Is AD a Stress-Related Disorder? Focus on the HPA Axis and Its Promising Therapeutic Targets
Geoffrey Canet, Célia Hernandez, Charline Zussy, Nathalie Chevallier, Catherine Desrumaux, Laurent Givalois

To cite this version:
Geoffrey Canet, Célia Hernandez, Charline Zussy, Nathalie Chevallier, Catherine Desrumaux, et al.. Is AD a Stress-Related Disorder? Focus on the HPA Axis and Its Promising Therapeutic Targets. Frontiers in Aging Neuroscience, Frontiers, 2019, 11, 10.3389/fnagi.2019.00269. hal-02407291

HAL Id: hal-02407291
https://hal.archives-ouvertes.fr/hal-02407291
Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Is AD a Stress-Related Disorder? Focus on the HPA Axis and Its Promising Therapeutic Targets

Geoffrey Canet, Célia Hernandez, Charleine Zussy, Nathalie Chevallier, Catherine Desrumaux and Laurent Givalois*

Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer’s Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that has important health and economic impacts in the elderly. Despite a better understanding of the molecular mechanisms leading to the appearance of major pathological hallmarks (senile plaques and neurofibrillary tangles), effective treatments are still lacking. Sporadic AD forms (98% of all cases) are multifactorial, and a panoply of risk factors have been identified. While the major risk factor is aging, growing evidence suggests that chronic stress or stress-related disorders increase the probability to develop AD. An early dysregulation of the hypothalamic-pituitary-adrenal axis (HPA axis or stress axis) has been observed in patients. The direct consequence of such perturbation is an oversecretion of glucocorticoids (GC) associated with an impairment of its receptors (glucocorticoid receptors, GR). These steroids hormones easily penetrate the brain and act in synergy with excitatory amino acids. An overexposure could be highly toxic in limbic structures (prefrontal cortex and hippocampus) and contribute in the cognitive decline occurring in AD. GC and GR dysregulations seem to be involved in lots of functions disturbed in AD and a vicious cycle appears, where AD induces HPA axis dysregulation, which in turn potentiates the pathology. This review article presents some preclinical and clinical studies focusing on the HPA axis hormones and their receptors to fight AD. Due to its primordial role in the maintenance of homeostasis, the HPA axis appears as a key-actor in the etiology of AD and a prime target to tackle AD by offering multiple angles of action.

Keywords: Alzheimer's disease, glucocorticoids, stress-related disorder, CRH (corticotropin-releasing hormone), HPA axis (hypothalamus-pituitary-adrenal), AVP (arginine vasopressin), 11β hydroxysteroid dehydrogenase

GENERAL ASPECTS

Sporadic Alzheimer’s disease (AD; 98% cases) is a progressive neurodegenerative pathology, and its complexity could be explained by a wide range of risk factors. Growing evidence suggests that lifetime events such as chronic stress or stress-related disorders, like major depression disorder (MDD) or anxiety, may increase the probability to develop AD (Heininger, 2000; Blennow et al., 2006; Querfurth and LaFerla, 2010; Canet et al., 2019). In patients, an early dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis was observed (Hartmann et al., 1997; Csernansky et al., 2006). The direct consequence of such perturbation is a glucocorticoids (GC)
over-secretion associated with GC receptors (GR) signaling impairment. These steroid hormones easily penetrate the brain tissue and act in synergy with excitatory amino acids. A GC overexposure is highly toxic in limbic structures (McEwen, 2008), especially in prefrontal cortex and hippocampus, which could participate to the cognitive decline occurring in AD. Furthermore, GC and GR dysregulations are involved in lots of functions disturbed in AD: i.e., dysregulation of the amyloid precursor protein (APP) processing, Tau phosphorylation, neuroinflammation, oxidative stress and excitotoxicity (Sapolsky, 1996; McEwen, 2008; Bengoetxea et al., 2016). Thus, a vicious cycle between AD and the HPA axis seems to occur, where AD induces the dysregulation of the HPA axis, which in turn potentiates the pathology (Brureau et al., 2013; Pineau et al., 2016; Canet et al., 2019).

This article reviews some preclinical and clinical studies focusing on the HPA axis hormones and receptors as potential targets for AD. Promising results are obtained by targeting corticotropin releasing hormone (CRH), arginine vasopressin (AVP) and GR, or by inhibiting the 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1), involved in GC synthesis. Finally, this review intends to show that the HPA axis, due to its essential role in the maintenance of homeostasis, could be a key factor in the etiology of AD and a prime target to tackle AD by offering multiple druggable opportunities.

THE HPA AXIS

The HPA axis is required to provide appropriate adaptation to external or internal challenges called stress, which initiates a cascade of hormonal processes (Figure 1A). This cascade starts in the hypothalamic paraventricular nucleus (PVN) with a release of CRH and AVP at the median eminence level. AVP acts in synergy with CRH to induce pituitary adrenocorticotropin (ACTH) release in blood (Whitnall et al., 1987; Mouri et al., 1993; Raff, 1993; Torner et al., 2017). Then, ACTH triggers the adrenal cortex to release GC (cortisol in human, corticosterone in rodents). These hormones act widely throughout the body and brain to mobilize energy resources in order to fight stress and maintain homeostasis (Carroll et al., 2011). To avoid an overactivation of the HPA axis, GC exert an inhibitory feedback at all stages of the axis (Figure 1A; Tasker and Herman, 2011). These steroid hormones bind to low affinity GR and high affinity mineralocorticoid receptors (MR; Reul and de Kloet, 1985). These nuclear receptors are necessary for normal cellular activity and crucial for many central nervous system functions, including learning and memory (Roozendaal, 2000). The GC circadian regulation is under the control of MR, while under stress conditions, GC rise significantly causing substantial activation of GR (Reul and de Kloet, 1985; Thomas, 2015).

It is interesting to note that AVP and CRH are also locally synthesized within the brain, where they are important neuromodulators involved in the central organization of various brain-mediated stress responses (Buijs, 1990; Tilders et al., 1993).

In human, chronic stress and HPA axis dysregulation with chronic GC hypersecretion appear to exert detrimental effects in normal aging and AD (Hartmann et al., 1997; Lupien et al., 1998; Notarianni, 2013; Givalois, 2014; Canet et al., 2018), but also in Parkinson’s disease (Wu et al., 2016), Cushing’s syndrome (Kroon et al., 2018), and MDD (Canet et al., 2018). A prolonged exposure to GC appears to damage particularly limbic structures (hippocampus and prefrontal cortex) by inducing a state of vulnerability in these neurons through the disruption of various cellular mechanisms (Sapolsky, 1996; McEwen, 2008). This review will present several current strategies in AD, aiming to restore HPA axis function and to limit GC production and toxicity.

HPA AXIS: MULTIPLE PROMISING TARGETS FOR AD TREATMENT

Targeting CRH Receptors In AD

CRH acts via G-protein-coupled receptor type 1 or 2 (CRH-R1 and CRH-R2) with widespread brain expression to orchestrate the stress response (Bale and Vale, 2004). In AD patients, investigators reported a reduction of immunoreactive cells for CRH in the cortex, associated with an increase of postsynaptic CRH receptors density (Whitehouse et al., 1987; Pomara et al., 1989; Behan et al., 1995). Besides clinical evidence, it was shown that CRH and CRH-R1 play critical roles in the regulation of stress-induced neuropepathogenesis and behavioral deficits in mice models of AD (Dong et al., 2008; Carroll et al., 2011; Zhang et al., 2016; Table 1). CRH overexpressing mice display increased Tau hyperphosphorylation and aggregation in the hippocampus (Campbell et al., 2014). In Tg2576-AD mice, chronic isolation stress increases the expression of CRH-R1 in cortex and hippocampus (Dong et al., 2008). These authors also showed that chronic administration of antalarmin (a CRH-R1 antagonist) significantly decreased plasma corticosterone levels, tissue Aβ levels and Aβ plaques deposition in the brain, and blocked the effects of isolation stress on anxiety levels and memory (Dong et al., 2014). A few years later, a 3 month-treatment in food with CRH-R1 antagonists (Antalarmin and R121919) was shown to prevent stress-induced behavioral changes (anxiety and memory) and synaptic loss in aged rats, perhaps by reversing HPA axis dysfunction (Dong et al., 2018). Moreover, in another mouse model of AD (APP/PS1) a 5 month-treatment with R121919 prevented the onset of cognitive impairment, reduced cellular and synaptic deficits and Aβ levels (Zhang et al., 2016). Similarly, pre-treatment with another CRH-R1 antagonist (NBI27914) in PS19-AD mice (P301S mutation) before restraint/isolation stress prevented Tau hyperphosphorylation and aggregation, neurodegeneration and fear-memory impairment (Carroll et al., 2011).

Such molecules have already been used in clinical trials for mood disorders (Zorrilla and Koob, 2004, 2010) and MDD (Nielsen, 2006) for many years, with disappointing results. However, all these preclinical studies highlight a promising therapeutic potential of CRH-R1 antagonists as treatments for neurodegenerative disorders such as AD. New CRH-R1 antagonists are in development to improve their bioavailability and safety profiles (Spierling and Zorrilla, 2017).
FIGURE 1 | Mechanisms linking HPA axis dysregulation and AD. Following acute stress (A), hypothalamic PVN releases CRH and AVP in the blood portal of median eminence. In response to CRH and AVP, corticotropic cells of anterior pituitary release ACTH in the peripheral circulation to induce GC secretion in blood by adrenal cortex. Succinctly, (1) GC mobilize energy resources and increase cardiovascular function to fight stress. Besides, GC inhibit unnecessary functions in the early phase of stress response, such as immunity, growth, digestion and reproduction. Then, (2) to avoid runaway of the system, GC exert an inhibitory feedback at all stages of HPA axis (hypothalamus and pituitary). In addition, as they easily penetrate in the brain, GC also act on several regions involved in the control of HPA axis activity, such as hippocampus and prefrontal cortex (tonic inhibition) or amygdala (tonic stimulation, Canet et al., 2018). However, chronic stress leads to a sustained activation of HPA axis and could induce stress-related disorders, as for instance MMD and AD (B, Canet et al., 2019). In this context, GC over-secretion is associated with GC resistance and GR signaling impairment (Chrousos et al., 1993). Homeostasis maintenance is compromised, leading to insulin resistance, dyslipidemia, atherosclerosis, hypertension and a massive peripheral inflammation (Vitellius et al., 2018; Maslov et al., 2019). In limbic structures (hippocampus, prefrontal cortex), it was shown that GC overexposure induces hippocampal and cortical atrophy (McEwen, 2008) and amygdala hypertrophy (Vyas et al., 2003, 2004), that could be related to learning and memory deficits, emotional impairment, excitotoxicity, neuroinflammation and oxidative stress (Sapolsky, 1996; (Continued))
Targeting AVP Receptors In AD

Hypothalamic neurons of PVN and supra-optic nucleus are the major source of AVP (Swaab, 1998). This hormone is especially involved in the regulation of water, electrolyte balance and in the stress response (Swaab, 1995; Twist et al., 2000). The effects of AVP are mediated by different receptor subtypes: V1a, V1b, and V2, which are G-protein coupled receptors (Cilz et al., 2018). However, the limbic action of AVP seems to be mediated by the V1b subtype, enriched in the hippocampus (Young et al., 2006). In rodents, its pharmacological activation enhances excitatory processing of social information (Cilz et al., 2018). The effects of AVP are also implicated in many central processes including learning and memory (de Wied et al., 1993; Caldwell et al., 2008; Lee et al., 2009), anxiety (Caldwell et al., 2008; Lee et al., 2009), and processing of social information (Cilz et al., 2018). The effects of AVP are mediated by different receptor subtypes: V1a, V1b, and V2, which are G-protein coupled receptors (Cilz et al., 2018).

In a depressive and/or anxiety context, the therapeutic interest of V1b antagonists has been known for many years (Griebel et al., 2003). This target is particularly studied in pathologies associated with HPA axis dysregulation (Griebel et al., 2003; Katz et al., 2016; Table 1). The first selective and orally active V1b antagonist developed was SSR149415. In rodent models of anxiety and depression, SSR149415 produced a clear-cut anxiolytic-like activity in traumatic stress models (social defeat paradigm) and antidepressant-like effects (Griebel et al., 2002). More recently, in the same paradigm, other V1b antagonists (TASP0390325 and TASPO233278) elicited antidepressant-like effects (Iijima et al., 2014). These findings evidenced that V1b receptor blockade is particularly interesting for the treatment of affective and emotional disorders. For instance, several clinical trials are in progress with the V1b antagonist ABT-436, which is in phase 1b for depression treatment (Katz et al., 2016, 2017), and in phase 2 for alcohol dependence treatment (Ryan et al., 2017).

Thus, while evidences about a direct involvement of hypothalamic AVP in AD patients are not yet available, many studies showed a crucial role played by AVP in stress and stress-related disorders such as MDD or anxiety. These findings are interesting as MDD could be a prodromal feature of AD and dementia (Herbert and Lucassen, 2016; Ishijima et al., 2017; Canet et al., 2018), justifying further investigations.

Targeting GC Synthesis In AD

11β-HSD1 is a key enzyme that mediates the intracellular conversion of inactive cortisone to cortisol in humans (11β-dehydrocortistosterone to corticosterone in rodents), the active form of GC, thus amplifying steroid action. An haplotype in the 11β-HSD1 gene that increases 6-fold the risk to develop AD was reported (de Quervain et al., 2004).

Lowering GC exposure in the brain via intracerebral injection of 11β-HSD1 has emerged as a therapeutic strategy to treat cognitive impairment in AD (Table 1). Pharmacological inhibition of 11β-HSD1 (UE1961) in aged mice improved spatial memory performance (Soo et al., 2010). More recently, authors also demonstrated using another inhibitor (UE2316), a reduction of Aβ plaques in the cortex of old Tg2576-AD mice associated with an increase of IDE levels and memory improvements (Soo et al., 2015). Moreover, in aged rodents, modulation of 11β-HSD1 by genetic knockdown or pharmacological inhibition improved memory. In Mohler’s study, the authors tested an acute treatment with two novel inhibitors (A-918446 and A-801195, Abbott Laboratories). These compounds were able to improve memory consolidation, short-term memory, and recall in inhibitory avoidance (Mohler et al., 2011).

It is also known that aged mice develop elevated plasma corticosterone levels that correlate with learning deficits in the water-maze. This poor performance in a long-term memory task can be ameliorated by an 11β-HSD1 knockout, implicating lower intraneuronal corticosterone levels (Yau et al., 2001, 2015). In senescence-accelerated SAMP8 mice, pre-treatment with metyrapone, which inhibits the 11β-hydroxylase, completely normalized corticosterone levels and restored spatial memory (Linuma et al., 2008).

These promising data led to a clinical trial with a novel brain-penetrant 11β-HSD1 inhibitor (UE2343, XanamemTM) for AD treatment. The Phase 1 clinical studies showed that UE2343 is safe, well tolerated and is able to moderately penetrate the brain (Webster et al., 2017). In addition, it is interesting to note that treatment of cognitively impaired elderly male patients with carbadoxonol (a non-selective 11β-HSD1 inhibitor) improved verbal fluency and memory (Sandep et al., 2004).

Targeting GR In AD

The ubiquitous expression of GR and their involvement in a broad range of biological processes make them a prime target in many diseases. On the other hand, the global inhibition or activation of these receptors can lead to many potential side effects. For instance, it was demonstrated that a blockade of brain GR with Mifepristone (RU486, the reference non-selective GR antagonist) impaired spatial learning and memory in rodent (Roozendaal and McGaugh, 1997; Oitzl et al., 1998). A more recent study showed that central or peripheral administration of RU486, immediately following memory reactivation, induced

Targeting GC Synthesis In AD

11β-HSD1 is a key enzyme that mediates the intracellular conversion of inactive cortisone to cortisol in humans (11β-dehydrocortistosterone to corticosterone in rodents), the active form of GC, thus amplifying steroid action. An haplotype in the 11β-HSD1 gene that increases 6-fold the risk to develop AD was reported (de Quervain et al., 2004).

Lowering GC exposure in the brain via intracerebral injection of 11β-HSD1 has emerged as a therapeutic strategy to treat cognitive impairment in AD (Table 1). Pharmacological inhibition of 11β-HSD1 (UE1961) in aged mice improved spatial memory performance (Soo et al., 2010). More recently, authors also demonstrated using another inhibitor (UE2316), a reduction of Aβ plaques in the cortex of old Tg2576-AD mice associated with an increase of IDE levels and memory improvements (Soo et al., 2015). Moreover, in aged rodents, modulation of 11β-HSD1 by genetic knockdown or pharmacological inhibition improved memory. In Mohler’s study, the authors tested an acute treatment with two novel inhibitors (A-918446 and A-801195, Abbott Laboratories). These compounds were able to improve memory consolidation, short-term memory, and recall in inhibitory avoidance (Mohler et al., 2011).

It is also known that aged mice develop elevated plasma corticosterone levels that correlate with learning deficits in the water-maze. This poor performance in a long-term memory task can be ameliorated by an 11β-HSD1 knockout, implicating lower intraneuronal corticosterone levels (Yau et al., 2001, 2015). In senescence-accelerated SAMP8 mice, pre-treatment with metyrapone, which inhibits the 11β-hydroxylase, completely normalized corticosterone levels and restored spatial memory (Linuma et al., 2008).

These promising data led to a clinical trial with a novel brain-penetrant 11β-HSD1 inhibitor (UE2343, XanamemTM) for AD treatment. The Phase 1 clinical studies showed that UE2343 is safe, well tolerated and is able to moderately penetrate the brain (Webster et al., 2017). In addition, it is interesting to note that treatment of cognitively impaired elderly male patients with carbadoxonol (a non-selective 11β-HSD1 inhibitor) improved verbal fluency and memory (Sandep et al., 2004).

Targeting GR In AD

The ubiquitous expression of GR and their involvement in a broad range of biological processes make them a prime target in many diseases. On the other hand, the global inhibition or activation of these receptors can lead to many potential side effects. For instance, it was demonstrated that a blockade of brain GR with Mifepristone (RU486, the reference non-selective GR antagonist) impaired spatial learning and memory in rodent (Roozendaal and McGaugh, 1997; Oitzl et al., 1998). A more recent study showed that central or peripheral administration of RU486, immediately following memory reactivation, induced

Targeting GC Synthesis In AD

11β-HSD1 is a key enzyme that mediates the intracellular conversion of inactive cortisone to cortisol in humans (11β-dehydrocortistosterone to corticosterone in rodents), the active form of GC, thus amplifying steroid action. An haplotype in the 11β-HSD1 gene that increases 6-fold the risk to develop AD was reported (de Quervain et al., 2004).

Lowering GC exposure in the brain via intracerebral injection of 11β-HSD1 has emerged as a therapeutic strategy to treat cognitive impairment in AD (Table 1). Pharmacological inhibition of 11β-HSD1 (UE1961) in aged mice improved spatial memory performance (Soo et al., 2010). More recently, authors also demonstrated using another inhibitor (UE2316), a reduction of Aβ plaques in the cortex of old Tg2576-AD mice associated with an increase of IDE levels and memory improvements (Soo et al., 2015). Moreover, in aged rodents, modulation of 11β-HSD1 by genetic knockdown or pharmacological inhibition improved memory. In Mohler’s study, the authors tested an acute treatment with two novel inhibitors (A-918446 and A-801195, Abbott Laboratories). These compounds were able to improve memory consolidation, short-term memory, and recall in inhibitory avoidance (Mohler et al., 2011).

It is also known that aged mice develop elevated plasma corticosterone levels that correlate with learning deficits in the water-maze. This poor performance in a long-term memory task can be ameliorated by an 11β-HSD1 knockout, implicating lower intraneuronal corticosterone levels (Yau et al., 2001, 2015). In senescence-accelerated SAMP8 mice, pre-treatment with metyrapone, which inhibits the 11β-hydroxylase, completely normalized corticosterone levels and restored spatial memory (Linuma et al., 2008).

These promising data led to a clinical trial with a novel brain-penetrant 11β-HSD1 inhibitor (UE2343, XanamemTM) for AD treatment. The Phase 1 clinical studies showed that UE2343 is safe, well tolerated and is able to moderately penetrate the brain (Webster et al., 2017). In addition, it is interesting to note that treatment of cognitively impaired elderly male patients with carbadoxonol (a non-selective 11β-HSD1 inhibitor) improved verbal fluency and memory (Sandep et al., 2004).
TABLE 1 | Preclinical and clinical studies targeting corticotropin releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoids (GC) or glucocorticoid receptors (GR).

<table>
<thead>
<tr>
<th>Context/model</th>
<th>Molecular, cellular & behavioral impacts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRH overexpression</td>
<td>Increase Tau phosphorylation and aggregation.</td>
<td>Campbell et al. (2014)</td>
</tr>
<tr>
<td>R121919 (CRH-R1 antagonist)</td>
<td>Prevention of the onset of cognitive impairment; Reduction of cellular and synaptic deficits; Decrease of Aβ and C-terminal fragment levels.</td>
<td>Zhang et al. (2016)</td>
</tr>
<tr>
<td>NBI 27914 (CRH-R1 antagonist)</td>
<td>Prevention of stress-induced Tau hyperphosphorylation and aggregation, neurodegeneration and fear memory impairment.</td>
<td>Carroll et al. (2011)</td>
</tr>
<tr>
<td>Antalarmin (CRH-R1 antagonist)</td>
<td>Decrease level of plasma Aβ1–42 and Aβ plaque deposits; Decrease level of plasma corticosterone; Improve memory and anxiety behavior.</td>
<td>Dong et al. (2014)</td>
</tr>
<tr>
<td>Primary hippocampal culture</td>
<td>Inhibition of Aβ1–42 levels and PKA expression after a CRH treatment.</td>
<td></td>
</tr>
<tr>
<td>AVP receptors inhibition</td>
<td>Anxiolytic-like activity in models involving traumatic stress exposure; Antidepressant-like effects in FST.</td>
<td>Griebel et al. (2002)</td>
</tr>
<tr>
<td>SSR149415 (V1b antagonist)</td>
<td>Antidepressant-like effects in the FST; Reduction of the hyperemotionality after olfactory bulbectomy.</td>
<td>Iijima et al. (2014)</td>
</tr>
<tr>
<td>TASP0390325 and TASP0233278 (V1b antagonists)</td>
<td>Phase 1b in clinical trial for MDD; Reduction of HPA axis hyperactivity; Favorable symptoms changes.</td>
<td>Katz et al. (2017)</td>
</tr>
<tr>
<td>ABT-436 (V1b antagonist)</td>
<td>Phase 2 in clinical trial for alcohol-dependence; Increase of alcohol abstinence; Reduction of alcohol outcomes for subjects with higher baseline levels of stress.</td>
<td>Ryan et al. (2017)</td>
</tr>
<tr>
<td>ABT-436 (V1b antagonist)</td>
<td>Reduction of APP C-terminal fragments and p25 levels.</td>
<td>Baglietto-Vargas et al. (2013)</td>
</tr>
<tr>
<td>GR modulation</td>
<td>Reduction of phosphorylated CREB.</td>
<td></td>
</tr>
<tr>
<td>CORT108297 (sGRm)</td>
<td>Reduction of neuroendocrine stress responses and immobility in the FST.</td>
<td>Andrade et al. (2012)</td>
</tr>
<tr>
<td>CORT113176 (sGRm)</td>
<td>Reduction of Aβ plaques in cortex; Increase of IDE levels; Memory improvements.</td>
<td>Sooy et al. (2015)</td>
</tr>
<tr>
<td>Wistar rats</td>
<td>Improvement of short-term memory.</td>
<td>Sooy et al. (2010)</td>
</tr>
<tr>
<td>Sprague-Dawley rats</td>
<td>Improvement of memory consolidation and recall in inhibitory avoidance; Improvement of short-term memory.</td>
<td>Mohler et al. (2011)</td>
</tr>
<tr>
<td>oAβ25–35 rat</td>
<td>Reduction of CREB phosphorylation.</td>
<td>Meyer et al. (2014)</td>
</tr>
<tr>
<td>Wobbler mice</td>
<td>Reduction of synaptic deficits, and APP misprocessing.</td>
<td>Meyer et al. (2016)</td>
</tr>
<tr>
<td>αAβ25–35 rat</td>
<td>Increase of CREB expression and CREB activity in the hippocampus.</td>
<td>Meyer et al. (2016)</td>
</tr>
<tr>
<td>GC synthesis inhibition</td>
<td>Prevention of intra-neuronal corticosterone increase; Improvement of long term memory (watermaze).</td>
<td>Yau et al. (2001)</td>
</tr>
<tr>
<td>U2316 (11β-HSD1 inhibitor)</td>
<td>Prevention of stress-induced memory deficits and hippocampal neurons loss.</td>
<td>Inurna et al. (2008)</td>
</tr>
<tr>
<td>A-918446 (11β-HSD1 inhibitor)</td>
<td>Prevention of stress-induced memory deficits and hippocampal neurons loss.</td>
<td>Inurna et al. (2008)</td>
</tr>
<tr>
<td>A-801195 (11β-HSD1 inhibitor)</td>
<td>Prevention of stress-induced corticosterone elevation, spatial memory deficits and hippocampal neurons loss.</td>
<td>Inurna et al. (2008)</td>
</tr>
<tr>
<td>MET (11β-HSD1 inhibitor)</td>
<td>Prevention of stress-induced corticosterone elevation, spatial memory deficits and hippocampal neurons loss.</td>
<td>Inurna et al. (2008)</td>
</tr>
<tr>
<td>SAMP8 mice</td>
<td>Prevention of stress-induced corticosterone elevation, spatial memory deficits and hippocampal neurons loss.</td>
<td>Inurna et al. (2008)</td>
</tr>
<tr>
<td>Human</td>
<td>Prevention of stress-induced corticosterone elevation, spatial memory deficits and hippocampal neurons loss.</td>
<td>Inurna et al. (2008)</td>
</tr>
<tr>
<td>Aging human</td>
<td>Prevention of stress-induced corticosterone elevation, spatial memory deficits and hippocampal neurons loss.</td>
<td>Inurna et al. (2008)</td>
</tr>
</tbody>
</table>

A deficit in post-retrieval long-term memory, and memory did not re-emerge after a footshock reminder (Nikzad et al., 2011). Indeed, GC, GR and associated signaling pathways are crucial for memory consolidation. Acute stress and GR activation were shown to enhance memory consolidation and to inhibit working memory at the same time (Barsegyan et al., 2010). Many factors should be taken into consideration to understand and predict these GC contradictory effects. Depending on the brain area and on acute vs. chronic stress conditions, GC/GR can exert opposite effects (Roozendaal, 2002; McEwen, 2008; Barsegyan et al., 2010; Figure 1).

It is also important to mention the key role of GR in inflammatory processes. GR are necessary to maintain homeostasis since they control the expression of a large part of anti- and pro-inflammatory genes (Barnes, 1998; Van Bogaert et al., 2011; Coutinho and Chapman, 2011). An antagonist can prevent a crucial action of GR and lead to severe side effects associated with aberrant inflammatory processes. For example,
it was shown that RU486 blocked the anti-inflammatory effects of exercise in a murine model of allergen-induced pulmonary inflammation (Pastva et al., 2005).

In AD, it was reported that patients treated with prednisone (a GC used for its anti-inflammatory properties) presented a more pronounced behavioral decline compared to the placebo-treated cohort (Aisen, 2000). Similarly, it was shown that GC administration (dexamethasone) in 3xTg-AD mice increases Aβ pathology and subsequent Tau accumulation and hyperphosphorylation (Green et al., 2006). It results inexorably in a vicious cycle whereby the pathology increases the secretion of GC, which further enhances the pathology (Baglietto-Vargas et al., 2013; Brureau et al., 2013; Pineau et al., 2016; Meijer et al., 2018, 2019). All these findings tend to prove that in AD, but also in all pathologies implying GC, both GR agonists or antagonists should be used with caution.

Recently, in a search to abrogate potential side effects of GR antagonism, new compounds were developed and act as highly selective GR modulators (sGRm; Clark et al., 2008; Beaudry et al., 2014; Hunt et al., 2015; Pineau et al., 2016; Meijer et al., 2018; Viho et al., 2019). The use of sGRm is an attractive approach to separate wanted from unwanted outcomes. Different sGRm were developed and vary substantially in their biological activities. These molecules have the ability to act as agonist, as well as antagonist depending on the tissue or gene targets, but also on the physiological context. However, one thing to keep in mind is that the prediction of exact sGRm action is really challenging considering the numerous factors to take into account. Meijer et al. (2018) recently stated about the complexity of sGRm mechanisms: “even if we know the coactivators that will be recruited by a sGRm-GR complex, in most cases it is unknown which signaling pathways are involved in which transcriptional process. Given the large number of coactivators and their highly gene- and tissue-specific regulation, such analyses are very time consuming, if informative”.

In a direct application, sGRm offered promising results (Table 1). One of them, and the first to be developed by Corcept Therapeutics (Menlo Park, San Mateo, CA, USA), is CORT108297. It was first described as an antagonist (Belanoff et al., 2010), but its modulatory properties were discovered few years later (Zalachoras et al., 2013). In fact, the authors surprisingly observed that CORT108297 induced a unique interaction profile between GR and its coregulators compared with the full agonist dexamethasone and the non-selective antagonist, RU486. This atypical profile could explain the paradoxical effects of CORT108297 according to the brain region (Zalachoras et al., 2013; Viho et al., 2019). In rats, CORT108297 attenuates electroconvulsive shock-induced retrograde amnesia (Andrade et al., 2012). This molecule also presents antidepressant properties and reduces neuroendocrine stress responses and immobility in the forced-swimming test (FST), alike imipramine, a classic treatment for MDD (Solomon et al., 2014). By contrast, treatment with another member of this family, CORT118335, which has the particularity of being a GR modulator but also a MR antagonist, did not affect immobility in the FST (Nguyen et al., 2018), confirming a differential specificity and efficacy of each molecule.

In the 3xTg-AD mice, a 21 days treatment with CORT108297 reduced APP C-terminal fragments and p25 levels (Baglietto-Vargas et al., 2013), which is the activator of cyclin dependent kinase 5 (Cdk5), involved in AD pathophysiology (Patrick et al., 1999). In an acute rat model of AD (the oAβ25–35 model), we tested the therapeutic potential of CORT108297 and CORT113176 (Pineau et al., 2016). CORT113176 is also a sGRm, but displays a better affinity for GR than CORT108297 (Beaudry et al., 2014; Pineau et al., 2016). In this acute model, we previously evidenced a strong, long-lasting activation of the HPA axis, associated with a modification of GR and MR expression in brain regions involved in the control of GC secretion (hippocampus, amygdala and hypothalamus; Brureau et al., 2013). We found that both compounds (CORT113176 at a lower dose than CORT108297) were able to reverse neuroinflammatory and apoptotic processes, cognitive and synaptic deficits, and APP misprocessing (Pineau et al., 2016). To confirm the interest of sGRm, we compared these compounds with RU486. Interestingly, we observed that this non-selective antagonist only partially reversed previously observed pathological impairments (Pineau et al., 2016). In the same line of evidence, CORT113176 showed promising effects in a mouse model of amyotrophic lateral sclerosis by reducing neuronal injury and neuroinflammation in the spinal cord (Meyer et al., 2014). Thus, even if these compounds seemed to exhibit predominantly antagonistic actions in limbic structures in pathological conditions (Andrade et al., 2012; Atucha et al., 2015; Pineau et al., 2016), they could avoid side effects of GR blockade by some agonistic properties.

CONCLUSIONS

If we postulate that AD is a stress-related disorder, targeting HPA axis hormones and receptors could be an attractive approach and pave the way for new therapeutic strategies. Indeed, due to its primordial role in the maintenance of homeostasis, the HPA axis seems to be a key-actor in the etiology of AD and a prime target to tackle the pathology by offering multiple angles of action. Several strategies aiming to restore a normal functionality and activity of the HPA axis are in development with promising results. Some of these molecules are already in clinical studies, not necessarily in an AD context. Since some of them already obtained a safe and tolerated profile, testing them in AD patients could be a really encouraging challenge in the near future. Finally, this review wishes also to alert about the risk in prescribing GC-based therapies in the elderly or in early AD patients.

AUTHOR CONTRIBUTIONS

GC, CH, CZ, NC, CD and LG equally contributed to the definition of the scope and to writing of the manuscript.

FUNDING

LG is supported by “France Alzheimer” and “Fédération pour la Recherche sur le Cerveau” (Grant AAP SM2016#1512). CD and CZ are supported by the “Agence Nationale de la Recherche”
ACKNOWLEDGMENTS

We thank Pr. Emmanuel Planal (CHU, Québec, Canada) for his advices and pertinent corrections.

REFERENCES

