. Rivero, and J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow, J. Fluid Mech, vol.284, pp.97-135, 1995.

R. Mikulandri?, D. Böhning, R. Böhme, L. Helsen, and . Beckmann, Dynamic modelling of biomass gasification in a co-current fixed bed gasifier, Energy Convers. Manage, vol.125, pp.264-276, 2016.

D. Neves, A. Matos, L. Tarelho, H. Thunman, A. Larsson et al., Volatile gases from biomass pyrolysis under conditions relevant for fluidized bed gasifiers, 2017.

, J. Anal. Appl. Pyrol, vol.127, pp.57-67

B. Partopour and A. Dixon, An integrated workflow for resolved-particle packed bed models with complex particle shapes, Powder Technol, vol.322, pp.258-272, 2017.

B. Partopour and A. G. Dixon, Resolved-pore simulation of co oxidation on rh/ al2o3 in a catalyst layer, vol.2, 2017.

S. Piché, B. P. Grandjean, I. Iliuta, and F. Larachi, Interfacial mass transfer in randomly packed towers: a confident correlation for environmental applications, Environ. Sci. Technol, vol.35, pp.4817-4822, 2001.

F. Pigeonneau, M. Perrodin, and E. Climent, Mass-transfer enhancement by a reversible chemical reaction across the interface of a bubble rising under stokes flow, AIChE J, vol.60, pp.3376-3388, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071559

W. Ranz and W. Marshall, Evaporation from drops, Chem. Eng. Prog, vol.48, pp.141-146, 1952.

I. Rossetti, Continuous flow (micro-) reactors for heterogeneously catalyzed reactions: Main design and modelling issues, Catal. Today, 2017.

E. Ruckenstein, V. D. Dang, and W. N. Gill, Mass transfer with chemical reaction from spherical one or two component bubbles or drops, Chem. Eng. Sci, vol.26, pp.647-668, 1971.

X. Shao, Y. Shi, and Z. Yu, Combination of the fictitious domain method and the sharp interface method for direct numerical simulation of particulate flows with heat transfer, Int. J. Heat Mass Transfer, vol.55, pp.6775-6785, 2012.

T. Sherwood and J. Wei, Interfacial phenomena in liquid extraction, Ind. Eng. Chem, vol.49, pp.1030-1034, 1957.

N. Wakao and T. Funazkri, Effect of fluid dispersion coefficients on particle-tofluid mass transfer coefficients in packed beds: correlation of sherwood numbers, Chem. Eng. Sci, vol.33, pp.1375-1384, 1978.

G. D. Wehinger, F. Klippel, and M. Kraume, Modeling pore processes for particleresolved cfd simulations of catalytic fixed-bed reactors, Comput. Chem. Eng, vol.101, pp.11-22, 2017.

S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE J, vol.18, pp.361-371, 1972.