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Regret Lower Bounds for Unbiased Adaptive Control
of Linear Quadratic Regulators

Ingvar Ziemann, Henrik Sandberg

Abstract— We present lower bounds for the regret of adaptive
control of the linear quadratic regulator. These are given in
terms of problem specific expected regret lower bounds valid
for unbiased policies linear in the state. Our approach is based
on the insight that the adaptive control problem can, given our
assumptions, be reduced to a sequential estimation problem. This
enables the use of the Cramér-Rao information inequality which
yields a scaling limit lower bound of logarithmic order. The
bound features both information-theoretic and control-theoretic
quantities. By leveraging existing results, we are able to show
that the bound is tight in a special case.

I. INTRODUCTION

In this paper, we study (expected) regret lower bounds for
adaptive control of the linear quadratic regulator (LQR) with
unknown parametrization. We consider a class of algorithms
which are, in particular, linear and unbiased and therefore
lend themselves to an estimation-theoretic interpretation. As
considered here, the performance of an adaptive policy –
depending only on the observations – is measured in terms
of its (expected) regret, which compares the difference in cost
between a particular adaptive policy sequence and the optimal
sequence having knowledge of the system’s parameters. It
is desirable to provide a tight lower bound on the regret
as this informs us what the optimal rate of convergence for
an adaptive policy might be. Note that the optimal policy
is allowed to depend on the system’s parameters whereas
the adaptive policy is not. The exact problem formulation is
explained in detail in Section II, with a concise statement
found as Problem 1. The problem of finding good adaptive
controllers for an unknown system has appeared in various
incarnations since the 1950s, see for instance [1], [2], [3] or
[4] for an overview.

Although considerable attention has been devoted to adap-
tive control within control engineering, there has been recent
revitilization of interest in the topic as an analytically tractable
prototype for reinforcement learning in general1 state and
action spaces, [5]. Irrespective of its apparent simplicity, little
is known about the instance specific optimal performance
(measured in terms of its regret) a policy could or should
achieve on this problem. In a simplified setting, with additional
assumptions and where the cost only depends on the state,
a logarithmic (in time) lower bound was already known
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1As opposed to discrete.

and attained asymptotically in the 1980s by Lai in [6]. For
SISO systems, Guo establishes upper bounds on the regret of
least squares algorithms in [7] of logarithmic order. A non-
asymptotic scalar analysis attaining the logarithmic order of
magnitude was also executed by Rantzer in [8], giving further
evidence that logarithmic rates are attainable. However, to
best of our knowledge, neither upper nor lower bounds are
known for the expected regret (henceforth just the regret) for
adaptive control of the more general linear quadratic regulator
considered here. In particular, no lower bounds beyond the
case of cheap control and invertible B-matrix as in [6] exist
to this date.

In light of this, our contribution is to provide lower bounds
for adaptive control of the general case of LQR for linear
and unbiased policies. Our lower bounds depend crucially
on the parameters of the model and thus lend themselves
to control-theoretic interpretation. Notably, our bounds are
obtained by regarding the adaptive control regret as sequential
estimation errors. This both provides a parallel and a contrast
to bandit problems, which is perhaps the other most studied
reinforcement learning problem, and in which regret is often
analyzed as sequential testing errors, [9]. These results are
presented in Theorem 4.5 which gives an information lower
bound for regret, RT , asymptotically of the form

RT ≥ C(A,B, f)× lnT

valid for the linear unbiased control laws considered here.
Here C is a constant depending on the system’s parameters, A
and B, and the distribution of the noise sequence w, sampled
indepently and indentically distributed according to a density
f . T is the time horizon. In the sequel, we shall see how this
constant depends on both control-theoretic and information-
theoretic quantities. Finally, our lower bound is applied to
the special cases of the LQR in [6] and [7]. We are able
to establish that our lower bound agrees with upper bounds
found in these works, indicating that our analysis is tight in
these cases.

A. Related Work

A number of papers, see for instance [10], [11] and [12],
have presented policies attaining regret of the order of mag-
nitude2

√
T . However, to date, there are no matching lower

bounds of order
√
T and as mentioned, in several special cases

([6], [7], [8]), regret of order lnT has been achieved.
Further, [13] proves lower bounds for adaptive control of

more general Markov decision processes which subsume our

2Modulo logarithmic factors.



problem. However, the explicit form of their bound requires
the solution of an optimization problem which in general does
not seem analytically tractable. Their bounds are based on a
classical reduction to testing theory argument. By contrast, we
appeal to the structure of the linear quadratic problem to give
simple bounds based on estimation theory.

Perhaps most similar in structure to our bounds are those
available for the multi-armed bandit problem, which is a
classical reinforcement learning problem. These lower bounds
were first produced in [9] and [14] provides a concise ap-
proach. Understanding the fundamental limitiations in terms
of regret any policy must face has led to optimal adaptive
policies, [15]. It is thus our hope that the present analysis
also sheds some light on the fundamental hardness in terms
of the structure of the adaptive control problem at hand, as to
further our understanding of how to devise optimal policies for
this problem. One can for instance imagine that the matrices
appearing in our lower bound can inspire the choice of pre-
conditioning for gradient based adaptive controllers, [16].

II. PROBLEM FORMULATION

We are interested in fundamental limitations of adaptive
control performance of systems – linear quadratic regulators
– of the following form

xt+1 = Axt +But + wt+1, x0 = w0 (1)

where the state xt is a vector in Rn with A ∈ Rn×n and
the input ut a vector in Rm with B ∈ Rn×m. Here (wt) is
a sequence of independent random variables with covariance
matrix Σ � 0. Further, it is assumed that the wt have a
density with finite Fisher information (defined below). The
control input, (ut), is allowed to depend on the current and
all past states and control inputs. The pair (A,B) is assumed
stabilizable but unknown. We consider the per stage cost

Ex>t Qxt + Eu>t Rut (2)

with Q � 0, Q ∈ Rn×n and R � 0, R ∈ Rm×m, with
the inequalities taken in the semi-definite order. Note that
the weighting matrices are assumed to be known. We shall
further assume that the matrices A,B,Q,R,Σ are chosen such
that there exists a unique solution to the Riccati equation
associated to (1)–(2) and its steady state limit. In this case
the optimal policy is to choose ut = Ktxt, where Kt is
defined implicitly via the Riccati equation. We refer the reader
to [17] for conditions sufficient for existence and uniqueness.
In what follows we will be more interested in the so-called
asymptotically optimal policy given by selecting ut = Kxt
where K is the limit of Kt.

A. Background and Notation
As mentioned in the introduction, our analysis rests on the

notion of regret as a sequential estimation error. Since we are
concerned with quadratic performance criteria, it is natural to
attempt to find lower bounds based on the Fisher information,
[18]. For a family of probability densities {fθ} parametrized
by θ ∈ Θ for some set Θ, this is defined as

Iθ =

∫
∇θ ln fθ(x) [∇θ ln fθ(x)]

>
fθ(x)dx

whenever the integral exists. In our case, Θ will be the set
of possible A and B matrices for the dynamics (1). We will
often use the notation ItK = ItK(A,B), by which we denote
the Fisher information (with respect to K) corresponding to
the density of the random variable (x1, . . . , xt) given by the
closed loop dynamics

xt+1 = (A+BK)xt + wt+1.

This also justifies the notation K = K(A,B) for K the
asymptotically optimal linear feedback matrix. Due to the
stability of the (asymptotically) optimal closed loop A+BK,
the underlying Markov chain is mixing and we may apply
the Ergodic Theorem (cf. [19] and [20]) to the corresponding
sequence of likelihoods to conclude that

ĪK := lim
t→∞

1

t
ItK (3)

exists. We shall in the sequel see that this quantity is of
fundamental importance as it asymptotically measures the
information per sample obtained by any “good” policy. More-
over, for any matrix K resulting in stable eigenvalues of
A+BK, we define the closed loop Gramian

ΓK =

∞∑
t=0

[
(A+BK)(A+BK)>

]t
measuring the asymptotic noise-to-cost relationship.

We will require some notions from linear algebra. If A and
B are two n×n matrices, we denote by A⊗B their Kroenecker
product and by vecA or for short ~A the vectorization of A,
which is a vector in Rn2

with the same entries as A. The
Moore-Penrose pseudoinverse of A is denoted A†. We also
remind the reader of the following useful identity relating
vectorization, Kroenecker produts and traces. Namely, for
n× n matrices A,B,C one has that

tr(ABC) = tr
[
(I ⊗B)~C ~A>

]
(4)

Observe that the trace on the left is of an n×n matrix whereas
on the right the trace is that of an n2 × n2 matrix.

We will also make frequent use of asymptotic nota-
tion. A quantity f(t) is said to be “little-oh” of g(t) if
lim sup |f(t)/g(t)| = 0 and is in short written as f = o(g). If
instead lim sup |f(t)/g(t)| ≤ C,C > 0, we write f = O(g).
In general, these limits will be for large times, usually indexed
by t or T .

B. Regret and Learning

A natural measure of performance of any adaptive algo-
rithm, is its (expected) regret, defined as

RT =

T−1∑
t=0

(
Ex>t+1Qxt+1 −Ex̃>t+1Qx̃t+1

)
+

T−1∑
t=0

(
Eu>t Rut −Eũ>t Rũt

)
. (5)

The variables x̃, ũ are the (asymptotically) optimal control
and state trajectories given knowledge of A and B. That
is, ũt = Ktx̃t where Kt solves the appropriate Riccati



equation. The regret thus measures the difference between the
cumulative cost of a strategy (ut) and the cumulative optimal
cost, given knowledge of A,B. In other words, it is the price
of uncertainty about the model’s parameters.

Now, if K is the limiting optimal feedback matrix Kt → K
and since the difference in cost between using this and Kt is
exponentially small, instead setting

ũt = Kx̃t

yields the same asymptotic regret3 and it thus suffices to
compare any policy to ũt = Kx̃t. Due the linear form of
the optimal law, we shall restrict ourselves to consider linear
controllers, of the form

ut = K̂txt

where K̂t is a random matrix, constituting the decision vari-
able and allowed to depend only on the present and past state
observations and inputs. Given this, we shall henceforth refer
to K̂t as the policy itself, where it is tacitly understood that the
control law is ut = K̂txt. Note that without further restriction
K̂t = K is an admissible policy which of course leads to zero
asymptotic regret. To mitigate this we introduce the following
notion.

Definition 2.1: A policy (K̂t) is (asymptotically) unbiased
if EK̂t = K + o((t ln t)−1) for all t and any (A,B).

This allows the use of the Cramér-Rao inequality. As in
classical statistics from which the notion originates, this is a
restriction on the applicability of our bound. It is however
clear that some restriction such as unbiasedness needs to be
made to enforce adaptivity.

Example 2.2: The maximum likelihood estimator typically4

has bias of order 1/t, [21] which is slightly larger than
(t ln t)−1). However, this can be reduced to the order t−2 via
the Jackknife without jeopardizing the rate of convergence,
[22].

As we are investigating the rate of convergence of adaptive
policies, we shall also need to specify what precisely we mean
by convergence.

Definition 2.3: A policy (K̂t) is said to be consistently
convergent if K̂t → K in probability and Extx

>
t → Ex̃tx̃

>
t .

Next, we need to capture the fact that a good estimator K̂t

for K should use information from all the t samples obtained
so far.

Definition 2.4: A policy (K̂t) is said to be sample stable if

Ep(xk)q(BK̂t) = Ep(xk)Eq(BK̂t) × (1 + o(1)) (6)

for all polynomials p and q of order 0 to 2 and all k ≤ t.
Note that, assuming that the limit exists, it always holds that

Epq = EpEq + o(1) whenever K̂t converges in probability
to a constant. Roughly speaking, the assumption then says
that the decay of correlation between policy and sample is
proportional to the rate of convergence of the estimator. To see

3Modulo factors o(lnT ) which do not enter our analysis.
4This has to be qualified with sufficiently excited inputs.

that this definition holds with little loss of generality, consider
the scalar case and write

Epq = EpEq + ρp,q
√

VpVq (7)

where ρp,q is the correlation between p and q. As long as
ρp,q
√
Vq decays in t as fast as Eq, the policy K̂t will be sam-

ple stable. In particular, any consistent and stabilizing policy
will have ρp,q = o(1) and Vp = O(1). Further assuming that√
Vq decays at the same rate as Eq the definition applies.

Example 2.5, discusses consistent convergence and sample
stability in the context of the scalar least squares estimator.

Having stated these definitions, the central problem treated
here can now be formulated.

Problem 1: Analyze the asymptotics of regret (5) of lin-
ear, asymptotically unbiased, consistently convergent adaptive
policies for the linear quadratic regulator (1)–(2).
An example to which this theory applies is presented below.

Example 2.5: Suppose that the dimension of the state space
is 1, that A = a is a scalar, that Q = 1, R = 0, that B = 1 is
known and that the distribution of wt is Gaussian with mean
zero and variance 1. Since least squares is Gaussian maximum
likelihood, the least squares estimator in [8] has bias of order
1/t, which can be reduced to O(t−2) = o((t ln t)−1) by using
the jackknife technique. We now show that the least squares
estimator is both consistently convergent and sample stable.

Theorem 4 and Theorem 6 of [8] imply that Vât = O(1/t)
and that Ex2t = 1+O(1/t) respectively. Since convergence in
L2 implies convergence in probability and since the optimal
cost attained by the policy −a is 1 per stage, it follows that
K̂t = −ât is consistently convergent.

To prove that K̂t = −ât is sample stable, consider (7).
Here, we may restrict attention to polynomials q(z) = |z +
a|deg q,deg q = 0, 1, 2 since any other polynomial r, deg r ≤
2, is in their span. Clearly Vp = O(1) and by Theorem 4 in [8]
Vq = O(1/tdeg q). Incidentally, since K̂t has small bias, this
is also the asymptotically optimal order of convergence of Eq.
Since ρp,q = o(1) one has that ρp,q

√
VpVq = o(EpEq) =

o(1) × EpEq due to the availability of a lower bound of the
same order on Eq.

Remark 2.6: In general, similar arguments can most likely
be applied to policies in n-dimensional state spaces, given
supporting results such as those in [8].

III. REGRET ANALYSIS BY DECOUPLING AND
DECOMPOSITION

Let us first look at the component of regret corresponding
to being at the wrong state, Ex>t xt − Ex̃>t x̃t. Once this is
done, we shall see that the analysis of the control cost comes
nearly for free.

Now, if we expand both cost sequences in terms of their



dynamics, we see that

Ex>t+1xt+1 −Ex̃>t+1x̃t+1

= Ex>t (A−BK̂t)
>(A−BK̂t)xt + Ew>t+1wt+1

+ Ex>t (A−BK̂t)
>wt+1 + Ew>t+1(A−BK̂t)xt

−Ex̃>t (A−BK)>(A−BK)x̃t −Ew>t+1wt+1

−Ex̃>t (A−BK)>wt+1 −Ew>t+1(A−BK)x̃t

= Ex>t (A−BK̂t)
>(A−BK̂t)xt

−Ex̃>t (A−BK)>(A−BK)x̃t. (8)

since the mixed terms have expectation zero. Even though
this formula is very simple, it is rather revealing. Thinking
heuristically about the distribution of xt and x̃t for large t,
these clearly have to be very close if we are to have low regret.
In particular, both random variables should be stochastically
bounded. This is obviously true for x̃t since the optimal
control law is stabilizing. Similarly, it ”ought” to be true for xt
since a ”good” adaptive law, should mimic the optimal law.
If this is true, this means that the majority of the regret is
incurred due to the difference between

(A−BK̂t)
>(A−BK̂t) and (A−BK)>(A−BK).

A. Decoupling

Much of the hardness in identification arises since control
and estimation are not easily decoupled. To deal with this,
we now present a lemma which allows us to approximately
decouple past mistakes from present mistakes.

Lemma 3.1 (Regret Decoupling): Assume that the policy
K̂t is asymptotically unbiased and sample stable. Then

Ex>t+1xt+1 −Ex̃>t+1x̃t+1

=
(

tr
(
E
[
xtx
>
t

]
E
[
(BK −BK̂t)(BK −BK̂t)

>
])

+ trE
[
(xtx

>
t − x̃tx̃>t )(A−BK)(A−BK)>

] )
× (1 + o(1)) + o((t ln t)−1).

Proof: Observe first by expanding the squares that

(A−BK̂t)(A−BK̂t)
> = (A−BK)(A−BK)>

+ (BK −BK̂t)(BK −BK̂t)
>

−A(BK̂t)
> −BK̂tA

> +A(BK)> +BKA>

+ 2BK(BK)> −BK(BK̂t)
> −BK̂t(BK)>.

The last two lines above have expectation o((t ln t)−1). Thus,
using first sample stability and then unbiasedness, one has

E
[
xtx
>
t (A−BK̂t)(A−BK̂t)

>
]

= E[xtx
>
t ]E

[
(A−BK̂t)(A−BK̂t)

>
]

(1 + o(1))

=
(
E[xtx

>
t ]E

[
(A−BK)(A−BK)>

]
+ E[xtx

>
t ]
[
(BK −BK̂t)(BK −BK̂t)

>
]

+ o((t ln t)−1)
)

× (1 + o(1)) .

Using the representation devised in (8) together with what we
just derived, we find that

Ex>t+1xt+1 −Ex̃>t+1x̃t+1

=

(
tr
(
E[xtx

>
t ]E

[
(BK −BK̂t)(BK −BK̂t)

>
])

+ trE
[
xtx
>
t (A−BK)(A−BK)>

]
− trE

[
x̃tx̃
>
t (A−BK)(A−BK)>

])
× (1 + o(1)) + o((t ln t)−1)

=
(

tr
(
E
[
xtx
>
t

]
E
[
(BK −BK̂t)(BK −BK̂t)

>
])

+ trE
[
(xtx

>
t − x̃tx̃>t )(A−BK)(A−BK)>

] )
× (1 + o(1)) + o((t ln t)−1).

Above, we also used o((t ln t)−1)×(1+o(1)) = o((t ln t)−1).

B. Decomposition

The term

tr
(
E
[
xtx
>
t

]
E
[
(BK −BK̂t)(BK −BK̂t)

>
])
,

is a weighted estimation error for K. The second term

trE
[
(xtx

>
t − x̃tx̃>t )(A−BK)(A−BK)>

]
strikingly is linear in Extx

>
t − Ex̃tx̃

>
t which corresponds

to the regret of the previous stage and thus yields a lower
bounding recursion. We now solve this recursion.

Lemma 3.2 (Regret Decomposition): Assume that (A,B)
is stabilizable and that the policy K̂t is asymptotically un-
biased, consistently convergent and sample stable. For ρ the
spectral radius of A−BK and τ = log ρ2 × log t, one has

Ex>t+1xt+1 −Ex̃>t+1x̃t+1

=

(
t∑

k=t−τ

tr

{[
(A−BK)(A−BK)>

]t−k
×E(BK −BK̂k)(BK −BK̂k)>E[xkx

>
k ]

})
× (1 + o (1)) + o(t−1). (9)

Proof: By iterating Lemma 3.1 one obtains

Ex>t+1xt+1 −Ex̃>t+1x̃t+1 =(
t∑

k=t−τ

tr

{[
(A−BK)(A−BK)>

]t−k ×
E(BK−BK̂t)(BK−BK̂t)

>E[xkx
>
k ]+o(((t−k) log k)−1)

}

+ tr

([
(A−BK)(A−BK)>

]τ
×E[xt−τ−1x

>
t−τ−1 − x̃t−τ−1x̃>t−τ−1]

))
× (1 + o (1)) .



Since
∑t
k=t−τ o(((t − k) log k)−1) = o(t−1) by our choice

of τ , this is (9) except for the final term. Next, note that

E[xt−τ−1x
>
t−τ−1 − x̃t−τ−1x̃>t−τ−1] = o(1).

Moreover, by stability of the optimal closed loop[
(A−BK)(A−BK)>

]τ
= O

(
ρ2τ
)

for ρ ∈ (0, 1), the spectral radius of the optimal closed loop.
Since log ρ2 < 0, and τ = − log ρ2× log t we have ρτ = t−1.
Now, our statement is true if ρ ∈ (0, 1) since then

o(1)×O (ρτ ) = o(1)O(t−1) = o(t−1).

If ρ = 0, then A−BK = 0, so the proof is complete.

IV. FUNDAMENTAL LIMITATIONS

Now that we have a decomposition for the state component
of regret via (9), the stage is almost set for application of the
Cramér-Rao inequality.

A. Applying the Information Inequality

If one attemps to compute the Fisher information It
K̂t

and
differentiate with respect to A and B, one soon notices that (as
should be) the information is policy dependent5. Fortunately,
it is not hard to prove that any asymptotically efficient K̂t

yields a trajectory (xt) of samples with asymptotically similar
information to that corresponding to usage of the optimal
policy K.

Lemma 4.1 (Information Comparison): Assume (A,B) is
stabilizable and that (K̂t) is consistently convergent. Then

It
K̂t

= ItK + o(t) = tĪK + o(t).

Proof: The first equality follows by continuity (which is a
consequence of the differentiability hypothesis on the density),
whereas the second follows by ergodicity of the Markov chain
associated with the optimal closed loop A−BK, cf. (3).

We are now ready to state the main Theorem, which allows
us to bound the regret pertaining the to the state of the system.

Theorem 4.2: Assume that (A,B) is stabilizable and that
the policy K̂t is linear, asymptotically unbiased, consistently
convergent and sample stable. Then

lim inf
T→∞

∑T−1
t=0 Ex>t+1xt+1 −Ex̃>t+1x̃t+1

lnT

≥ tr
([
I ⊗

(
B>
√

ΓKΣ
√

ΓKΓKB
)]

(ĪK)†
)
.

Proof: Observe that

t∑
k=dt/2e

[
(A−BK)(A−BK)>

]t−k
= ΓK + o(1) (10)

and similarly

Exkx
>
k =

√
ΓKΣ

√
ΓK + o(1), (11)

5This is essentially the consequence of the fact that an unknown B requires
persistence of excitation to be identified, cf. [23].

valid for k ≥ dt/2e. Since by monotonicity of Fisher informa-
tion (Ik

K̂
)−1 � (It

K̂
)−1, applying Cramér-Rao and Lemma 4.1

we have that for any k ≥ dt/2e

E
[
vec(K − K̂k) vec(K − K̂k)>

]
� (Ik

K̂
)† × (1 + o(1))

� (It
K̂

)† × (1 + o(1)) = (tĪK + o(t))† × (1 + o(1)). (12)

Thus, we have asymptotics or lower bounds for each quantity
given by Lemma 3.2:

t∑
k=t−τ

tr

{[
(A−BK)(A−BK)>

]t−k
︸ ︷︷ ︸

iii. Apply (10).

×BE(K − K̂k)(K − K̂k)>︸ ︷︷ ︸
ii. Apply (12).

B> E[xkx
>
k ]︸ ︷︷ ︸

i. Apply (11).

}
(13)

Using first (4) to vectorize, and then following the above steps
in order i-iii. together with the trace cyclic property,

Ex>t+1xt+1 −Ex̃>t+1x̃t+1 ≥

tr

((
I ⊗

(
B>
√

ΓKΣ
√

ΓKΓKB
))

(tĪK + o(t))−1)

)
× (1 + o (1)) + o(t−1).

Summing this from t = 0 to t = T , dividing by lnT and then
taking limits yields the result.

Example 4.3: Theorem 4.2 may be used to compute regret
lower bounds for the cheap cost LQR by setting Q = I
and R = 0. Assume that B is equal to I and that the
underlying noise distribution of the increments is Gaussian
with covariance Σ. Then ΓK = I and one may compute

ĪK = lim
T→∞

1

T

T∑
t=1

Extx
>
t ⊗ Σ−1 = Σ⊗ Σ−1

since Extx
>
t → Σ for the optimal policy when B is invertible.

The bound thus reduces to

lim inf
T→∞

RT
lnT

≥ n tr Σ. (14)

Note that this agrees with the bound in Lai’s paper [6], where
he also constructs a matching upper bound under slightly
different assumptions. At least in this particular case, this
suggests that our bound is tight.

Specializing further to the scalar system of Example 2.5,
the bound reduces to lim infT→∞RT / lnT ≥ σ2 where σ2

is the variance of the noise. A special case of Theorem 7.2
in [7] shows that the Åström-Wittenmark self-tuning regulator
in [2] attains this bound. This is also true more generally for
the SISO tracking problem in [7] with lag polynomials of
degree p and q in the output and input respectively. The author
there proves that under a persistency of excitation condition,
lim supRT / lnT ≤ (p+ q)σ2 with σ2 as above which agrees
with our lower bound. This can easily be seen since a SISO
system of order (p, q) has a state space representation of
dimension n = p + q. Comparing with (14) again indicates
that the bound is tight.



Remark 4.4: Note that the LQR is comparable to the track-
ing problem in [7] since E(xt − rt)

2 − E(x̃t − rt)
2 =

Ex2t −Ex̃2t whenever the reference signal rt is deterministic.
Since this is the key quantity providing our lower bound, the
analysis can be carried out mutatis mutandis.

B. The Case with General Cost

By noting that ut, ũt can be expanded in terms of xt, x̃t, we
can immediately generalize our lower bound in Theorem 4.2
to regret itself.

Theorem 4.5: Assume that (A,B) is stabilizable and that
the policy K̂t is linear, asymptotically unbiased, consistently
convergent and sample stable. Then for any Q � 0, R � 0,

lim inf
T→∞

RT
lnT

≥ tr
( [
I ⊗

(
(Q+K>RK)B>

√
ΓKΣ

√
ΓKΓKB

)]
× (ĪK)†

)
.

Proof: Observe that

x>t Qxt = tr[Qxtx
>
t ] and that

u>t Rut = tr[K̂>t RK̂txtx
>
t ] = tr[(K>RK + o(1))xtx

>
t ]

and argue as in Theorem 4.2 by utilizing (13) and that
essentially all terms are linear in the variables xtx>t .

Remark 4.6: As the example above shows, the bound can
be written explicitly when B = I and under an additional
normality assumption on the noise. However, in general, the
quantity ĪK may depend on the distribution of the noise and
the parameters of the system.

V. DISCUSSION

As advertised, our bound depends on an information-
theoretic quantity, ĪK , the average Fisher information, and
a control-theoretic quantity, ΓK , the Gramian pertaining to
the optimal closed loop. Our lower bound thus captures the
hardness both in terms of estimation and control. Moreover,
by referring to special cases in the literature, we have been
able to establish that in each of these cases our bound is
tight. In general however, the design of matching upper and
lower bounds for adaptive control of LQR remains open.
Given Example 4.3, it would be interesting to see if one can
find precise conditions on the system (A,B) such that the
logarithmic lower bound presented here is attainable.

Notwithstanding, it should be said that our emphasis has
not been on presenting the theory in the greatest possible
generality but rather to push the viewpoint of regret in large
state spaces as a sequence of estimation errors and illustrate
how this viewpoint naturally leads to bounds analogous to
those in the bandit literature. In particular, one should note that
the assumption of the policy K̂t being asymptotically unbiased
is with loss of generality. The typical way to resolve this issue
in statistics is to consider local asymptotic minimax bounds
(see for instance [24]). Using this local asymptotic theory,
it can for instance be shown that the Cramér-Rao inequality
still holds in an asymptotic sense for a much more general
class of estimators. Using this to weaken or remove our

unbiasedness assumption could provide an exciting direction
for future work.
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