T. Asada, C. Roberts, and T. Koseki, An algorithm for improved performance of railway condition monitoring equipment: Alternatingcurrent point machine case study, Transportation Research Part C: Emerging Technologies, vol.30, pp.81-92, 2013.

C. Letot, P. Dersin, M. Pugnaloni, P. Dehombreux, G. Fleurquin et al., A data driven degradation-based model for the maintenance of turnouts: a case study, IFAC-PapersOnLine, vol.48, issue.21, pp.958-963, 2015.

A. Pe?ka, Diagnozowanie urzadze? sterowania ruchem kolejowym na przyk?adzie napedu zwrotnicowego, 2009.

J. Sa, Y. Choi, Y. Chung, H. Kim, D. Park et al., Replacement condition detection of railway point machines using an electric current sensor, Sensors, vol.17, issue.2, p.263, 2017.

T. Xu, G. Wang, H. Wang, T. Yuan, and Z. Zhong, Gap measurement of point machine using adaptive wavelet threshold and mathematical morphology, Sensors, vol.16, issue.12, p.2006, 2016.

J. Lee, H. Choi, D. Park, Y. Chung, H. Kim et al., Fault detection and diagnosis of railway point machines by sound analysis, Sensors, vol.16, issue.4, 2016.

I. Meteorology, W. M. Institute, and P. Warsaw,

Y. Sun, A. K. Wong, and M. S. Kamel, Classification of imbalanced data: A review, International Journal of Pattern Recognition and Artificial Intelligence, vol.23, issue.04, pp.687-719, 2009.

I. Doboszewski, S. Fossier, and C. Marsala, Extraction de connaissances sur les defaillances de compteurs d'essieux, Revue des Nouvelles Technologies de l'Information, pp.311-316, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01914453

J. Jakubowski and R. Sztencel, Wstep do teorii prawdopodobie?stwa. Script, 2001.

Y. Tang, Y. Zhang, N. V. Chawla, and S. Krasser, Svms modeling for highly imbalanced classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.39, issue.1, pp.281-288, 2009.

J. Gareth, D. Witten, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning. Data Mining, 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

E. Jones, SciPy: Open source scientific tools for Python, 2001.

D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant, Numerical Python, ucrl-ma-128569 ed, 1999.