Building a three dimensional model of the active Plio-Quaternary basin of Argostoli (Cephalonia Island, Greece): an integrated geophysical and geological approach

To cite this version:

HAL Id: hal-02404456
https://hal.archives-ouvertes.fr/hal-02404456
Submitted on 8 Jul 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Building a three dimensional model of the active Plio-Quaternary basin of Argostoli (Cephalonia Island, Greece): An integrated geophysical and geological approach

Edward Marc Cushing^a,*, Fabrice Hollender^b,c, Denis Moiriat^a, Cédric Guyonnet-Benaize^b, Nikolaos Theodoulidis^d, Edwige Pons-Branchu^g, Sophie Sépulcre^f, Pierre-Yves Bard^c, Cécile Cornoiu^c, Aline Dechamp^g, Armand Mariscal^i, Zafeiria Roumelioti^h

^a IRSN, Fontenay-aux-Roses, France
^b CEA, DEN, Saint-Paul-le-Du, France
^c ISTerre, Université Grenoble-Alpes, CNRS, IRS, IFSTTAR, Grenoble, France
^d ITSAK, Thessaloniki, Greece
^e LSC/IPS, CEA CNRS-UVSQ, Université Paris-Saclay, France
^f GEOPS, Université Paris-Saclay, France
^g CEA, DIF, Bruyères le Chatel, France
^h Aristotle University, Thessaloniki, Greece
^i IGE, Université Grenoble, CNRS, IRD, Grenoble, France.

ARTICLE INFO

A B S T R A C T

This work is a multidisciplinary approach from geological and geophysical surveys to build a 3D geological model of Argostoli Basin (Cephalonia Island, Greece) aiming to be used for computational 3D simulation of seismic motion. Cephalonia Island is located at the north-western end of the Aegean subduction frontal thrust that is linked to the dextral Cephalonia Transform Fault (west of Cephalonia) where the seismic hazard is high in terms of earthquake frequency and magnitude. The Plio-Quaternary Koutavos-Argostoli basin site was selected within the French Research Agency PIA SINAPS@ project (www.institut-seism.fr/projets/sinaps/ - last accessed on November 25th 2019) to host a vertical accelerometer array. The long-term goal is to validate three-dimensional nonlinear numerical simulation codes to assess the site-specific amplification and nonlinearity. Herein the geological and geophysical surveys carried out from 2011 to 2017 are presented and in particular the complementary investigations that led to the identification of the main stratigraphic units and their structures. In addition, coral debris sampled from the vertical array deep borehole cores were used for 230Th/234U measurements, which confirmed the Pleistocene age of the Koutavos basin. The characterization of the three-dimensional structure of the stratigraphic units was achieved by coupling geological cross-sections (i.e., depth geometry) and geophysical surveys based of surface wave analysis.

1. Introduction

The sedimentary basin of Argostoli (Fig. 1) of Cephalonia Island in western Greece represents a site of special scientific interest for studying site effects and the nonlinear behavior of soil during an earthquake considering its geological structure and the high seismicity rate. This island was particularly affected by an Mw = 7.3 earthquake in 1953 that caused a seismic uplift of its southern par up to one meter. In 2014, a sequence of earthquakes caused very high PGA (maximum ever recorded in Greece, in Lixouri town up to 0.77 g). The Argostoli basin comprises lagoonal Quaternary sediments that overlies the infilling of an active Plio-Quaternary syncline. The active tectonics is highlighted by intense folding and faulting of the Plio-Quaternary series on the peninsula west of Argostoli and its extension toward the southeast.

This basin has been studied since the 1990's with the installation of a first vertical accelerometer network (Ionianet) by the National Technical University of Athens (Protopapa et al., 1998). In 2011–2012, a set of seismic measurements were carried out in the framework of experiments of the Network of European Research Infrastructures for
Earthquake Risk Assessment and Mitigation (NERA project FP7 n° 262,330). In 2013, based on initial observation, a first survey was conducted to collect geological and geophysical data in the framework of the ANR PIA SINAPS® project of the French Research Agency (ANR) (Berge-Thierry et al., 2017, Berge-Thierry et al., 2019, Theodoulidis et al., 2018b, https://www.institut-seism.fr/en/projects/sinaps/). At the beginning of 2014, a seismic sequence including two events of magnitude of about Mw = 6 was observed (Theodoulidis et al., 2016) and a ‘post-seismic’ campaign for additional measurements followed closely (Perron et al., 2018). After June 2015, four boreholes were drilled in the Koutavos area, and several accelerometers were installed on surface as well as at different depths establishing the vertical array ARGONET (ARGOstoli NETwork; http://argonet-kefalonia.org) and producing high quality datasets (Theodoulidis et al., 2018a). All these records already led to several works focused on rotation wavefield analysis (Sbaa et al., 2017) or spatial coherency analysis (Svay et al., 2017; Imitiaz et al., 2018), among others.

In order to construct a geological model aiming to perform numerical simulation to study site effects, a fine geological characterization of this basin was necessary. The geometries of different geological units have remained poorly detailed at the basin scale yet. In this way, this work presents the results of characterization of this basin based on geological and geophysical surveys carried out from 2011 to 2017. The geological surveys are based on geological mapping the new boreholes in the Koutavos. The geophysical surveys are based on vibration measurements for horizontal-to-vertical spectral ratio (HVSR) analysis as well surface-wave dispersion analysis (SWDA). All these results lead to draw of a revised geological map of the Argostoli basin and to build the 3D basin structure which could be used in the future numerical analysis.

First we present the geodynamical context of the research area, and then we present the previous geological and structural knowledge of the Argostoli basin. Next, we detail new geological information gathered from both reconnaissance and boreholes surveys and new dating information. The third part is devoted to the description and the analysis of the results of the geophysical surveys based on SWDA and HVSR techniques. We finally present the used methodology to build a 3 dimensional model from the combination and cross-check of the previous geological and geophysical information.

1.1. Geodynamics framework

Western Greece is one of the main active tectonics areas of the Mediterranean region, with the highest seismic activity in Europe. Cephalonia Island is located in the western part of the fold-and-thrust belt of the Hellenic Foreland (Fig. 1) (Hatzfeld et al., 1989; Sorel, 1989; Underhill, 1989). In this region, the lithology is mainly Alpine Triassic, Mesozoic, and Cenozoic sedimentary deposits (e.g., Aubouin, 1959; Aubouin and Dercourt, 1962). The Cephalonia area is located at the boundary of the Eurasian/ African plates, which is characterized by a convergence rate of up to 35 mm/yr (e.g., Reilinger et al., 2006). In this area, this convergence arises from the northwestern end of the Aegean...
subduction frontal thrust, which is almost flat and is located at about 10 to 12 km in depth under the Pre-Apulian continental basement (Clément et al., 2000; Sachpazi et al., 2000). This basement pushes on the accretionary prism of the Mediterranean ridge (Nielsen Dit Christensen, 2002). The frontal thrust outcrops at the southwestern edge of the Mediterranean ridge, > 200 km south of Zante (Zakynthos) Island. To the north, the Aegean Arc terminates at the dextral Cephalonia Transform Fault (CTF), which is located along the west coast of Lefkas (Lefkada) and Cephalonia Islands (e.g., Cushing, 1985; Scordilis et al., 1985), with a dextral slip that was estimated at 17 mm/yr by Pérouse (2013). This major strike-slip fault has the role of a transition zone between the African subducting plate and the continental Apulian microplate (Le Pichon et al., 1995; Louvari et al., 1999; Sachpazi et al., 2000; Nielsen Dit Christensen, 2003; Pérouse, 2013; Pérouse et al., 2017).

Due to the dimensions of the CTF and the other overriding thrusts (Stiros et al., 1994; Basili et al., 2013; DIS Working Group, 2015) linked to the Aegean subduction and to the high convergence rate, the seismic hazard is high in terms of earthquake re-occurrence and magnitude. This is why major earthquakes can and have occurred with the most destructive recent one being the 1953, MW = 7.2 earthquake. The co-seismic movement associated with this event provoked an uplift of about 0.5 to 1.0 m of a large part of Cephalonia Island (Stiros et al., 1994). Another paleoearthquake event previously uplifted the southern part of the island by about 0.6 m, as deduced from an analysis of the uplifted notches (Stiros et al., 1994). > 20 earthquakes with magnitudes from 6.0 to 7.2 have caused damage in the surrounding areas since the 17th century (Papathanassiou et al., 2017; Theodoulidis et al., 2016). The more recent earthquakes (i.e., since 1983) have mainly been located on the CTF or on secondary associated faults, such as those of January 17, 1983 (MW = 7.2), on the southern segment of the CTF, August 14, 2003 (MW = 6.2) in Lefkas; January 26, 2014 (MW = 6.1) and February 3, 2014 (MW = 6.0) in Lixouri (e.g. Papathanassiou et al., 2016); and November 17, 2015 (MW = 6.4) in Lefkas. Seismic and geodetic monitoring and InSAR imagery have contributed to the more accurate delineation of the faults (Bonciori et al., 2015; Briole et al., 2015; Avallone et al., 2017; Saltogianni et al., 2018). In particular, a N-S trending strike slip fault is inferred from the analysis of geodetic data gathered after the 2014 earthquakes in Cephalonia (Bonciori et al., 2015; Canas et al., 2015), see Fig. 1. Complementary information regarding structural data (e.g., the presence of normal faults in western Paliki) was provided by Nielsen Dit Christensen (2003), Pérouse (2013) and Hunter (2013). These faults represent an en-echelon belt that is aligned against the CTF from Lefkas to the southernmost banks offshore of the Paliki peninsula (Fig. 1). This framework can be interpreted as a bulging extension along the transcurrent and compressive major faults. Moreover, marine seismic reflection profiles performed in the Livadi Gulf and to the south of Paliki underline the intense deformation to the east of the Lixouri shoreline (i.e., both N-S folding and normal faults) (Hunter, 2013).

1.2. State of knowledge about the Geology of the Argostoli area

The regional geology of the Cephalonia Island have extensively been studied and mapped (e.g. British Petroleum Co., 1971; Sorel, 1976; Institute of Geology and Mineral Exploration IGME, 1985; Sorel, 1989; Underhill, 1989; Stiros et al., 1994; Lekkas, 1996; Hunter, 2013). In the Argostoli cape area, the authors have particularly pointed out the importance of the Plio-Quaternary deformation (folds, faulting and uplifted markers such as marine terraces) of the western part of the Argostoli area (Argostoli peninsula) including both the Argostoli basin and Minies anticline. The series of the Argostoli-Minies anticline (relief that constitutes the Argostoli peninsula) and the Argostoli syncline (depression located in the gulf of Argostoli and southward in the Koutavos lagoon and the Kokolata plain) can be described as presented in Fig. 2 where the indicated nomenclature will be used afterward in this paper: i.e., Cretaceous, C; Eocene, E; Miocene to Lower Pliocene, M-P, Pliocene, P(a, b); Pleistocene, Pt-[a, b, c, d, s, m, k]; and Holocene, H:

At the bottom of the series, the entire outcropping Cretaceous unit (C) for Cephalonia has been estimated to be approximately 1700 m thick (British Petroleum Co. Ltd., 1971; Sorel, 1976, 1989) and characterized by a Lower Cretaceous (Barremian to Albian) unit defined by well-bedded and yellowish dolomitic limestone, and an Aptian to Maastrichtian Cretaceous unit made of biotwetric to sub-rectilinear lime­stone with rudists. Locally, near White Rock Faults, this limestone is strongly tectonically brecciated (Sorel, 1989; Underhill, 1989). In the Minies anticline area, there are Eocene- to Paleocene-bedded porcel­laneous limestone outcrops (E, in Fig. 2).

Above the Cretaceous and Paleocene-Eocene limestone, there are local outcrops of a conformable series of Miocene to lower Pliocene detritic series such as, calcareous marls, gray clays, and blue marls in narrow synclines that can be dated for the more recent formation by the presence of G. margaritae planktonic foraminifera (observed at Lákkas Cape and Lixouri). A first unconformity is determined in western Cephalonia by the presence of Globorotalia puncticulata in unconform­able clayey grainstones over sandy clay encompassing G. margaritae planktonic foraminifera (observed at Lákkas Cape and Lixouri - Sorel, 1989). This first deformation episode occurred in the lower Pliocene (between 4 and 3 Ma – Sorel et al., 1992).

From the end of lower Pliocene (~4 Ma) to Calabrian, the series correspond to unconformable breccias and calcareous sandstone de­scribed by Underhill (1989) as a delta fan sequence (Pt-s), which is fol­lowed by thick blue marl formations (Pt-b) and ends with sandy marls and gravel (Pt-a) then Calabrian calcareous sandstone delta fans (Pt-b). In the Argostoli cape area, this sequence is strongly folded and faulted by a second episode of deformation that is estimated to be post Cal­abrian and precede middle Pleistocene continental breccias slopes and is proposed by Sorel et al. (1992) to occur during a period between 1.0 and 0.7 Ma. The middle Pleistocene unit is represented by strongly cemented slope breccias (Pt-c) previously called 'Mindellian' (Sorel, 1985; Underhill, 1989). These breccias are overlaid by scrées (Pt-s) (previously called 'Rissian') that are laterally connected to the uplifted terrace constituted by beach rock (Pt-m) previously called 'Pleo­Malazian'). These raised beaches are uplifted up to 100 m above sea level in the southeastern part of the investigated area north of the Minies Village (Sorel, 1989). These Upper Pleistocene to Present (Pt-d) cover (few meters) lies over the isthmus of the Lardhigos cape (Fig. 2).

In the Argostoli-Koutavos area, the Plio-Pleistocene series is not detailed by authors and is always divided in two units (generally Plio­Pleistocene and more recent): Plio-Pleistocene blue-gray marls series and alluvium is mapped by BP (1971), lower Pliocene to Pleistocene series have been mapped (BP co., 1971), Pliocene and Holocene (IGME, 1985), Plio-Pleistocene and Riss to present (Underhill, 1989), Plio-Ca­labrian clastic formation and recent alluvium and interglacial Middle Pleistocene deposits (Lekkas, 1996). The more recent unit in the Ar­gostoli basin is the Holocene and artificial deposits (i.e., ~2 m of man­made infill - Hadler, 2013) in the Koutavos Park area. They include a succession of thin distinct tsunamigenic layers with ages that have been determined by radiocarbon dating to about 6000 BP for the oldest event (Hadler, 2013) at about 7 m below present sea level (b.s.l.).

On the structural point of view, the axis of the Argostoli sedimen­tary basin strikes NW-SE. It is located on the eastern flank of the west­verging Argostoli-Minies anticline (Fig. 1). The Argostoli-Minies anti­cline is faulted at least by two main east-dipping reverse faults: the White Rock Fault and the Argostoli Fault (Underhill, 1989) (Fig. 2). It is not clear if the Minies Fault described by Sorel (1989) corresponds to the White rock fault or is another structure. The deformation associated with these faults is locally intense, with brecciated and dolomitized limestone. On the footwall of the White Rock fault several minor re­verse bedding plane slip faults with western dip cut the Pleistocene scrées (Pt-s) and terrace (Pt-m) (Sorel, 1976, 1989) were identified near
We remark that on the eastern side of the Argostoli basin, (Underhill, 1989) proposed that the Aenos thrust (AeT see in Figs. 1, 2) lies at the base of the hillslopes at the foothills of Aenos Mountain and has been active after the late Piacienzian by Underhill. This local topography was, however, not interpreted as having a tectonic origin, but as the result of paleo-cliffs along the shore of the Pliocene Sea (Sorel, 1976; Sorel et al., 1992).

2. New information based on geological surveys

2.1. Geological mapping

2.1.1. Complementary stratigraphy of the Argostoli basin

One notes that the previous geological studies have not distinguished any subdivision in the lower Pliocene to lower-middle Pleistocene series of the Argostoli basin (i.e. east of Minies Anticline). During this geological survey of the area, we identified 3 main units that could be linked with the described units in the western flank of the Argostoli-Minies anticline. This new subdivision in the lower Pliocene to lower-middle Pleistocene series constitutes the main change regarding previous geological mappings. The description below concerns the series that outcrops in the Argostoli-Koutavos basin:

- The basal unit is coarse, much consolidated (calcareous breccias), and has a dip of about 30° to the ENE. On the slope located south of the town of Argostoli, three hectometric ledges reveal the presence of softer sediments (clayey sands) interbedded in the harder sandstone levels that could correspond to an alternation of coarse and thinner sediments in the delta fan series. We link this unit with the Pa unit of the western flank of the anticlinal. On this eastern flank, the basal contact of the Pa unit with the Cretaceous limestones is an erosional and angular unconformity. Toward the east, this unit doesn’t outcrop in the center of the Argostoli basin and this thickness is likely reduced in this direction which was confirmed by the geophysical surveys (see paragraph 3);
 - Lying over this first unit, a series of alternations of sands and sandstone dipping toward the East along the eastern Argostoli anticlinal flank (well exposed in some southern quarters of the town of Argostoli). Toward the south, this unit is more flat and coarser with gravel and breccias indicating lithological variation as described by Sorel (1989). We correlate this unit with the Piacenzian clay series belonging to west flank of the Minies anticline (Pb unit); The geological mapping allows to assert that the thickness of Unit Pblike the Pa unit decreases toward the East until it disappears under the upper series (Pt-k) identified hereafter;
 - The Quaternary unit described by Sorel and Underhill (1989) as ‘Wurmian to present deposits’ outcrops in the center of the Argostoli basin and forms lowlands around the Koutavos area. Some outcrops such as clay quarry, west of Koutavos Park, show yellowish to reddish sandy clays. This unit is defined as the Pt-k unit (Pleistocene of Koutavos Park);

In addition of the Plio-Pleistocene to proposed stratigraphy, we distinguished the Holocene deposits that are located only in the vicinity of the Koutavos Park. This H unit is composed of lagoon sediments overlain by backfill (Hadler, 2013; Thedorou and et al., 2018a).

2.1.2. Complementary structural information

During our field survey, we completed dip measurements and outcrop observations. We mostly confirmed the structural framework of the western part of the Minies anticline. We kept the Minies fault trace from Sorel because it is underlined by the dolomitized breccias. In this area, our mapping does not much differ from the previous ones.
proposed by the Sorel (1976) and Underhill (1989).

On the eastern part of the Argostoli basin, we did not find any evidence of the Aenos thrust with our mapping. The landscape is much smoothed and the post-Piacenzian age of thrusting proposed by Underhill (1989) is questionable. However, if this structure had been active, it would have been during the lower Pliocene compressive event. However we kept this presumed fault on our map (see Fig. 2) because it can explain the absence of Eocene levels on the hanging wall while they outcrop in the foothill (the Minies Antiline).

To end, we notice that the placing of Krania Hill right over Koutavos lagoon is difficult to explain, and might have resulted from a rock slide that started from a crown scarpe located uphill up to 160 m a.s.l. This hypothesis is sustained by the fact that the dip distribution on the hill is extremely scattered. It is not clear if this hypothetical ‘olistolith’ is covered by the Quaternary infilling of Koutavos lagoon or partly overlaps the Quaternary, a fact that would explain the significant flow of the spring located at the water pump by Koutavos Park).

Following this field study, investigations were performed such as re-interpretation of pre-existing water boreholes, and acquisition of geophysical measurements (i.e., ambient vibration arrays, HVSIR profiles). In June 2015, four boreholes were drilled in the Koutavos area, and several accelerometers were installed on surface and at different depths. The deepest borehole was cored to perform geological descriptions and characterization. Moreover, X-ray analysis and dating were performed on the collected samples from this borehole; results of these investigations are described below.

2.2. Results from new boreholes in the Koutavos park

Four boreholes were drilled in 2015 to install a permanent vertical accelerometer network in Koutavos park, to the southeast of Argostoli (green square symbol in the zoom of the Fig. 5). ARGONET consists of a vertical seismic array and a nearby (i.e., 440 m away) free-field station on bedrock (Theodoulidis et al., 2018a).

A detailed study was conducted at the ARGONET site, in Koutavos Park, close to the town of Argostoli (see Fig. 5). As a first step, several boreholes were drilled at the site: two deep boreholes; one cored borehole at 84.5 m (B1); one destructive borehole at 83.4 m (B2 also called BK0 in the cross sections descriptions) where a probe was installed; and three destructive boreholes at 40.1 m (B3), 15.5 m (B4) and 5.6 m (B5) in depth, very close to the first one (B2). The boreholes were drilled into the Plio-Quaternary units, and the deep borehole almost reached the Cretaceous limestone. A SPT was performed in B1. Two cross-hole and two down-hole measurements were also conducted: cross-hole (CH1) (between B2 and B3) and CH2 (between B3 and B4); and down-hole (DH1) in B2 and DH2 in B3. All these results are reported in (Theodoulidis et al., 2018a). The lithology description in Borehole B1 is shown in Fig. 3 as well as various indexes of the depositional environment of different units which are described below from bottom to top:

- **Unit C**, which corresponds to Cretaceous limestone fragments that were collected at the bottom of borehole B1. These suggested that this unit might be reached a few meters below the bottom of the borehole, probably around 90 m below the surface, according to geophysical investigations (see Section 3).

- **Unit Pa**, is probably lacking or very thin because of the aforementioned Cretaceous fragments found in the Pb formation at the bottom of the borehole.

- **Unit Ph**, which is represented by a stiff material with marly sandy limestone and claystone from 68.2 to the bottom (84.5 m) of borehole B1. This unit is also observed in two pre-existing boreholes that had been drilled about 1.5 km to the NW of Koutavos, close to the ‘De Bosset’ bridge (Fig. 2; see Rovišis et al., 2014).

- **Unit Pt-k**, which is the ‘soft’ clays and sands. The detailed lithology here is presented in the description of the Koutavos borehole. This unit shows three distinct lithological main sets of clays from the top to the bottom: 28 m of red-brown clays with sand; 21 m of alternations of red-brown clays with marls and silts; and 10 m of gray-blue marls with organic mater and fossils (i.e., corals, gastropods, oysters). Some corals and shells were collected during the drilling, and they were characterized by X-ray diffraction and dated by the U-series method (see Section 2.3).

- **Unit H**, Holocene deposits are composed of about 6 m of lagoon sediments, clayey silty sands to silty clays over lain by 2 m of backfill (clays and silty sands incorporating locally artificial deposits as rubbles).

The comprehensive description of the geotechnical parameters collected in these boreholes is presented in Theodoulidis et al., 2018a paper.

2.3. Coral dating and sediment mineralogy

To date, the Koutavos basin has been assumed to belong to the Quaternary era (Protopapa et al., 1998; Sorel, 1976; Underhill, 1989) without any dating to confirm this assumption. The cored borehole described in the previous section provided the opportunity to perform absolute dating, as fossils corals were found during the drilling.

Three samples (coded #6959, #6960, #7105) of fragment branches of corals that were coated in clay that filled all of the interstices and voids of the coralites, including the septa interstices, were collected from the core of borehole B1 at the base of the Pt-k lithostratigraphic unit (Fig. 4a), at 60.15 m and 63.00 m in depth. These corals may be Lophella pertusa or Cladocora caespitosa that are common in Mediterranean Sea. In samples #6959 and #6960, the clay fraction was removed using a brush, followed by ultra-pure water washing. For sample #7105, an additional step using abrasion with a micro diamond saw was used. X-ray diffraction analysis was performed on the bulk sediment to determine the overall mineralogy, on the < 2 µm fraction for the clay composition, and on the cleaned and poorly cleaned coral fragments.

The bulk sediment had a mineral composition that was typical of shallow marine environments, as a mixture of calcite, clay, evaporite, and detrital components. The clay composition was 71% to 74% smectite, 17% to 18% illite, 6% to 8% chlorite, and 2% to 4% kaolinite. This clay composition is typical of temperate climates, such as the Cephalonia climate in the present time. However, the presence of gypsum in the bulk sediment and corals implies some periods of aridity with a slight decrease in the sea level, which may have resulted in some evaporite deposits.

In order to select pristine samples suitable for dating, the mineralogical composition of the coral samples was estimated following the method detailed by Sepulcre et al. (2009). The constitutive minerals of samples #6959 and #6960 were, in order of abundance: aragonite, quartz, calcite, vermiculite, muscovite, and gypsum. Sample #7105 was 100% aragonite. For the U-series analysis, the detailed U—Th separation and purification protocol can be found in (Pons-Branchu et al., 2014). Table 1 gives the U, Th, isotopic ratios, and ages. The U content showed little variation (from 2.64 ± 0.01 to 2.75 ± 0.004 ppm), while 232Th and 230Th/232Th showed larger variations (from 33.7 ± 0.3 to 384.1 ± 1.2 ppb, and 25.8 ± 0.1 to 245.6 ± 1.8, respectively). The δ234U were close for the three samples, although slightly higher for the sample with remaining clay (#6960). The corrected ages were not very different from the uncorrected time. The corrected ages were not very different from the uncorrected 230Th with 5 ± 50%, and taking into account the decay of this initial 230Th, assuming an initial 230Th/232Th activity ratio of 0.00084, the sample #6959 is dated at 641.8 ± 17 ka with an age of 641.8 ± 17 ka.

<table>
<thead>
<tr>
<th>Sample</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>U/Th</th>
<th>Δ234U</th>
<th>Age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6959</td>
<td>2.75 ± 0.004</td>
<td>33.7 ± 0.3</td>
<td>25.8 ± 0.1</td>
<td>641.8 ± 17</td>
<td>641.8 ± 17</td>
</tr>
<tr>
<td>#6960</td>
<td>2.64 ± 0.01</td>
<td>384.1 ± 1.2</td>
<td>245.6 ± 1.8</td>
<td>641.8 ± 17</td>
<td>641.8 ± 17</td>
</tr>
<tr>
<td>#7105</td>
<td>2.64 ± 0.01</td>
<td>33.7 ± 0.3</td>
<td>25.8 ± 0.1</td>
<td>641.8 ± 17</td>
<td>641.8 ± 17</td>
</tr>
</tbody>
</table>

In conclusion, the age of the youngest Koutavos deposit is between 641.8 ± 17 ka and 641.8 ± 17 ka, with a slight decrease in the sea level, which may have resulted in some evaporite deposits.
cause U and/or Th loss and/or gain (open system behavior), which will result in biased 230Th/234U ages (e.g., Pons-Branchu et al., 2005). Moreover, these effects are time dependent, and the probability of the opening of a system increases with time (Villemant and Feuillet, 2003). The identification of diagenetic processes is mainly based on examination of the alteration in the initial coral mineralogy, with identification of calcite in aragonitic species and the high 232Th, which indicates alteration or contamination. On the contrary, a fossil coral analysis with a δ234U/O value within the range of present-day seawater ± 20‰ is assumed to have remained in closed system (Andersen

Fig. 3. Koutavos borehole (B1) with facies description, environments, and Standard Penetration Test (SPT) measurements and Vs values.

Fig. 4. Preserved coral debris collected for dating. (a) Coral debris extracted from borehole B1 (core sample between 59.7 m and 63.9 m in depth). (b) Transverse section of the core, showing coral polyps. (c) All of the collected coral debris for dating, with weight examples and size scale.
Table 1
U, Th, isotopic ratios, and ages of the coral samples from the core of borehole B1 at the base of the Pt-k lithostratigraphic unit.

<table>
<thead>
<tr>
<th>Sample</th>
<th>[238U] (ppm)</th>
<th>δ234U</th>
<th>233Th/235Th</th>
<th>[233Th] (ppm)</th>
<th>230Th/232Th</th>
<th>Age (ka B.P.)</th>
<th>Core age (ka B.P.)</th>
<th>δ234Uo</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6959</td>
<td>2.64 ± 0.01</td>
<td>31.82 ± 0.85</td>
<td>25.8 ± 0.1</td>
<td>348.1 ± 1.2</td>
<td>1.04 ± 0.012</td>
<td>sup 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6960</td>
<td>2.75 ± 0.004</td>
<td>31.72 ± 1.22</td>
<td>90.2 ± 0.3</td>
<td>102.9 ± 0.3</td>
<td>1.03 ± 0.007</td>
<td>546.74 ± 103.34</td>
<td>539.93 ± 101.03</td>
<td>145.95 ± 42.05</td>
</tr>
<tr>
<td>#7105</td>
<td>2.67 ± 0.02</td>
<td>36.04 ± 2.5</td>
<td>245.6 ± 1.8</td>
<td>33.72 ± 0.3</td>
<td>1.02 ± 0.007</td>
<td>414.27 ± 45.84</td>
<td>411.80 ± 46.17</td>
<td>116.02 ± 17.03</td>
</tr>
</tbody>
</table>

Core age, corrected ages for the detrital fraction.

δ234U = (234U/238U measured) / (234U/238U equilibrium - 1) x 1000, with 234U/238U equilibrium = 54.89 x 10^-6 (molar ratio, Cheng et al., 2013).

δ234Uo is δ234U at the initial time (using the 230Th/234U ages).

Fig. 5. Location of SWDA measurements during both 2013 and 2017 campaigns (Ambient Vibration Arrays, HVSR and MASW). HVSR were performed along the 3 profiles (PR01 to PR03). The Profile 04 starts from a 'rock site' to Koutavos ARGONET borehole and De Bosset Bridge. The 4 profiles are used in Section 4.2 to construct geological sections. Six AVA were performed: Array 1 (rock site), Array 2 (Pliocene site), Array 3 (west of Koutavos), Array 4 (center of Koutavos), Array 5 (ARGONET) and Array 6 (Large array). MASW measurements were located within the arrays and additional measurements were performed on rock sites. Location of the permanent ARGONET sensor array (vertical array + free-field station on bedrock) is also indicated.
et al., 2008). Accordingly, these Cephalonia corals reached the two classical criteria for age validity (i.e., aragonitic structure, 234Th/Th compatible with modern sea water uranium isotopic composition ± 20%). The data from sample #7105 represents the most confident age (i.e., better clay removal before analysis and 100% aragonite).

Regarding dating and mineralogy, the fossil corals (see Fig. 4b and c) certainly corresponded to a high stand and warm period. Looking at the marine isotope stages deduced from the records of 818O and sea level curves (Listecki and Raymo, 2005), these fossils might have been contemporaneous with the MIS 11 high stand (~420 ka), based on the possible age range given by samples #7105 (with greater confidence) and #6960, and that the clay composition around the corals was typical of a temperate climate. In this way, the limit between P_b and P_k would match with the stratigraphic limit between the Calabrian and the Ionian, and would correspond to the unconformity that followed the major deformation episode in the pre-Apulian domain that formed the Minies anticline. Considering the dating of the coral cored at 63 m in depth, the consequence is that the Argostoli/Koutavos syncline is still active and has led to the Koutavos marsh subsidence. Thus, considering for regular subsidence and that the 420 ka high stand is equivalent to the present sea level (Boven, 2010), and that the occurrence of evaporites and of corals are associated to a shallow water depth, this implies that the mean local subsidence rate in Koutavos is about 0.15 mm/yr or more. One note that this subsidence rate is the same magnitude order that one could be determined on the raised beaches located North of Mines Village (see Section 1.2).

3. New information from the geophysical surveys

To obtain new information about the geometry of the Argostoli basin and to measure shear wave velocity (V_s), required in 3D models, two geophysical surveys were carried out in September 2013 and October 2017. These surveys involved single-station ambient vibration measurements for horizontal-to-vertical spectral ratio (HVSR) analysis (Nakamura, 1989; SESAME team, 2004; Bard et al., 2010), as well surface-wave dispersion analysis (SWDA) technique (Foti et al., 2018).

The SWDA includes the measuring of the phase velocity of the surface waves (Rayleigh and/or Love waves) as a function of the frequency, to determine the dispersion curves. These dispersion curves are then converted into V_s profiles using an inversion algorithm. To obtain a dispersion curve over a satisfactory band width (i.e., to derive a V_s profile with sufficient resolution and investigation depth), two acquisition methods were used. For high frequencies (i.e., short wavelengths, and hence shallow investigation depths), we used the ‘multichannel analysis of surface wave’ (MASW) measurements in which geophones are placed along a line and surface waves are generated by hitting the ground with (for example) a sledge hammer. For lower frequencies (i.e., larger wavelengths, and hence deeper investigation depths), we used the ambient vibration array (AVA) technique, with sensors placed in consecutive circles of increasing apertures, plus one sensor in the center. In this case, we estimate the phase velocity of the surface waves that are contained within the ambient vibration wavefield. The 2D feature of the array allowed the identification of the propagation direction of the surface wave trains, which is mandatory to estimate velocities. The SWDA acquisitions were carried out in six areas (Fig. 5: Array 1 + Array 6, to characterize the bedrock velocity profile; and Arrays 1 to 4 along PR01 profile, to characterize the velocities within the Argostoli basin). All of the individual sensor recordings from the SWDA were also processed as single-station HVSR measurements. The HVSR and SWDA measurement locations are shown on the map of the Fig. 5 and are specified in the Appendix - Table A.1.

Basically, the HVSR method consists of computing the Fourier spectra of ambient vibration recordings, and plotting the ratio of the horizontal to vertical spectra. This analysis is done over many time windows, and a mean is computed to provide the final HVSR curve. This curve often shows one peak, which is an indication of the presence of a contrast within the V_s velocity profile below the measuring point. The frequency of this peak, denoted as f_0, indicates the fundamental resonance frequency of the soil column, and it is mainly conditioned by the depth (h) of the velocity contrast and the value of V_s between the surface and the velocity contrast ($f_0 = V_s/4 \pi h$ in the simplified case of a single homogeneous layer overlaying an homogeneous half-space). The f_0 value can therefore provide indirect information about the depth of geological interfaces. The HVSR analyses were carried out along three profiles (see Fig. 5: PR01, PR02, PR03), which were roughly perpendicular to the syncline axis, and at a few complementary points corresponding to key locations for our integrated interpretation (e.g., locations of available borehole information).

3.1. Surface wave dispersion analysis

Six areas were investigated by Ambient Vibration Arrays named as Array 1 (rock site), Array 2 (Pliocene site), Array 3 (west of Koutovas), Array 4 (center of Koutavos), Array 5 (ARGONET) and Array 6 (Large array) (see Fig. 5). Each acquisition involved 15 sensors for AVA measurements (Güralp CMG6TD broadband seismometers with integrated digitizer. This number of sensors allowed the use of double-circle geometry (one sensor in the center; 2 x seven sensors equally spaced around two circles). The azimuth of the sensors for the larger circle was shifted by ~26° (360°/14) with respect to the azimuth of the sensors for the smaller circle, to optimize the azimuthal coverage of the whole array. A radius ratio of 3.0 was chosen for the increase between the two consecutive array radii. For consecutive acquisitions, the inner/smaller circle was moved to form the next larger circle. The whole data acquisition for each array last about few hours. This kind of geometry has also been used in several other characterization surveys (Hollender et al., 2018). The MASW measurements were performed within the Arrays 1 to 5 and on two rock site locations (see Fig. 5).

For Array 1 (rock), three sets of layouts were used, with increasing paired radii of: 5 m and 15 m; 15 m and 45 m and 135 m. The site was selected to the south-east of the Argostoli syncline, on an outcropping area of karstified Cretaceous limestone (C) with a relatively flat topography and low layer dip. This site was also chosen for the ‘dense velocimeter array’ of the Sinaps@ post-seismic survey (Imtiaz et al., 2018; Perron et al., 2018; Savy et al., 2017).

For the ‘large array’, a single layout was used, with paired radii of 230 m and 700 m. This array was deployed within the Argostoli syncline, where the Holocene and Pleistocene formations were outcropping, to take advantage of a wide flat area. However, considering the reduced thickness of the overlying formations and the very large array aperture, the objective of this acquisition is the evaluation of the velocity in the Cretaceous limestone (C) bedrock at large depth. The dispersion curves deduced from this array can be combined with those of Array 1 (rock) to obtain the reference velocity profile within the bedrock down to a large depth.

For Array 2 (Pliocene), four sets of layouts were used, with increasing paired radii of: 5 m and 15 m; 15 m and 45 m and 135 m and 405 m. This array was deployed to the west of Koutavos Park where the Pliocene stiff formation (P_b) is outcropping. This array was designed to determine the reference velocity profile within the P_b formation.

For Array 3 (west of Koutovas), three sets of layouts were used: 7 m and 20 m; 20 m and 60 m and 60 m and 180 m. This array was deployed to the west of Koutavos Park, where the Pleistocene formation (P_{k}) is outcropping. The location of this array was chosen so as to better constrain the velocity profile where the ‘double peak’ HVSR response can occur.

For Array 4 (center of Koutavos), three sets of layouts were used: 5 m and 15 m; 15 m and 45 m and 45 m and 135 m. This array was deployed within Koutavos Park.

Finally, Array 5 (ARGONET) was deployed using the ARGONET accelerometric station as the center. Three sets of layouts were used:
9 m and 27 m; 27 m and 80 m and 80 m and 240 m. This array was also located within Koutavos Park, where the Holocene formation (H) is outcropping, and it provided the reference velocity profile for the H + Pt-k formations.

SWDA analysis included the application of: (1) the frequency-wavenumber (FK) (Neidell and Taner, 1971; McMechan and Yedlin, 1981; Douze and Laster, 1979); and (2) the modified spatial autocorrelation (MSPAC) (Bettig et al., 2001; Köhler et al., 2007) methods for the AVA datasets and the FK method for the MASW data. More details about the processing can be found in Hollender et al. (2018). Only the vertical component was analyzed, i.e., focusing on Rayleigh waves. The dispersion curves that corresponded to the fundamental mode of the Rayleigh wave obtained for each array are shown in Figs. 6a to 6e. The results from Array 1 and the Large array are shown on the same plot (Fig. 6a). Array 1 + Large array allows a dispersion curve to be obtained from 0.5 to 30 Hz; Array 2, from 1 to 40 Hz (Fig. 6b); Array 3,
from 2.5 Hz to 35 Hz (Fig. 6c); Array 4, from 2.5 to 40 Hz (Fig. 6d); and Array 5, from 1.5 to 30 Hz (Fig. 6e).

The inversions were performed with the inversion tool of the Geopsy software package, which uses a global search approach with a neighborhood algorithm (Wathelet, 2008). Previously derived broadband dispersion curves that corresponded to the Rayleigh wave fundamental mode were inverted to Vs profiles. The f_0 values determined by HVSR were also used in a joint inversion for Array 2 to Array 5. We used the ‘acceptable misfit’ approach (Lomax and Snieder, 1995; Souriau et al., 2011), which led to a set of equivalent Vs profiles that explained the dispersion estimates within their uncertainty bounds. In such a case, the search algorithm did not try to find the best misfit Vs profile, but rather a large number of Vs profiles that explained the data equally well. These obtained profiles are shown on Fig. 6f, g and j, as light gray lines.

Within the objective of producing simplified velocity models in the perspective of performing the first 3D numerical simulations of ground motions, we propose simple Vs ‘laws’ as a function of depth. These simplified velocity profiles do not aim to represent a real description of the properties of the area: the description of lateral heterogeneities and uncertainty assessments are not addressed here. However, we aimed to propose models that were compatible with the available information, as the dispersion curves and HVSR f_0 values, as well as the borehole geological descriptions, cross-hole and down-hole measurements performed for the ARGONET boreholes, and the Vs values obtained by seismic interferometry using seismological data recorded by the ARGONET vertical array.

The velocity profile proposed for the bedrock is assumed to be applicable to both Cretaceous limestone (C) and Pliocene sandstone and breccia (Pa) because of their apparent mechanical strength. This model is based on the dispersion curves obtained by the ‘Rock’ and ‘Large’ arrays (R [rock] reference velocity profile), and it can be expressed as:

$$V_s(h) = \begin{cases}
11.7h + 650, & 0 \leq h \leq 30 \\
4.7h + 858, & 30 < h \leq 400 \\
0.8h + 2430, & 400 < h \leq 1000 \\
3230, & h > 1000
\end{cases}$$

where V_s is the shear-wave velocity (expressed in m/s) and h is the depth below the ground surface (expressed in m). The value of 3230 m/s below the depth of 1000 m allows this velocity model to be joined to that proposed by Haslinger et al. (1999) for greater depths. In Fig. 6f, this model (black line) is compared to the ‘acceptable profiles’ derived from the empirical dispersion curves inversion (Fig. 6f, light gray lines). The forward-modeled dispersion curves computed with this velocity model are also compared to the empirical ones in Fig. 6a.

The velocity profile proposed for the Pliocene sands and sandstone formations (Pb) (SIS [stiff soil] reference velocity profile) can be expressed as:

$$V_s(h) = 1.5h + 650$$

This relation is only suitable down to the bottom of the Pb formation. Beneath this, the relation of the R model (eq. [1]) should be used. Fig. 6g compares this hybrid (SIS and R) model with the ‘acceptable profiles’ obtained from Array 2. Here the contact between Pb and the underlying Pa + C formations is located at 115 m in depth. Below this depth, the bedrock velocity model was used. The forward-modeled dispersion curve is compared to the empirical ones presented on the Fig. 6.

As for the determination of a velocity model within the formation of Koutavos Park (i.e., Pt-k, H), several sources of information are available. The first information source is the dispersion curve obtained from Array 5 (ARGONET – centered array). The second source of information is the cross-hole and down-hole measurements performed within the ARGONET boreholes before the installation of the accelerometers. Cross-hole (resp. down-hole) measurements are available within the 2 m to 40 m (resp. 3 m to 78 m) depth interval (colored points in Fig. 6j). Additionally, based on the use of the ARGONET events database (386 events for July 2015 up to April 2017; Theodoulidis et al., 2018a) it was possible to evaluate the mean Vs within the intervals defined by the locations of consecutive sensors using a seismic interferometry approach (for more details on the methodology, see methodology sections of, e.g., Chandra et al. (2015) and Guéguen (2016). For the 0 m to 5.6 m, 5.6 m to 15.5 m, 15.5 m to 40.1 m, and 40.1 m to 83.4 m intervals, the corresponding values obtained were 174 ± 19 m/s; 217 ± 12 m/s; 363 ± 14 m/s, and 574 ± 21 m/s, respectively. Considering the interferometry data as the reference, in the present study, the cross-hole measurements overestimate the velocities by 5% to 10%, whereas the down-hole measurements underestimate them by 10% to 15%. These differences between the two invasive geophysical methods have the same order of magnitude to those given by Garofalo et al. (2016) for other sites within the framework of the InterPacific project. The available lithological log based on the analysis of the geological cores also helped to identify the exact position of the Pt-k/Pb limit at 69 m in depth. The simplified model within the formations (Pt-k + H) (SoS [soft soil] reference velocity profile) is fully compatible with the interferometry velocity values and is compatible with the cross-hole and down-hole measurements (taking into account their respective bias), and can be expressed as:

$$V_s(h) = V_s(h) = \begin{cases}
250, & 0 \leq h \leq 2 \\
9.2h + 122, & 2 < h \leq 26 \\
4.5h + 242, & h > 26
\end{cases}$$

This model is illustrated in Fig. 6j, where the Pt-k/Pb limit is fixed at the depth of 69 m and the Pb/C interface is assumed to be at 90 m in depth (the velocity profile between 69 m and 90 m in depth is, hence, deduced from eq. [2] and below 90 m in depth from eq. [1]). The forward-modeled dispersion curve derived from the use of the hybrid model of Fig. 6j is compared to the empirical one in Fig. 6e.

The velocity profiles derived from Array 3 and Array 4 are shown in Fig. 6h and i, respectively. The corresponding forward-modeled dispersion curves are compared to the empirical ones in Fig. 6c and d. For Array 3, the limit between the Pt-k and Pb formations (resp. between the Pb and Pa + C formations) was at 10 m (resp. 70 m). For Array 4, the limit between the Pt-k and Pb formations (resp. between the Pb and Pa + C formations) was at 58 m (resp. 69 m). Note that the optimal velocity profile within the Pt-k (or H + Pt-k) formation did not fit the SoS reference velocity profile perfectly, although the differences remained relatively small. This is shown in Fig. 6h and i where the optimal velocity profiles obtained are presented in black, whereas the reference SoS profile (as defined at ARGONET location and expressed in eq. [3]) is plotted as gray dashed line.

The SIS (resp. SoS) reference velocity profiles derived from the SWDA results were also used to deduce the upper and lower bounds for the depth of the Pb/Pa (resp. H + Pt-k/Pb) limit. Using the HVSR f_0 values at the array centers and the f_0 values from all other HVSR measurements, the corresponding limits of the upper and lower bounds were deduced and then used for building the Argostoli basin cross-section. The complementary values of f_0 away from those of the cross-sections (e.g., all available measurements on each AVA) were also used to complete the interface depth to constrain the interpolation in the 3D model (see Section 3.2).

3.2. HVSR analysis and interpretation

The HVSR processing was performed using the Geopsy software (Wathelet, 2008) following a standard procedure (SESAME team, 2004) that was designed for HVSR ratio curve computation in different azimuths. The significant polarization of most of the HVSR points showed a preferential direction of about N140E, which corresponds to the axis of the syncline.

A first analysis of the HVSRs aimed to sort them in terms of curve
Fig. 7. Top: Identification of the six typologies of the HVSR curves. Center: Correspondence with the outcropping geological formations. Bottom: First-order qualitative and unscaled representation of the possible depths of the contrasts that cause the HVSR peaks (inverse of the frequency f_0 and f_j). When no frequency was picked, the points were plotted as if they had an infinite f_0. The horizontal axis follows profile PR01, using point PR01-03 as origin (left-most point).

Typologies. Several groups were defined (Fig. 7):

- Type 1: relatively broad, but still with a clear peak, with relatively small amplitude (< 3);
- Type 2: narrow and very clear peak, with relatively large amplitude (> 5);
- Type 1–2: intermediate typology between Type 1 and Type 2;
- Type DP (Double Peak): points showing two relatively clear peaks with the lower frequency peak usually from Type 1;
- Type B: unclear and very broad ‘bump’ (no identifiable f_0), but with an amplitude that can be > 2;
- Type R: almost flat HVSR response, and usually assumed to be a ‘rock site’;
- Type U: a few points that cannot be associated to one of the former types, and hence that are qualified as ‘undefined’.

The fundamental frequency (f_0) values were extracted from the HVSR curves of Types 1, 2, 1–2, DP, and U when a peak allowed frequency identification. The second identifiable frequency (f_j) values were extracted from HVSR curves of Type DP. All of these frequency identifications were performed, as mentioned earlier, using the HSVR curves computed for azimuth 140°. The DP feature is interpreted for structural interpretation in the further Section 4.1 and compared to theoretical computing in Fig. 8.

4. Steps to build the geological model and discussions

This study provides a general methodological interest through the implemented multidisciplinary coupling, which integrates geological mapping, geotechnical borehole characterization, dating and geophysical measurements based on the analysis of the surface wave dispersion. It allows to precise and control the 3D geometry and engineering features of sedimentary basin prone to site effects. Generally, the characterization of basins is based on microzonation leading to fundamental frequencies mapping, often based on single station broad
band of ambient vibration measurements (e.g. in Slovenia: Gosar, 2007; Mississippi basin: Bodin et al., 2001, Guo et al., 2014, Guo and Aydin, 2016). This has been performed using the Nakamura method (Nakamura, 1989). HVSR curves are generally used to estimate the fundamental resonance frequency (f_0) of basins (see e.g. Bard et al., 2010; Perron et al., 2018). Further on, coupling ambient vibration and sometime, geological context (geological log and/or geotechnical characteristics of soft layer for example) were more recently performed, thanks to the availability of dispersion curves processing inversion approaches (e.g. Wathelot, 2008). Even if the interpretation of a given measurement and often 'locally' performed in 1D, the multiplication of measurements over an area could lead to 2D to 3D information (cross section or volumes) encompassing V_s profiles from surface to bedrock. The approach is often mainly based on a geophysical-geotechnical approach, using class of soils (e.g. EC8 soil classes, EUROCODE8, 1998), providing vertical velocity profiles or V_{50} for engineering purpose (e.g. Borges et al., 2016 in Portugal). Some few studies also address more specifically the geological context based on geological maps or cross section (e.g. Akyl et al., 2013 in Turkey). Some others combine geological investigations (Gouveia et al., 2016 in Portugal, Saroli et al., 2020) or other geophysical methods (active or passive) such as electrical resistivity tomography (Gosar, 2007 in Slovenia; Sauret et al., 2015 in Burkina Faso), gravimetry (e.g. Özalaybey et al., 2011 in Turkey; Martorana et al., 2018 in Sicilia) or seismic investigation such as reflection/refraction HR investigations (e.g. Gosar et Lenart, 2010 in Slovenia). More comprehensive studies aiming to construct 3D geological/geotechnical/geophysical model have been developed (e.g. Maniakou et al., 2010 for the Mygdonian basin in Northern Greece; Eker et al., 2015, Panuk et al., 2018 in Turkey; Podestò et al., 2019 in Chile).

In this paper, we propose a combined geological/ geotechnical/ geophysical process. The complementarity of these methods is not limited to the aggregation of data of different nature to provide a single final interpretation, once the different measurement surveys have been carried out independently. Indeed, at each step one discipline helps the other to design its experimental plans and interpret its results. In more details, the geological work allowed to locate properly the HVSR geophysical profiles. The analysis of the typology resonance peaks helped in drawing the outlines of the geological map. The geophysical results make it possible to better quantify the thicknesses of the different geological layers (and also to give quantified information on the V_s) to help in the elaboration of the four cross sections. From, each cross-section a set of control points was determined for each interface (i.e., x, y, z; where z is the elevation – or depth - with respect to sea level). The 3D geological model was then built combining interface limits of each cross-section and the complementary information (e.g., depth deduced from punctual HVSR measurements, borehole data, interface topographic position, formation limits on the geological maps). The next sections present and discuss this approach.

4.1. Contribution of the HVSR interpretation to the construction of the geological model

To interpret the HVSR typologies and to be able to link the f_0 interpretation to a specific geological contrast, a first comparison with the available geological information was performed along profile PR01. Fig. 7 shows a schematic drawing of this preliminary analysis, where the different types of HVSR curves, as well as quantities $1/f_0$, and $1/f_1$ for the DP typology, are plotted (first-order qualitative and unscaled representation of possible depths of contrasts causing the HVSR peaks). When no frequency was picked, the points at the bottom part of Fig. 7 were plotted as if they had an infinite f_0 (Types R, B). At first glance, when considering the f_0 value variation along the profile, a possible basin effect can be identified in the east part of the profile, between points PR01–13 and PR01–23. A second basin may also be suggested in the west part, between points PR01–06 and PR01–12. Making the assumption of two separated basins, the sharp transition between points PR01–12 and PR01–13 suggests a fault-like transition, although this assumption is not supported by geological observations. The most likely and geologically consistent interpretation involves the existence of a single basin, with two nested velocity contrasts.

Based on the comparisons between the HVSR typologies and the geological cross-section, we might see that the contrast that produced the peak for Type 1 points is associated to the Pb/Pa + C contact. The hypothesis that the Type 1 peak might be due to the Pa/C contact was also addressed, but the outcropping observations do not support this hypothesis, as the Pa lithology clearly appears as a ‘rock’ formation (as for the C lithology), whereas the Pb lithology appears as a ‘stiff soil’ formation. We hence suggest that the Pb/Pa velocity contrast is higher than the possible Pa/C contrast, and hence it is more prone to produce a peak in the HVSR measurements. Similarly, we suggest that the peak for the Type 1–2 and Type 2 typologies is due to the Pt-k/Pb contrast (or more generally, the contrast between the $P_t+k + H$ as a whole and the underlying formations, i.e., either Pb, Pa or C, depending on the HVSR location).

The double peak typology (Type DP) was observed only within a small area. To test if this double peak feature is caused by the presence of two velocity contrasts (i.e., $H + Pt+k/Pb$, $Pb/Pa + C$), we performed 1D numerical simulations using realistic velocity profiles deduced from the SWDA (see below), that were coherent with the geological information. On the one hand, we computed the theoretical shear-wave transfer function; on the other hand, we computed the Rayleigh wave ellipticity. Both of these phenomena may explain the origin of the HVSR peaks. The results of one of these simulation tests are shown in Fig. 8 and are compared to a measured HVSR curve (recorded at point A3-R230–5, see Table A.1). This test confirms that the double peak is probably due to the presence of two contrasts. Sensitivity tests showed that the double peak can be observed as long as the $H + Pt+k/Pb$ interface remains relatively shallow (< 10 m). As soon as this depth increases, the first, lower frequency, peak (associated to the Pb/Pa + C contact) disappears and/or is absorbed by the second, higher frequency, peak associated to the $H + Pt+k/Pb$ contact. This may explain why the area where the double peak is observed is relatively narrow.

This discussion leads to the following conclusions in terms of the use of HVSR typologies for geological interpretation. Type R’ is associated to the C lithological formation (Cretaceous limestones); Type B is associated to Pb (Upper Pliocene sandstone and breccia); Type 1’ is associated to Pb (Upper Pliocene sand and sandstone); Type 1–2’ and Type 2’ are associated to the $H + Pt+k$ as a whole; Type DP is associated to a $H + Pt+k$ outcropping, but with shallow contact between $H + Pt+k$ and Pb. Finally, Type 2 HVSRs often exhibit very large amplitude peaks (> 8), mainly within the eastern part of the basin. This could be explained by the fact that $H + Pt+k$ is in direct contact with the C formation, which maximizes the velocity contrast, and hence the HVSR amplitude. These interpreted suggestions provide valuable support for optimization of the updated geological map. Kassaras et al. (2017) report seven double peaks in the northern continuity along the Koutavos and Argostoli bay shore. These points are located on the extension of the narrow band of double peaks highlighted in our study.

4.2. Two-dimensional geological cross-sections and geological map of the Argostoli basin

From the geological characterization and dating (see Section 2) and previous works (Sorel, 1976; Underhill, 1989), we propose on the Fig. 9 a spatial distribution (laterally evolving from Minies –West– to Koutavos area –East–) of the different stratigraphic units from the Cretaceous bedrock to the Quaternary deposits. More specifically, the new subdivision defined in Section 2 in the in the lower Pliocene to lower-middle Pleistocene series (Pa, Pb and Pt-k units) is used here.

This spatial distribution of the stratigraphic boundaries and a detailed mapping allowed updating the geological map the Argostoli area proposed in previous works (Fig. 10). Moreover, the fairly good
agreement between HVSR typologies and geologic limits (e.g. double-peak typologies located near the outcropping limit between the Pa and the Pt-k units or the transition between Type 1 and Type B typologies as the signature between Paand Pbunits) gives a good confidence about these limits.

Then, we constructed four geological cross-sections (Fig. 11), to highlight the 2D variations of the lithostratigraphic units above the bedrock (i.e., the Upper Cretaceous unit), from the Eocene unit to the Middle Pleistocene and Quaternary units. Three geological cross-sections were constructed perpendicular to the axis of the depocenter of the present-day Argostoli basin. An additional geological cross-section was constructed by cutting perpendicularly the three previous cross-sections, approximately above the main depocenter of the basin.

All of the geological cross-sections were constrained by the lithostratigraphic limits of the updated geological map (Fig. 10), the dip measurements, and the depths of the lithostratigraphic limits interpreted from some of the 17 water borehole logs that were available in the Argostoli area. However, all of these water boreholes are not reliable because their loggings were not done for geological purpose. Only those having stratigraphic limits coherent with the local geology knowledge based on field observation were taken into account. Complementary boreholes located near the De Bosset Bridge were also used (Rovithis et al., 2014). Additional depths of the lithostratigraphic limits were obtained by the joint interpretation of \(f_0 \) values provided by HVSR and velocity profiles provided by SWDA allowing converting \(f_0 \) into depth of velocity contrasts. These cross-sections are described in the following:

i. **Cross-section PR01**: This cross-section is 5.3 km long and crosses through the Argostoli basin with a SW-NE orientation (see Figs. 5 and 9). PR01 cuts through the Plio-Calabrian syncline located west of Lardhigos Cape, Saint Gerasismos Cave, the Airport road, and the main road of Argostoli. It comprises the Argostoli anticline and the Argostoli basin, faulted by the reverse White-Rock Fault; Minies Fault and Argostoli Fault. In the Koutavos area, PR01 is constrained by the borehole B06. In the Argostoli basin, the depth of the Upper Cretaceous bedrock ranges from 100 m a.s.l. (above sea level) to 200 m b.s.l. (below sea level).

ii. **Cross-section PR02**: This cross-section is 5 km long and is oriented SW-NE. It crosses through the Argostoli basin with a SW-NE orientation (see Figs. 5 and 9). PR02 cuts through the Airport road and the main road of Argostoli. PR02 is constrained by four boreholes near Koutavos Park: B17, B20, B13 and B09. Along this cross-section, the depth of the Upper Cretaceous bedrock is around 50 m b.s.l. east of the main road, in the axis prolongation of Koutavos Park, and nearly 120 m b.s.l. west of the main road, and south of the city of Argostoli.

iii. **Cross-section PR03**: This cross-section is oriented SW-NE and is located in the southern part of the Argostoli basin. It is 6.5 km long, and crosses through the Argostoli basin with a SW-NE orientation (see Figs. 5 and 9). PR03 also cuts through the Airport road and the main road of Argostoli. Along PR03 there are five water boreholes: B06, B11, B08, B04 and B10. Only B06, B11 and B10 are coherent with observed local geology and are, thus, drawn on Fig. 11. In this part of the Argostoli basin, the depth of the Upper Cretaceous bedrock reaches 90 m b.s.l.

iv. **Cross-section PR04**: This cross-section is oriented NW-SE and follows the axis of the Argostoli basin passing through its depocenter. It is 4.5 km long, and it crosses the entire Argostoli basin (see Figs. 5 and 9), from the Koutavos Park area to the southeastern part of the
Fig. 10. Updated geological map of the Argostoli area with the spatial distribution of the HVSR typology (explained in the text, Section 3.2) and the locations of boreholes and geological and geophysical surveys (either pre-existing or conducted within the frame of this work).
The construction of these four cross-sections based on the geological survey and geophysical interpretation leads to an image of the three sets of Plio-Pleistocene layers that become thinner moving away from the hanging wall of the Argostoli-Minies reverse fault. This geometry can be interpreted as the result of the eastward displacement of the depocenter due to a continuous process of deposition along the growing anticline. This can also be explained by lateral variation of the facies across the Argostoli Gulf, as was proposed by Sorel (1989, 1976). Consideration of the dating of the coral debris sustains the continuous activity of the Argostoli syncline hypothesis (see Section 2.2). The retro-deformation sketch proposed in Fig. 12 provides an understanding of the structural relationships between each sedimentary set: first, an extensional period occurred from the Miocene to Lower Pliocene. That was characterized by normal faulting that affecting the Pre-Apulian series. In the lower Pliocene, a first shortening provoked the inversion along the previous normal faults. This period coincided with the inclusion of the Pre-Apulian continental crust in the Aegean Arc. This period ended with an erosion phase associated with marine transgression. From Middle Pliocene to Lower Quaternary, a quiet period with subsidence and detrital deposits ended with the Calabrian regression. A Second and strong inversion enhanced the folded structure and faults.

Fig. 13 presents the 3D geological model of the Argostoli basin, showing the depth geometry and spatial distribution of the three lithostratigraphic interfaces as the top of the Cretaceous unit, the base of the Pb unit, and the base of the Pt-k unit (Fig. 13a). The raster has 10 m x 10 m resolution, and the pixel value represents the altitude above (or below - as negative values when the interface is below mean sea level). From the above-mentioned raster, three more raster datasets were constructed by determining the arithmetic differences between
the previous datasets, to obtain the thickness image of each unit (i.e., Fig. 13b, thicknesses of Pa, Pb, H + Pt-k). A 3D sketch of the three interfaces is presented in Fig. 13c.

In this model, the top of the Cretaceous bedrock forms the base surface and controls the sharp variations in the thickness of the Pleistocene sedimentary cover (Fig. 13a). The surface reveals an incised valley, with a steep slope on the western flank, and a more progressive slope on the eastern flank, which highlights the asymmetrical shape of the valley. The elevation of the top Cretaceous surface ranges from -180 m to -200 m with respect to sea level (w.r.s.l.), from the deepest part of the surface, south of the city of Argostoli, to the western flank of the basin, close to the Airport road. The thickness map of the Paunit (Fig. 13a, left) highlights the spatial distribution of the Lower Pliocene Paunit deposits above the Cretaceous bedrock. The Argostoli basin has a Paunit thickness that ranges from 0 m to 190 m. The main depocenter line strikes NNW-SSE, and is located close to the western flank of the valley, along the present-day Airport road. This map shows that the Paunit deposits are located in the entire Argostoli basin, and that they disappear to the south. There are no Pbdeposits in the southeastern part of the Koutavos area. To the north, the interpolation has been cut due to a lack of data.

Fig. 13a (middle) shows the present-day altitude of the base surface of the Pbunit, of the Pliocene (Placenzian) age. The surface morphology of the Pbunit reveals an incised valley, with both eastern and western flanks showing progressive slope, which highlights the symmetrical shape of the valley at this step in the history of the basin. The altitude of the surface base of the Pbunit ranges from -100 m to -120 m w.r.s.l., from the deepest part of the surface, south of the city of Argostoli to the south of the basin, close to the village of Kokolata (see Fig. 2). The deepest zone (Fig. 13a, middle, in blue color) is about -80 w.r.s.l. on average. The thickness map of the Pbunit in Fig. 13b (middle) highlights the spatial distribution of the Pliocene Pbunit deposits above the Paunit deposits. The main depot center line strikes NNW-SSE, and is located close to the western flank of the valley, as for the Paunit. The maps in Fig. 13 also show that the Pbdeposits are located in the entire Argostoli basin, and that they disappear to the south. There are no Pbdeposits in the southeastern part of the Koutavos area. To the north, the interpolation has been cut due to a lack of data.

The variations in the thickness of the Pt-k unit show a narrow valley with a steep slope on the eastern flank and a more progressive slope on the western flank. The altitude of the base surface of the Pt-k unit ranges from -80 m to -40 m w.r.s.l. The Pt-k sediments body strikes NNW-SSE, and is located close to the eastern flank of the valley. These maps show that the Pt-k sediments are mainly located around two main depocenters (Fig. 13).

It needs to be kept in mind that the resolution of these maps remains coarse for altimetric positions of interfaces and for thicknesses with regard to the numerous interpretations and interpolations carried out. However, this first dataset could be useful for further computation of
Fig. 13. Three-dimensional model of the Argostoli Plio-Quaternary basin. (a) Isohypses with respect to the sea level of the three interfaces: top of the Cretaceous limestone; base of Pb (Piacenzian); and Pt-k (Middle Pleistocene of the Koutavos area). Control points (mapped outcrops, line drawing of interfaces on cross-sections and inferred depths from HVSR analysis) are also shown. (b) Thicknesses (in m) deduced from isohypses geometry (Pa, Pb, Pt-k thickness). (c) Three-dimensional representation of the three interfaces from different azimuths.

3D site effects (Touhami et al., 2019). Moreover, this mapping and the cross-sections and geophysical and borehole data will be useful for further studies of the effects of complex surface geology on ground motion.

5. Conclusions

To facilitate studies on site-specific amplification and non-linear behavior of soil in the framework of seismic hazard assessment for nuclear infrastructure installation, the Koutavos site in Cephalonia was chosen as a test site to validate 3D simulation algorithms. The selection of the site was done considering both the geological structure as well as the high seismicity rate of the area based on various geo-information. The aim of this present study specifically, was to improve the overall geological knowledge of the area and to build a 3D structural model of the Plio-Quaternary basin of the Argostoli-Koutavos area.

1) Several geological investigations and geophysical measurements were performed in the study area. Dating performed on coral debris coming from the Koutavos Borehole confirms the Pleistocene age of the Koutavos basin.

2) The geophysical surveys involved single-station ambient vibration measurements for horizontal-to-vertical spectral ratio analyses (HVSR) as well as passive ambient vibration array (AVA) complemented by active MASW measurements for surface wave dispersion analysis (SWDA). The analysis of the HVSRs led to the identification of several HVSR curve typologies. The HVSR measurements confirmed that the most likely and geologically consistent interpretation includes the presence of a single basin. Complementary to these data, six areas were investigated by SWDA, to measure the V_s in the bedrock and along a cross-section perpendicular to the basin axis. Three reference velocity models were finally proposed one for the bedrock (Cretaceous limestone and Pliocene sandstone and breccias) one for the Pliocene (sands and sandstone formations) and one for the Pleistocene/Holocene (soft clays and sands, lagoon sediments layer).

3) Four geological cross-sections were constructed considering each fundamental resonance frequency (f_0) value on profiles and the velocity contrasts previously defined. These data were used as constraints for surfaces interpolation and finally to build the 3D geological model.

The methodology proposed in this work could be applied to similar basin environments not only of high but of moderate-to-low seismicity areas worldwide, considering and adopting local peculiarities. It is well known that in earthquake engineering all geological and geophysical parameters estimated in this study play a fundamental role in the generation and propagation of the seismic waves since local ground motion amplification is primarily controlled by geometric complexities in the bedrock morphology and seismic velocity contrasts of...
sedimentary layers.

The results of this study can be considered as the first step toward a scenario-based seismic hazard analysis and its associated risk for population and infrastructure. In fact, the lessons to be learnt from 3D seismic wave modeling by computing ground motion intensity measures (PGA, PGV, Response Spectral Values, Duration etc.) will be extremely useful for engineering purposes. Such usefulness will not be restricted to the specific investigated basin but would be extended to similar cases through proper correlation of basin geological/geophysical factors with calculated intensity measures for various earthquake scenarios. Furthermore, such studies followed by proper simplification could in turn contribute to seismic code provisions toward risk mitigation.

Finally, the location of the investigated Argostoli basin is of high earthquake engineering importance, being a near-fault zone (CTFZ) ‘laboratory’ subjected in the recent past to significant tectonic movements and near-field high level ground motion intensity, with a potential to excite ground motion non-linearity and liquefaction phenomena. The seismic instrumentation deployed during the last ten years in the basin and its vicinity (NERA and SINAPS@ projects) as well as the existing and continuously operating since 2015 ARGONET vertical array, are providing high quality data. Due to limited worldwide of similar near-fault seismic observatories the contribution of this study to earthquake engineering and risk reduction becomes indisputable.

Appendix A

Table A.1
Measured points of HVSR (HVSR profile measures, AVA measures and few complementary points). This list is ordered by profile or network. Locations (geographic – WGS), Resonance frequencies Interpretation and Peak typology are reported as explained in the text.

<table>
<thead>
<tr>
<th>No.</th>
<th>Dataset</th>
<th>Point name</th>
<th>Latitude (decimal)</th>
<th>Longitude (decimal)</th>
<th>f0/f1 (Hz)</th>
<th>fo (when DP =Hz)</th>
<th>Typology (see text)</th>
<th>Large amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Profile 1</td>
<td>PR01-01</td>
<td>38.161188</td>
<td>20.486319</td>
<td>0.73</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Profile 1</td>
<td>PR01-02</td>
<td>38.161069</td>
<td>20.487632</td>
<td>7.64</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Profile 1</td>
<td>PR01-03</td>
<td>38.161789</td>
<td>20.488303</td>
<td>7.42</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Profile 1</td>
<td>PR01-04</td>
<td>38.161573</td>
<td>20.489775</td>
<td>3.29</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Profile 1</td>
<td>PR01-05</td>
<td>38.161956</td>
<td>20.490981</td>
<td>3.39</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Profile 1</td>
<td>PR01-06</td>
<td>38.162184</td>
<td>20.492074</td>
<td>3.19</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Profile 1</td>
<td>PR01-07</td>
<td>38.162603</td>
<td>20.493289</td>
<td>3.46</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Profile 1</td>
<td>PR01-08</td>
<td>38.162813</td>
<td>20.494470</td>
<td>1.50</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Profile 1</td>
<td>PR01-09</td>
<td>38.162929</td>
<td>20.495578</td>
<td>1.50</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Profile 1</td>
<td>PR01-10</td>
<td>38.163118</td>
<td>20.496449</td>
<td>1.50</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Profile 1</td>
<td>PR01-11</td>
<td>38.163295</td>
<td>20.496953</td>
<td>1.46</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Profile 1</td>
<td>PR01-12</td>
<td>38.163431</td>
<td>20.497988</td>
<td>1.46</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Profile 1</td>
<td>PR01-13</td>
<td>38.163522</td>
<td>20.498746</td>
<td>50.00</td>
<td>1.65</td>
<td>DP</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Profile 1</td>
<td>PR01-14</td>
<td>38.163625</td>
<td>20.498651</td>
<td>15.74</td>
<td>1.65</td>
<td>DP</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Profile 1</td>
<td>PR01-15</td>
<td>38.163958</td>
<td>20.499951</td>
<td>4.31</td>
<td>T12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Profile 1</td>
<td>PR01-16</td>
<td>38.163865</td>
<td>20.500995</td>
<td>3.19</td>
<td>T12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Profile 1</td>
<td>PR01-17</td>
<td>38.163810</td>
<td>20.501400</td>
<td>2.36</td>
<td>T12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Profile 1</td>
<td>PR01-18</td>
<td>38.163820</td>
<td>20.503370</td>
<td>2.22</td>
<td>T12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Profile 1</td>
<td>PR01-19</td>
<td>38.163750</td>
<td>20.504390</td>
<td>2.09</td>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Profile 1</td>
<td>PR01-20</td>
<td>38.164000</td>
<td>20.505550</td>
<td>1.60</td>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Profile 1</td>
<td>PR01-21</td>
<td>38.163991</td>
<td>20.506523</td>
<td>1.65</td>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Profile 1</td>
<td>PR01-22</td>
<td>38.163979</td>
<td>20.507820</td>
<td>1.75</td>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Profile 1</td>
<td>PR01-23</td>
<td>38.164260</td>
<td>20.508710</td>
<td>3.29</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Profile 1</td>
<td>PR01-24</td>
<td>38.162860</td>
<td>20.510840</td>
<td>9.43</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Profile 2</td>
<td>PR02-01</td>
<td>38.153938</td>
<td>20.491407</td>
<td>3.29</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Profile 2</td>
<td>PR02-02</td>
<td>38.153601</td>
<td>20.492929</td>
<td>5.49</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Profile 2</td>
<td>PR02-03</td>
<td>38.153392</td>
<td>20.494038</td>
<td>4.73</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Profile 2</td>
<td>PR02-04</td>
<td>38.153783</td>
<td>20.495050</td>
<td>5.01</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Profile 2</td>
<td>PR02-05</td>
<td>38.153936</td>
<td>20.497436</td>
<td>2.43</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Profile 2</td>
<td>PR02-06</td>
<td>38.154225</td>
<td>20.499172</td>
<td>2.51</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Profile 2</td>
<td>PR02-07</td>
<td>38.154432</td>
<td>20.500779</td>
<td>5.65</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Profile 2</td>
<td>PR02-08</td>
<td>38.155382</td>
<td>20.501718</td>
<td>4.42</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Profile 2</td>
<td>PR02-09</td>
<td>38.155022</td>
<td>20.502604</td>
<td>1.65</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Profile 2</td>
<td>PR02-10</td>
<td>38.155716</td>
<td>20.504487</td>
<td>1.65</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Profile 2</td>
<td>PR02-11</td>
<td>38.156128</td>
<td>20.505657</td>
<td>1.60</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Profile 2</td>
<td>PR02-12</td>
<td>38.156653</td>
<td>20.507483</td>
<td>1.70</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Profile 2</td>
<td>PR02-13</td>
<td>38.156496</td>
<td>20.508804</td>
<td>1.70</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Profile 2</td>
<td>PR02-14</td>
<td>38.156646</td>
<td>20.509275</td>
<td>1.80</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Profile 2</td>
<td>PR02-15</td>
<td>38.156703</td>
<td>20.506569</td>
<td>6.01</td>
<td>1.80</td>
<td>DP</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Profile 2</td>
<td>PR02-16</td>
<td>38.157121</td>
<td>20.507367</td>
<td>4.72</td>
<td>2.20</td>
<td>DP</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table A.1 (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Dataset</th>
<th>Point name</th>
<th>Latitude (decimal)</th>
<th>Longitude (decimal)</th>
<th>f0/f1 (Hz)</th>
<th>fo (when DP -Hz)</th>
<th>Typology (see text)</th>
<th>Large amp</th>
</tr>
</thead>
</table>

(continued on next page)
Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:https://doi.org/10.1016/j.enggeo.2019.105441. These data include the Google Map of the most important areas described in this article.

References

