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2 Laboratoire Géomatique et Foncier, CNAM, 72000 Le Mans, France
3 Centre de Transfert de technologie du Mans, 72000 Le Mans, France

E-mail: manuel.melon@univ-lemans.fr

Abstract. In order to measure low frequency vibrations with a stereo sensor, it is interesting
to increase the angles between the cameras and the measured surface, as the out-of-plane
displacements are then more visible on the images. Even if Digital Image Correlation has
proven to be a valid tool to measure vibrations, the initial pairing process remains difficult, in
this context, because of the large pan angle, all the more so if the measured object presents
significant variations in depth (for example a loudspeaker). This conference paper thus presents
a new method specifically designed to rectify images (referred to as the IRIs method), which
successfully allows initializing the vibration measurement with a high number of measurement
points. In the same way, the conventional single-camera pseudo stereo system with a four-mirror
adapter, which is largely used to perform displacement measurement, remains rather complex to
operate. This paper thus proposes a single-camera simplified system, with a two-mirror adapter
only. The ensuing global protocol is more user-friendly, and even if the results obtained for
vibration measurement are a little less accurate with the two-mirror adapter, the operational
modal shapes have been successfully retrieved and match very well those obtained with the
conventional set-up.

1. Introduction
The measurement of structural acoustic sources can be achieved by various means, that may
be gathered together into two different branches: on the one hand, vibration measurement
methods which focus on the vibration of the source; on the other hand, acoustic field
measurement approaches which use microphones. The former are very popular because they
usually do not require an anechoic chamber and thus can be performed in normal rooms.
Two classical measurement devices are generally used in this context: accelerometers [1] and
laser vibrometers [2]. However, these single-point techniques are not appropriate for sources
that exhibit non-stationary or non-linear behaviours. In that case, full-field methods, for
which all the points of interest are measured simultaneously, become particularly interesting.
As a consequence, over the past decades, several optical full-field methods have been
adapted to vibration measurements: deflectometry [3], digital holography [4] and dynamic
photogrammetry [5] for example. While allowing performing full-field measurement, they present
additional assets, such as non-intrusiveness or low sensitivity to the ambient acoustic noise. In
a context of shape or vibration measurement, dynamic photogrammetry and more precisely 3D
vision methods are at the core of the approach presented in this paper.

http://creativecommons.org/licenses/by/3.0
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In order to perform shape and deformation measurement, Digital Image Correlation (DIC)
is largely used [6]. Along with the development of high-speed cameras, its relevance to
measure vibrations has been increasingly studied over the past decade [5, 7–13]. These
cameras are also used by other vibration measurement techniques, such as videography [14, 15],
stereophotogrammetry [16], digital holography [4] or fringe projection [17].

For the 3D vision methods, the protocol usually designed requires two views of the studied
object to perform triangulation and obtain the data needed to retrieve the 3D shape and
displacement of the object. Originally, two high-speed cameras were used [7, 8]. Because of
the cost of these devices and the associated problems to synchronise them neatly, another set-
up, originating from robotics [18–20] is very often used. It requires a single high-speed camera
and a four-mirror adapter to generate two virtual cameras, and thus views, from a single real
one. This pseudo stereo system with a four-mirror adapter has been validated several times to
measure vibrations [21–25].

In this context, the use of large angles between the measured surface of the object and the
cameras has proven to provide better precision for out-of-plane displacement [6] and thus to lead
to better results for vibration measurement [25]. However, the initial pairing process, using DIC
tools, remains difficult if the pan angle is large and if the measured object presents variations
in depth (typically a loudspeaker). This conference paper thus presents a method designed for
this specific context and a simplified set-up, in order to make the whole protocol more effective,
user-friendly, while keeping a high degree of precision in the vibration measurement.

2. 3D iterative rectification of images (referred to as the IRIs method)
The usual image rectification methods, such as the epipolar image rectification [26, 27], are no
longer sufficient to pair a high number of measurement points automatically, notably if a large
pan angle is used (from 60◦ to 90◦ approximately) and if the studied object presents significant
variations in depth (cf. figure 1). A new protocol has thus been designed in order to quickly
and easily perform shape measurement with these specific parameters. The resulting synoptic
diagram is shown figure 2.

An initial coarse shape measurement is performed with rectified images [26–28], with few
measurement points, paired either automatically or even manually (cf. figure 3). From this initial
shape, two ortho-images (one per view) are calculated by defining a pixel matrix in the 3D space
of the object. The 3D positions of the matrix pixels are obtained by using the reference shape
and are projected onto the initial images to perform image interpolation (cf. figure 4). As the
ortho-images obtained display a higher degree of similarity, more points may be automatically
paired. They are then projected onto the initial images in order to calculate a new shape, which
can be used, in turn, to calculate new ortho-images, and so on...

Figure 1. Rectified images: (left) from the left
camera, (right) from the right camera.

Initial shape
measurement

Shape Ortho-image

Image correlation
Projection onto

initial images

Definition of the
subsets tracked

Figure 2. Synoptic diagram.
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used to measure a coarse shape.
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Figure 4. Sketch of the protocol used to calculate ortho-
images.

After a few iterations, a large number of points can be paired (cf. figure 5) with an increasingly
high precision as the ortho-images are increasingly similar. The correlation coefficient of the
ortho-images directly indicates the degree of convergence of the process. For this experiment,
when the third ortho-images are superimposed, ≈92% of correlation is achieved, with most of
the differences coming from specular reflections (cf. figure 6).

In order to measure vibrations, pixel areas may now be defined. For this work, a few points
have been chosen on a circle around each measurement point in the ortho-images. These points
have been projected onto the initial images so as to calculate ellipses, whose areas define subsets
tracked in the video. This protocol allows triangulating the full-field vibration signals of the
object.

Once this technique established, it was tested on a loudspeaker, using the pseudo stereo
system with a four-mirror adapter. This set-up was noticeably complex to manipulate,
particularly because of the central mirrors. Moreover, the large pan angle clearly hindered the
initial pairing process of the protocol presented in this paper. An attempt at reorganising the
various elements differently was thus made, resulting in a new set-up requiring only a two-mirror
adapter.

3. Pseudo stereo system with a two-mirror adapter
As mentioned previously, the pseudo stereo system with a four-mirror adapter (cf. figure 7) is not
user-friendly, especially because of the central mirrors. Its use is all the more complex since it
presents a shadow area in the middle of the image. The new set-up presented in this paper offers
an alternative (cf. figure 8) : it requires only two mirrors and is specifically adapted to measure
vibrations. Indeed, the real high-speed camera is placed on the side of the object and generates a
view that is sensitive to out-of-plane displacement. The other, virtual, view is generated by the
two mirrors and positioned in front of the object: it is thus sensitive to in-plane displacements.
It may be noted that the principle of having a view set in front of the object is also used in
trinocular stereo systems to initialise and facilitate the pairing process [29]. As a consequence,
the pan angle is reduced by two, which simplifies the initial pairing process, while keeping a view
that is very sensitive to vibrations. The whole system is more user-friendly, as there are only
two large mirrors, and the shadow area in the image is reduced. The non-symmetry of the views
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Figure 5. Measurement points re-projected
onto the initial images: (left) first iteration,
(right) second iteration.

correlation : 53.78%

correlation : 91.95%

Figure 6. Ortho-images combined in two
colors: (top) first iteration, (bottom) third
iteration

induces biais in the shape measurement, but more pixels are available for the vibration-sensitive
view.

Observed object

Real camera
Right virtual

camera
Left virtual
camera

Figure 7. Sketch of the set-up with a four-
mirror adapter.

Observed object

Camera

Figure 8. Sketch of the set-up with a two-
mirror adapter.

A test on a loudspeaker has been carried out : the two-mirror adapter set-up has been used
with the IRIs method to initialise the pairing process. The experimental set-up is presented
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figure 9. Figure 10 shows an example of image obtained with the new pseudo stereo system.
The results have been compared with those obtained with the four-mirror adapter set-up for the
full-field measurement, and with those obtained with a laser vibrometer (Polytec) for a single
point measurement, in order to validate the whole protocol.

Figure 9. Picture of the
experimental set-up.

Figure 10. Example of image obtained with the pseudo
stereo system with a two-mirror adapter.

The Frequency Response Functions (FRFs) of the central measurement point of the
loudspeaker are calculated from the excitation signal at its terminals and from the resulting
displacement signals measured with the two-mirror adapter and four-mirror adapter set-ups,
and with the laser vibrometer. The results of the vision methods are shown figure 11 and match
well those obtained with the reference technique, which validates the approach. The proposed
set-up is a little less precise than the conventional one; yet the differences between the values
obtained with the laser vibrometer and with the two-mirror adapter set-up are globally below
10%.

From the FRFs of all the points, the Operational Modal Shapes (OMSs) can be retrieved
and displayed for both pseudo stereo systems (cf. figures 12 and 13). The images match neatly,
which validates the technique once again.

4. Conclusion
In conclusion, firstly, large pan angles improve the precision of the vibration measurement
but make it more difficult to pair initial measurement points if the object of study presents
significant variations in depth. The IRIs method proposed here has been designed to perform
this pairing process from a coarse shape measurement, while taking into consideration all the
constraints mentioned above. It successfully allows initializing vibration measurement with
a high number of measurement points. Secondly, if only one high-speed camera is at one’s
disposal, the conventional pseudo stereo system with a four-mirror adapter may be used to
measure vibrations at the expense of the number of pixels available. Nonetheless, this set-up
is not particularly user-friendly. Hence the attempt at designing a new set-up, which involves
a different, simpler adapter with two mirrors. With this new system, the results seem to be
a little less precise but the whole protocol allows retrieving similar operational modal shapes,
which validates the technique presented in this paper.
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Figure 11. FRFs measured with the laser vibrometer and the vision set-ups

187 Hz 321 Hz

Figure 12. OMSs obtained with the two-
mirror adapter set-up.

189 Hz 323 Hz

Figure 13. OMSs obtained with the four-
mirror adapter set-up.
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