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REVIEW

Dye removal by biosorption using cross‑linked chitosan‑based 
hydrogels

Grégorio Crini1  · Giangiacomo Torri2 · Eric Lichtfouse3  · George Z. Kyzas4 · Lee D. Wilson5 · Nadia Morin‑Crini1 

Abstract
Synthetic dyes are an important class of recalcitrant organic compounds that are often found in the environment as a result 
of their wide industrial use. There are estimated to be more than 100,000 commercially available dyes. These substances 
are common contaminants, and many of them are known to be toxic or carcinogenic. Colored effluents from the industry 
is perceived by the public as an indication of the presence of a dangerous pollution. Even at very low concentrations, dyes 
are highly visible—an esthetic pollution—and modify the aquatic life and food chain, as a chemical contamination. Dye 
contamination of water is a major problem worldwide, and the treatment of wastewaters before their discharge into the 
environment has become a priority. Dyes are difficult to treat due to their complex aromatic structure and synthetic origin. 
In general, a combination of different physical, chemical and biological processes is often used to obtain the targeted water 
quality. Nonetheless, there is a need to develop new removal strategies and decolorization methods that are more effective, 
acceptable for industrial use and ecofriendly. Currently, there is increasing interest in the application of biological materials 
as effective adsorbents for dye removal. Among all the materials proposed, cross-linked chitosan-based hydrogels are the 
most popular biosorbents. These polymeric matrices are the object of numerous fundamental studies. In this review, after 
a brief description of the use of chitosan in wastewater treatment and the basic principles of chitosan-based hydrogels and 
biosorption, we focus on some of the work published over the past 5 years. Overall, these polymeric materials have demon-
strated outstanding removal capabilities for some dyes. They might be promising biosorbents for environmental purposes.
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Introduction

Water pollution by dyes remains a serious environmental 
and public problem (Sharma 2015; Khalaf 2016; Morin-
Crini and Crini 2017; de Andrade et al. 2018; Karimifard 
and Moghaddam 2018; Katheresan et  al. 2018). Many 

industries such as chemicals, textiles, pulp and paper, met-
allurgy, leather, paint and coatings industry, food, packaging, 
pharmacy, and plastics consume considerable amounts of 
water and chemical reagents during processing, dyeing and 
finishing operations. Due to their high solubility, dyes are 
common water pollutants and may frequently be found in 
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trace quantities in their industrial discharge waters. More 
than 700,000 tons of synthetic dyes are produced world-
wide every year, e.g., in India, it is close to 80,000 tons, and 
5–10% of them are discharged in wastewater (Sinha et al. 
2016; Karimifard and Moghaddam 2018; Katheresan et al. 
2018; Piaskowski et al. 2018). The textile industry (54%) 
discharges the largest amount of dye wastewater, contribut-
ing to more than half of the existing dye effluents observed 
in the environment worldwide (Katheresan et al. 2018). The 
presence of very small amounts of dyes is highly visible and 
the public perception of water quality is greatly influenced 
by color. This generates an increasing number of complaints 
and concern. Contamination of environmental by dyes also 
poses a serious ecological problem, which is enhanced by 
the fact that most dyes are difficult to degrade using standard 
biological treatments. In addition, over the past two decades, 
there have been concerns about the potential toxicity of dyes 
and of their precursors, which poses a serious risk to aquatic 
living organisms (Liu and Liptak 2000; Khalaf 2016; Kath-
eresan et al. 2018).

The removal of pollutants including dyes and pigments 
from wastewaters is a matter of great interest in the field of 
water pollution (Forgacs et al. 2004; Pokhrel and Virara-
ghavan 2004; Aksu 2005; Anjaneyulu et al. 2005; Chuah 
et al. 2005; Bratby 2006; Crini 2006, 2015; Cox et al. 2007; 
Hai et al. 2007; Mohan and Pittman, 2007; Wojnárovits and 
Takács 2008; Gupta and Suhas 2009; Barakat 2011; Sharma 
and Sanghi 2012; Sharma 2015; Khalaf 2016; Rathoure 
and Dhatwalia 2016; Morin-Crini and Crini 2017; Alaba 
et al. 2018; Crini and Lichtfouse 2018). Among the numer-
ous techniques of pollutant removal, adsorption using solid 
materials—named adsorbents or biosorbents depending on 
their origin—is a simple, useful and effective process (Crini 
2005, 2006). The adsorbent may be of mineral, organic or 
biological (biosorbent in this case) origin. Activated carbon 
is the preferred adsorbent at industrial scale. However, its 
widespread use is restricted due to high cost. In the past 
three decades, numerous approaches have been studied for 
the development of cheaper, ecofriendly and more effec-
tive biosorbents capable to eliminate pollutants present in 
synthetic solutions contaminated with a single type of pol-
lutant (Onsoyen and Skaugrud 1990; Peters 1995; Allen 
1996; Goosen 1997; Hirano 1997; Ramakrishna and Virara-
ghavan 1997; Cooney 1999; Blackburn 2004; Gavrilescu 
2004; Varma et al. 2004; Crini 2005, 2006; Bhatnagar and 
Minocha 2006; Oliveira and Franca 2008; Qu 2008; Gadd 
2009; Wang and Chen 2009; Elwakeel 2010; Park et al. 
2010; Ali 2012; Michalak et al. 2013; Katheresan et al. 
2018; Piaskowski et al. 2018). Among the various materials 
proposed for water and wastewater treatment by biosorption, 
cross-linked chitosan hydrogels are by far the most widely 
studied materials, owing not only to their efficiency at elimi-
nating a broad range of pollutants but also to their synthesis 

that is straightforward and facile (Ravichandran and Rajesh 
2013; Liu and Bai 2014; Vandenbossche et al. 2015; Yong 
et al. 2015; Muya et al. 2016; Nechita 2017; Pakdel and 
Peighambardoust 2018; Morin-Crini et al. 2019).

In this review, after a brief description of the use of chi-
tosan in wastewater treatment and the basic principles of 
chitosan-based hydrogels and biosorption, we have chosen 
to focus on some of the work published on this topic over the 
past 5 years. The main objectives are to provide a summary 
of recent information concerning the use of chitosan-based 
hydrogels as biosorbents and to discuss the main interac-
tions involved in the biosorption process. Recently reported 
biosorption capacities are also noted to give some idea of 
biosorbent effectiveness. This article is an abridged version 
of the chapter published by Crini et al. (2019) in the series 
Sustainable Agriculture Reviews.

Chitosan for wastewater treatment

In general, conventional wastewater treatment consists of a 
combination of mechanical, physical, chemical, and biologi-
cal processes and operations to remove insoluble particles 
and soluble pollutants from effluents to reach the decon-
tamination objectives established by legislation. At the pre-
sent time, there is no single method capable of adequate 
treatment, mainly due to the complex nature of industrial 
wastewaters (Crini and Lichtfouse 2018). Among the vari-
ous treatment processes currently cited for dye removal, only 
a few are commonly employed by the industrial sector for 
technological and mostly economic reasons (Morin-Crini 
and Crini 2017; Crini and Lichtfouse 2018). In practice, a 
combination of different physical and chemical processes is 
often used to achieve the desired water quality in the most 
economical way. Indeed, the main approach used by industry 
to treat their wastewater containing dyes involves physico-
chemical methods with, for instance, oxidation, coagulation, 
precipitation and flocculation of the pollutants by applying 
chemical agents, then separation by physical treatment of 
the sludge formed to leave clarified water, and final post-
treatment using filtration/adsorption (Berefield et al. 1982; 
Henze 2001). The use of physicochemical treatment gen-
erally enables the legislation concerning liquid industrial 
effluent to be respected but this conventional treatment does 
not completely remove pollution. However, as it has to cope 
with an increasingly strict framework, the industrial sector 
continues to look into new treatment methods to decrease the 
levels of pollution still present in the effluent, the aim being 
to tend toward zero pollution outflow.

In theory, many methods could be suitable to finish 
off the work done during the physicochemical treatment. 
These include filtration on sand or carbons, adsorption on 



activated carbons, ion-exchange on resins, membrane filtra-
tion, electrodialysis, membrane bioreactors, biological acti-
vated sludge, electrocoagulation, electrochemical oxidation, 
electrochemical reduction, incineration, advanced oxidation, 
photolysis, catalytic or noncatalytic oxidation, liquid–liquid 
extraction or evaporation (Liu and Liptak 2000; Henze 2001; 
Forgacs et al. 2004; Pokhrel and Viraraghavan 2004; Sharma 
and Sanghi 2012; Khalaf 2016; Crini et al. 2017). Currently, 
because of the high costs, disposal problems and techni-
cal constraints, many of these methods for treating dyes in 
pretreated effluent have not been widely applied on a large 
scale. There is a need to develop new removal strategies 
and decolorization methods that are effective, acceptable in 
industrial use, and ecofriendly (Crini and Lichtfouse 2018).

It is now well-accepted that, among the numerous tech-
niques of dye removal proposed as secondary or tertiary 
(final) step in a treatment plant, liquid–solid adsorption-
oriented processing is the procedure of choice and gives 
the best results as it can be used to remove different types of 
coloring materials (Ravi Kumar 2000; Crini 2006; Gérente 
et al. 2007; Li et al. 2008; Kyzas et al. 2013a, b; Sanghi and 
Verma 2013; Dolatkhah and Wilson 2016, 2018; Udoetok 
et al. 2016). Most commercial systems currently use acti-
vated carbon as adsorbent to remove dyes mainly due to its 
excellent adsorption ability. This technology is also simple, 
adaptable to many treatment formats, and a large range of 
commercial products are available from several manufactur-
ers. Activated carbon is extensively used at industrial scale 
not only for removing dyes from wastewaters streams but 
also for adsorbing pollutants from drinking water sources, 
e.g., rivers, lakes or reservoirs. However, although activated
carbon is a material of choice, its widespread use is limited 
due to the high cost of the material and regeneration, par-
ticularly for small- and medium-sized enterprises. Moreover, 
this conventional process is not competitive when faced with 
very dilute effluents and waters. To overcome this, numer-
ous approaches have been studied for the development of 
cheaper and effective new materials such as chitosan-based 
materials.

In the past two decades, these materials used as biosor-
bents have received much attention in water and wastewa-
ter treatment, mainly for metal chelation and dye removal 
(Kyzas and Kostoglou 2014; Crini 2015; Kos 2016; Muya 
et al. 2016; Kanmani et al. 2017; Kyzas et al. 2017; Nechita 
2017; de Andrade et al. 2018; Desbrières and Guibal 2018; 
El Halah et al. 2018; Pakdel and Peighambardoust 2018; 
Wilson and Tewari 2018). Indeed, chitosan has an extremely 
high affinity for metals and metalloids and for many classes 
of dyes, including direct, acid, mordant and reactive. In their 
comprehensive reviews, Crini (2015), Yong et al. (2015), 
Kyzas et al. (2017), Wang and Zhuang (2017), Desbrières 
and Guibal (2018), El Halah et al. (2018) and Pakdel and 
Peighambardoust (2018) recently indicated that biosorption 

onto chitosan was a promising alternative to replace conven-
tional adsorbents used for decolorization purposes, metal 
chelation or recovery, and organic removal. With nutraceu-
ticals and cosmeceuticals, the water and wastewater treat-
ment field seems to be the next market in the development 
of chitosan (Morin-Crini et al. 2019).

Chitosan represents an alternative as ecofriendly com-
plexing agent because of its low cost, its intrinsic char-
acteristics, e.g., renewable, nontoxic and biodegradable 
resource, and hydrophilicity, and its chemical properties, 
e.g., polyelectrolyte at acidic pH, high reactivity, coagula-
tion, flocculation and biosorption properties, resulting from 
the presence of reactive hydroxyl and mostly amine groups 
in the macromolecular chains (Roberts 1992; Sandford 1989; 
Skjåk-Braek et al. 1989; de Alvarenga 2011; Teng 2016). 
These groups allow chemical modifications yielding differ-
ent derivatives for specific domains of application (Bhatna-
gar and Sillanpää 2009; Sudha 2011; Azarova et al. 2016; 
Arfin 2017; Ahmed and Ikram 2017; Sudha et al. 2017; 
Wang and Zhuang 2017). In wastewater treatment, its use is 
also justified by two other important advantages: firstly, its 
outstanding pollutant-binding capacities and excellent selec-
tivity, and secondly, its versatility (No and Meyers 1995, 
2000; Peters 1995; Hirano 1997; Houghton and Quarmby 
1999; Blackburn 2004; Crini 2005; Crini and Badot 2008; 
Honarkar and Barikani 2009). Indeed, chitosan possesses a 
strong affinity to interact with pollutants present in concen-
trated or diluted solutions, and even at trace levels.

One of the most important properties of chitosan is its 
cationic nature. This aminopolysaccharide is the only natural 
cationic polymer in the nature (Roberts 1992; Kurita 1998, 
2006; Ujang et al. 2011; Teng 2016). At low pH, usually 
less than about 6.3, chitosan’s amine groups are protonated 
conferring polycationic behavior to polymer while at higher 
pH (above 6.3), chitosan’s amine groups are deprotonated 
and reactive. The protonation reaction is useful because, 
after dissolution, chitosan can be conditioned under differ-
ent physical forms. It can be precipitated into beads, cast 
into films and membranes, spun into fibers, and also cross-
linked to produce gels, fibers or sponges (No and Meyers 
2000; Kurita 2006; Pillai et al. 2009; Salehi et al. 2016; Shen 
et al. 2016; Teng 2016; Nechita 2017). The material can be 
used in solid form for the removal of pollutants from water 
and wastewater by filtration or adsorption processes or in 
liquid state, i.e., dissolved in acidic media, for applications 
in coagulation, flocculation, and membrane filtration (poly-
mer-assisted ultrafiltration) technologies. Among these treat-
ments, biosorption onto cross-linked chitosan hydrogels is 
one of the more popular methods for dye removal (Miretzky 
and Cirelli 2011; Muzzarelli 2011; Lee et al. 2012; Reddy 
and Lee 2013; Lee et al. 2014; Nasef et al. 2014; Vakili 
et al. 2014; Boamah et al. 2015; Gupta et al. 2015; Kyzas 
and Bikiaris 2015; Oladoja 2015; Tan et al. 2015; Tran et al. 



2015; Azarova et al. 2016; Barbusinski et al. 2016; Muya 
et al. 2016; Yang et al. 2016a; Vandenbossche et al. 2015; 
Zhang et al. 2016; Ahmad et al. 2017; Kyzas et al. 2017; 
Sudha et al. 2017; Alaba et al. 2018; Bernardi et al. 2018; 
Pakdel and Peighambardoust 2018; Salehizadeh et al. 2018).

Chitosan‑based hydrogels

The chitosan-based derivatives can be classified into four 
main classes of materials (Crini 2005; Crini and Badot 
2008): modified polymers, cross-linked chitosans, chitosan-
based composites, and membranes. An important class of 
chitosan derivatives are cross-linked gels/hydrogels (Ahmed 
2015; Ullah et al. 2015; Akhtar et al. 2016; Mittal et al. 
2016; Shen et al. 2016; Xiao et al. 2016; Yao et al. 2016; 
Aminabhavi and Dharupaneedi 2017; Caccavo et al. 2018; 
Van Tran et al. 2018). Gels are physically or chemically 
cross-linked three-dimensional hydrophilic polymeric net-
works capable of swelling and absorbing large amounts of 
water (hydrogels), solvent (organogels) or biological fluids 
(gels/hydrogels) in their swollen state. They also have the 
ability to interact with a wide range of ions, molecules, oli-
gomers, and polymers. Hydrogels are also versatile materials 
as they can self-assemble into a variety of forms includ-
ing microgels/microspheres, beads, nanoparticles/nano-
gels, films and membranes, fibers/nanofibers, and sponges/
nanosponges, thereby resulting in the formation of 2D and 
3D networks, e.g., spheres, scaffolds, ribbons, and sheets. 
Once freeze-dried or supercritically dried, hydrogels can 
also become cryogels or aerogels, respectively.

The different classifications of hydrogels can be found 
in the reviews by Ahmed (2015) and Ullah et al. (2015). 
Hydrogels are mainly divided into two classes depending on 
the types of cross-linking and the nature of their network, 
namely physical gels and chemical gels. Physical hydrogels 
are formed by various reversible links and chemical hydro-
gels are formed by irreversible covalent links. Physicals 
hydrogels are reversible due to the presence of noncovalent 
interactions and conformational changes. The hydrogels 
interconnected by covalent bonds cannot be redissolved 
(they are permanent) and are thermally irreversible. Hydro-
gels are also divided into two categories according to their 
natural or synthetic origin: biopolymer-based or synthetic 
(Ullah et al. 2015). Due to their hydrophilicity, biocompat-
ibility, biodegradability, “intelligent” swelling behavior, 
i.e., as responsive materials, and modifiability, i.e., in their
structure, functionality, appearance, and electrical charge, 
biopolymer-based hydrogels have acquired increasing atten-
tion and have found extensive applications ranging from bio-
materials to sensors (Ullah et al. 2015). Natural polymers 
such as cellulose, hemicellulose, starch, gelatin, proteins, 
hyaluronate, and alginates have been proposed and studied 

(Jin et al. 2013; Khan and Lo 2016). Chitosan and chitin also 
deserved particular attention (Pakdel and Peighambardoust 
2018).

As semi-flexible, hydrophilic, versatile and reactive 
biopolymer, chitosan is able to formulate hydrogels in a vari-
ety of physical forms from micro- to nano-scale superstruc-
tures. Its hydrophilicity is due to the presence of hydroxyl 
groups. Chitosan-based hydrogels are held together by either 
physical interactions such as chain entanglements, van der 
Waals forces, hydrogen bonds, crystallite associations and/
or ionic interactions, or chemical cross-links, i.e., covalent 
bonding, or a combination of both (Varma et al. 2004; Crini 
2005; Tang et al. 2007; Pereira et al. 2017; Sudha et al. 
2017). Cross-linking drastically reduces segment mobility 
in the polymer and a number of chains are interconnected 
by the formation of new interchain linkages. If the degree of 
cross-linking is sufficiently high, the product becomes insol-
uble, regardless of pH, but swellable in water. Its structure is 
directly dependent on the degree of cross-linking: the higher 
the degree, the greater proportion of cross-links, making the 
material rigid, and this decrease the ability of the material 
to swell in water and/or to interact with pollutants. Crini 
(2005, 2015), Akhtar et al. (2016) and Khan and Lo (2016) 
pointed out that the cross-linking density and hydrophilicity 
of the polymeric chains mainly control the degree of swell-
ing and their ability to absorb and retain a large amount of 
water or pollutants. Covalent cross-linking, and therefore the 
cross-linking density, is influenced by various parameters, 
but mainly dominated by the concentration of cross-linker. It 
is favored when chitosan molecular weight and temperature 
increased. Moreover, since cross-linking requires mainly 
deacetylated reactive units, a high degree of deacetylation 
of chitosan is favorable.

Due to their reactivity, chitosan-based hydrogels can be 
prepared under different chemical and physical forms for 
target applications. Their networks can be nonionic, ionic, 
or amphoteric in nature and their structure amorphous, 
semi-crystalline or crystalline (Crini 2005; Jing et al. 2013; 
Ahmed 2015). These materials have gained relevance for 
practical applications in pharmacy, e.g., drug carriers, medi-
cine and biomedicine, e.g., wound dressings and tissue engi-
neering scaffolds, cosmetology, hygiene and personal care 
(superabsorbents), and agriculture, e.g., for pesticide deliv-
ery or water retention (Zhang et al. 1993; Dash et al. 2009; 
Luna-Bárcenas et al. 2011; van Vliergerghe et al. 2011; 
Ahmadi et al. 2015; Nilsen-Nygaard et al. 2015; Shen et al. 
2016; Yao et al. 2016; Zhao 2016; Xiao et al. 2016; Wang 
et al. 2016; Aminabhavi and Dharupaneedi 2017; Pereira 
et al. 2017; Pakdel and Peighambardoust 2018; Pellá et al. 
2018; Shariatinia and Jalali 2018). They have potential appli-
cations in the biotechnology, bioseparation, oil recovery, and 
biosensor fields. Cross-linked chitosan materials, from gel/
hydrogel types to bead types or particles, have also received 



much attention in wastewater treatment as biosorbents for 
the removal of metals, dyes, pesticides, phenols, polycyclic 
aromatic hydrocarbons, polychlorinated biphenyls, pharma-
ceuticals or fluorides from aqueous solutions (Crini 2015; 
Yong et al. 2015; Kyzas et al. 2017; Wang and Zhuang 2017; 
Desbrières and Guibal 2018; El Halah et al. 2018; Pakdel 
and Peighambardoust 2018; Van Tran et al. 2018). The 
abundant literature data showed that they exhibited superior 
performance in the adsorptive removal of a wide range of 
aqueous pollutants (Pakdel and Peighambardoust 2018; Van 
Tran et al. 2018). The major advantages and drawbacks of 
biosorption technology using cross-linked chitosan are listed 
in Table 1 (Varma et al. 2004; Crini 2005, 2006; Gérente 
et al. 2007; Crini et al. 2009; Liu and Bai 2014; Rhazi et al. 
2012; Sudha et al. 2017).

Various methods have been developed for the chemical 
cross-linking of chitosan, which commonly result in gel 
formation (Ahmed 2015; Akhtar et al. 2016; Khan and Lo 
2016). These methods are generally divided into three main 
classes: (1) cross-linking with chemicals, e.g., single emul-
sion reaction, multiple emulsion, and precipitation/cross-
linking; (2) cross-linking and interactions with charged 
ions, molecules or polymers, e.g., ionotropic gelation, wet-
phase inversion, emulsification and ionotropic gelation and 

(3) miscellaneous methods including thermal cross-linking, 
solvent evaporation method, spray drying, or freeze drying. 
Generally, cross-linking with chemicals is an easy method 
to prepare chitosan-based hydrogels with relatively inexpen-
sive reagents (Crini 2005). Indeed, the main approach in the 
conversion of chitosan into derivatives capable of interact-
ing with dyes from aqueous solutions involves the direct 
chemical modification of macromolecules by cross-linking 
using a chemical agent to form gel/hydrogel systems. This 
reaction involves creating covalent chemical bonds in all 
directions in space during a copolymerization reaction that 
generates a three-dimensional network. In this chemical type 
of reaction, the cross-linking agents are molecules with at 
least two reactive functional groups that allow the formation 
of bridges between polymer chains. To date, the most com-
mon cross-linkers used with chitosan are dialdehydes such as 
glutaraldehyde and epoxides such as epichlorohydrin. Gluta-
raldehyde and epichlorohydrin are the most frequently used 
cross-linked agent in chitosan chemistry and their reactions 
are very well documented (Crini 2005; Kurita 2006; Akhtar 
et al. 2016). Indeed, they are not expensive and their mode 
of action is well understood. They react with chitosan chains 
and cross-link in inter and intramolecular fashion through 
the formation of covalent bonds with the amino and/or 

Table 1  Advantages and disadvantages of using chitosan-based hydrogels for dye removal by biosorption-oriented processes

Advantages Disadvantages

Emerging recovery technology, publicly acceptable (ecofriendly and 
nontoxic polymer)

Economically feasible: low-cost resource for applications in pollutant 
removal

Raw chitosan: renewable, biodegradable and environmentally friendly 
resource; hydrophilic biopolymer with high reactivity and cationic 
properties in acidic medium

Bifunctional materials: easy physical and chemical modifications
Versatile materials: can be conditioned under different forms (powders, 

gels, beads, fibers)
Technological simple: simple equipment (batch), adaptable to many 

treatment formats; can be applied to different flow regimes: batch, 
continuous; capable of treating large volumes; useful technology in 
combination with physicochemical (coagulation, precipitation, floc-
culation) pretreatments

Outstanding dye-binding capacities; also useful for the recovery of 
(valuable) metals

Highly effective for various dyes: acids, direct, mordant, reactive, 
disperse, and vat dyes

High efficiency and selectivity in detoxifying both very dilute or con-
centrated effluents with rapid kinetics

Real effluents: a high-quality treated effluent is obtained with simulta-
neous elimination of color, organic load (chemical oxygen demand, 
biochemical oxygen demand, total organic content) and metals

Easy regeneration if required (while keeping its initial properties); 
regeneration is possible but not necessary; no loss of resin on regen-
eration

Certain materials are biodegradable
Chemisorption mechanism clearly established: complexation, electro-

static attraction, ion-exchange, complex formation

Technologies are still being developed; laboratory stage
Nonporous materials with low surface area (except nanostructures, 

hyper-cross-linked beads, composites)
Poor chemical stability (except for hyper-cross-linked beads); low 

mechanical strength
Variability in the chitosan characteristics and in the materials used; per-

formances depend on type of materials and of degree of deacetylation
A high affinity for water; a tendency to shrink and/or swell; not appro-

priate for column systems (except for hyper-cross-linked beads): 
hydrodynamic limitations, column fouling, technical constraints

Requires chemical modification to improve both its performance and 
stability

Important role of the pH of the solution on the biosorption perfor-
mance; influence of salts and sensitive to particle, suspended solids, 
and oils

Ineffective against basic (cationic) dyes (except for modified functional 
materials)

Functional hydrogels: results depend on the functional groups grafted
Hyper-cross-linked systems: possible clogging of the reactors: requires 

physicochemical pretreatment to remove suspended solids
Elimination of the materials after use



hydroxyl groups of the polymer (Fig. 1). Epichlorohydrin 
is highly reactive with hydroxyl groups. Another advantage 
is that it does not eliminate the cationic amine function of 
chitosan, which is the major adsorption site attracting the 
pollutant during biosorption process. The main drawback 
of these two cross-linker agents is that they are considered 
to be toxic (glutaraldehyde contains cytotoxic chemical spe-
cies and it is known to be neurotoxic; epichlorohydrin is also 
considered to hazardous environmental pollutant and poten-
tial carcinogen), even if the presence of free unreacted gluta-
raldehyde and epichlorohydrin is improbable since the mate-
rials are purified before use. Other cross-linkers of chitosan 
are other epoxides such as ethylene glycol diglycidyl ether, 
carboxylic acids such as citric acid, isocyanates, polyanions 
such as tripolyphosphate and genipin (Crini 2005; Jin et al. 
2013; Shukla et al. 2013; Ahmed 2015; Ullah et al. 2015; 
Akhtar et al. 2016; Khan and Lo 2016). Recently, silicon 
oxide polymeric precursors, e.g., tetraethoxysilane, sodium 
silicates, aminopropyltriethoxysilane, have been proposed. 
These precursors are interesting because they can form 
interpenetrated polymers with chitosan after polymeriza-
tion. The active sites of the biopolymer remain intact while 
its solubility is diminished and its biosorption capacity is 
maintained. Nevertheless, most of these approaches involve 
the obtaining of a hybrid material whose main component 

is  SiO2. Therefore, the overall biosorption capacity of these 
materials is, in general, lower than that of pure chitosan but 
these materials have the advantages of high stability, recov-
erability, and reutilization. In view of industrial develop-
ments, these advantages are also of utmost importance.

Generally, a cross-linking step is required to improve 
mechanical resistance and to reinforce the chemical stability 
of the chitosan in acidic solutions, modifying hydrophobicity 
and rendering it more stable at drastic pH, which are impor-
tant features to define an efficient biosorbent (Crini 2005). 
However, this reaction can decrease the number of free and 
available amino groups on the chitosan backbone, and hence 
the possible ligand density and the polymer reactivity. It also 
decreases the accessibility to internal sites of the material 
and leads to a loss in the flexibility of the polymer chains. 
Moreover, when the cross-linking degree is high, the mate-
rial is mostly amorphous. So, the chemical step may cause 
a significant decrease in dye uptake efficiency and biosorp-
tion capacities, especially in the case of chemical reactions 
involving amine groups, since the amino groups of the poly-
mers are much more active than the hydroxyl groups that 
can be much more easily attacked by cross-linkers. Conse-
quently, it is important to control and characterize the condi-
tions of the cross-linking reaction since they determine and 
allow the modulation of the cross-linking density, which is 

Fig. 1  Synthesis of cross-linked chitosan hydrogels: a epichlorohydrin EPI and b glutaraldehyde GLU



the main parameter influencing properties of gels (Ahmed 
2015; Ullah et al. 2015; Akhtar et al. 2016; de Luna et al. 
2017a). Indeed, the conditions of preparation of hydrogels 
used as biosorbents for dye removal play a crucial role in 
the determination of their performances and in the better 
comprehension of the biosorption mechanisms (Crini 2005, 
2015). However, this aspect is often neglected in the litera-
ture (Ahmed 2015; Crini 2015; Mohamed et al. 2015; Ullah 
et al. 2015; Akhtar et al. 2016; de Luna et al. 2017a; Pakdel 
and Peighambardoust 2018; Van Tran et al. 2018).

Removal of dyes from solutions 
by chitosan‑based hydrogels

There are several types of contacting systems available to 
obtain experimental data and for industrial applications 
including batch methods, fixed-bed type processes, pulsed 
beds, moving mat filters and fluidized beds (Morin-Crini and 
Crini 2017; Crini and Lichtfouse 2018). The most frequently 
used system applied in biosorption process for dye removal 
is the batch-type contact (Fig. 2). This decontamination 
approach involves mixing a known volume of water with 
known concentrations of dye to be processed with a given 
quantity of biosorbent, in previously established conditions 
of stirring rate, stirring duration, concentration, pH, ionic 
strength, and temperature. The mixture is stirred for a given 
contact time and then separated by a physical step involving 
centrifugation, sedimentation, or filtration. By determining 
the concentrations in the supernatant and in the initial solu-
tion, it is possible to calculate the efficiency of the material, 
i.e., its performance in terms of dye elimination. In wastewa-
ter treatment, the batch method is widely used because this 
technology is cheap, simple, quick, and easy to set up and, 
consequently often favored for small- and medium-sized 

process applications using simple and readily available mix-
ing tank equipment (Morin-Crini and Crini 2017).

In batch systems, the parameters of the solution such as 
dye concentration, contact time, pH, strength ionic, tempera-
ture, etc., can be controlled and/or adjusted. For instance, 
by varying the quantity of biosorbent, the concentration 
of the dye(s) or the contact time, it becomes possible to 
experimentally determine various isotherms (biosorption 
capacity), kinetics, and the thermochemistry of the process, 
and also to model them (Al-Duri 1996; Ho and McKay 
1998; Wong et al. 2003, 2004; Ho 2006; Hamdaoui and 
Naffrechoux 2007a, b). Batch studies use the fact that the 
biosorption phenomenon at the solid/liquid interface leads 
to a change in the concentration of the solution. Biosorption 
isotherms are then constructed by measuring the concentra-
tion of dye in the medium before and after biosorption at 
a fixed temperature. By plotting solid-phase concentration 
against liquid-phase concentration graphically, it is possible 
to depict an equilibrium adsorption isotherm. This isotherm 
represents the relationship existing between the amount of 
pollutant adsorbed and the pollutant concentration remain-
ing in solution. Equilibrium is established when the amount 
of pollutant being adsorbed onto the material is equal to the 
amount being desorbed. Among the numerous theories relat-
ing to adsorption equilibrium, the Langmuir adsorption iso-
therm is the best known of all isotherms describing adsorp-
tion (Wong et al. 2003, 2004; Hamdaoui and Naffrechoux 
2007a, b; Crini et al. 2009; Morin-Crini and Crini 2017). 
Using an empirical equation introduced by the American 
chemist and physicist Irving Langmuir in 1916 (Nobel Prize 
in Chemistry in 1932), it is possible to obtain an interesting 
parameter widely used in the literature to promote a solid 
material as adsorbent, i.e., the theoretical monolayer capac-
ity or the maximum adsorption capacity of an adsorbent 
 (qmax in mg/g). Indeed, the Langmuir isotherm incorporates 
an easily interpretable constant which corresponds to the 
highest possible adsorbate uptake in terms of performance. 

biosorbent
separation

raw effluent spent 
biosorbent

treated 
effluent

Industrial scale

Fig. 2  Schematic representation of batch process used for dye removal from wastewaters



It is important to note that, although this theory is the most 
popular, the model was initially developed for the modeling 
of the adsorption of gas solutes onto metallic surfaces and 
is based on the hypothesis of physical adsorption (Lang-
muir 1916, 1918). The Langmuir equation is represented 
by Eq. (1) where x is the amount of dye adsorbed (mg), 
m is the amount of biosorbent used (g), Ce (mg/L) and qe 
(mg/g) are the liquid-phase concentration and solid-phase 
concentration of dye at equilibrium, respectively, and KL 
(L/g) and aL (L/mg) are the Langmuir isotherm constants. 
The Langmuir isotherm constants, KL and aL, are evaluated 
through linearization of Eq. (1). By plotting Ce/qe against 
Ce, it is possible to obtain the value of KL from the intercept 
which is 1/KL and the value of aL from the slope which is 
aL/KL (Eq. 2). Using these constants, it is then possible to 
obtain qmax. Its value, numerically equal to KL/aL, permits 
to evaluate the maximum biosorption capacity of a mate-
rial for the biosorption of a target pollutant. Of course, the 
uptake of a contaminant by two material biosorbents must be 
compared not only at the same equilibrium concentration but 
also in the same experimental conditions (particularly pH).

Biosorption capacity

Since the 1990s, a large variety of biosorbents have been 
proposed and studied for their ability to remove organic 
contaminants, in particular dye molecules (Gadd 2009). 
Some of the reported materials include agricultural wastes, 
industrial by-products, biomass and biopolymers such as 
polysaccharides. However, biosorbent materials with high 
adsorption capacities are still under development to reduce 
the biosorbent dose and minimize disposal problems (Crini 
and Lichtfouse 2018). Among the numerous biosorbents 
proposed, much attention has been focused on various chi-
tin-based (Peters 1995; Goosen 1997; Hirano 1997; Li et al. 
2008; Bhatnagar and Sillanpää 2009; Sudha 2011; Khor and 
Wan 2014; Anastopoulos et al. 2017; Sudha et al. 2017) and 
chitosan-based (Table 2) materials for pollutant removal. 
Recent results in terms of biosorption capacities using val-
ues of the monolayer capacity (qmax in mg/g) obtained from 
batch studies were compiled in Table 2. These reported 
biosorption capacities must be taken as an example of values 
that can be achieved under specific conditions since biosorp-
tion capacities of the biosorbents presented vary, depend-
ing on the characteristics of the material, the experimental 
conditions, and also the extent of chemical modifications. 
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The reader is encouraged to refer to the original articles for 
information on experimental conditions.

Crini (2015), Kyzas et al. (2017), and Wang and Zhuang 
(2017) demonstrated that biosorption using nonconventional 
cross-linked chitosan hydrogels is an effective and economic 
method for water decolorization. These materials had an 
extremely high affinity for many classes of dyes commonly 
used in industry with outstanding biosorption capacities, 
in particular anionic dyes such as acid, reactive and direct 
dyes (Table 2). For instance, 1 g of material can adsorb 
2498 mg of Reactive Blue 2 present in aqueous solution. In 
comparison with commercial activated carbons, these non-
conventional materials exhibited excellent performance for 
removal of anionic dyes and the performances were 3–15 
times higher at the same pH (Crini 2015; Hadi et al. 2015; 
Mohamed et al. 2015; Udoetok et al. 2016).

The only class for which chitosan have low affinity is 
basic (cationic) dyes (Crini 2015). Moreover, it is well 
known that the uptake is strongly pH-dependent when natu-
ral sorbents are used. This is due to the presence of chemi-
cal functions on the materials. In general, for anionic dye 
molecules removal by cross-linked chitosan hydrogels, the 
highest biosorption effectiveness was achieved at low pH 
values, whereas an opposite tendency was observed for cati-
onic dyes removal where an increase in pH value facilitated 
enhanced removal of dye. To overcome, these problems, 
several workers suggested the chemical modification of chi-
tosan in order to decrease the sensitivity of biosorption to 
environmental conditions, e.g., pH and ionic strength. The 
grafting of carboxyl groups, amine functions, and sulfur 
compounds has been regarded as an interesting method for 
these purposes (Varma et al. 2004; Crini 2005; Bhatnagar 
and Sillanpää 2009; Sudha 2011). Other examples can also 
be found in the reviews by Liu and Bai (2014), Vakili et al. 
(2014), Azarova et al. (2016), Ahmad et al. (2017), Ahmed 
and Ikram (2017), Arfin (2017), and Sudha et al. (2017).

The grafting of various functional groups onto the hydro-
gel network or the chitosan backbone can also improve chi-
tosan’s removal performance and selectivity for dye mol-
ecules, and also used for controlling diffusion properties. 
Indeed, these modifications can increase the density of 
biosorption sites. The presence of new functional groups on 
the surface of the materials results in an increase in surface 
polarity and hydrophilicity and this enhances the biosorp-
tion of polar sorbates and improves the biosorption selec-
tivity for the target dye. The conditions of preparation of 
hydrogels and their post-functionalization play a crucial role 
in the determination of their performances. These perfor-
mances exhibited by each material relates primarily not only 
to its chemical properties, e.g., type of functional groups 
and degree of grafting but also to textural properties (from 
microspheres to nanoparticles). An overview of the literature 
data shows that performances strongly depend on the type 



Table 2  Maximum adsorption capacities qmax (in mg/g) for dye removal obtained on different cross-linked chitosan hydrogels using batch stud-
ies

EPI epichlorohydrin, GLU glutaraldehyde, IPN interpenetrating network

Cross-linked hydrogel Dye qmax Reference

Nanoparticles Eosin Y 3333 Du et al. (2008)
Cyclodextrin–chitosan nanoparticles Methyl Blue 2780 Fan et al. (2012)
EPI–chitosan Reactive Blue 2 2498 Crini (2015)
Hydrogel composite Methylene Blue 1968 Melo et al. (2018)
Hydrogel composite Methylene Blue 1952 Vaz et al. (2017)
EPI–chitosan Reactive Yellow 86 1911 Crini (2015)
Edetate–chitosan (pH 4) Reactive Yellow 84 1883.6 Jóźwiak et al. (2015)
Hydrogel microbeads Acid Orange 7 1670 Kuroiwa et al. (2017)
Urea diammonium tartrate modified chitosan Congo Red 1597 Zahir et al. (2017)
Chitosan granules Reactive Black 5 1559 Jóźwiak et al. (2017a)
Diammonium tartrate modified chitosan Congo Red 1447 Zahir et al. (2017)
Edetate–chitosan (pH 4) Reactive Black 5 1296.6 Jóźwiak et al (2015)
Powder Reactive Red 1250 Subramani and Thinakaran (2017)
Tripolyphosphate-chitosan (pH 4) Reactive Black 5 1125.7 Filipkowska et al. (2016)
Hydrogel composite Methylene Blue 1134 Liu et al. (2018)
Quaternary chitosan Reactive orange 1060 Crini (2015)
Chitosan nanodispersion Reactive Red 120 910 Momenzadeh et al. (2011)
Polyacrylic acid-chitosan Methylene Blue 990 Li et al. (2017)
GLU–chitosan Reactive Black 5 846.9 Filipkowska et al. (2016)
Aerogel Methylene Blue 785 Yang et al. (2016b)
Semi-IPN hydrogel Methylene Blue 750 Drăgan et al. (2012)
EPI–chitosan Metanil Yellow 722 Crini (2015)
Hydroxyapatite-based nanocomposite Congo Red 769 Hou et al. (2012)
IPN hydrogel (pH 7) Methyl Violet 411 Mandal and Ray (2014)
IPN hydrogel (pH 7) Congo Red 621 Mandal and Ray (2014)
GLU–chitosan (pH 5) Reactive Black 5 538 Jóźwiak et al. (2013)
GLU–chitosan (pH 3) Reactive Black 5 514 Jóźwiak et al. (2013)
Semi-IPN hydrogel Acid Red 18 342.5 Zhao et al. (2012)
Graphene oxide/chitosan sponge Methylene Blue 275 Qi et al. (2018)
GLU–chitosan (pH 9) Reactive Black 5 254 Jóźwiak et al (2013)
Powder Direct Yellow 250 Subramani and Thinakaran (2017)
Cyanoguanidine-chitosan Food Yellow 4 210 Gonçalves et al. (2015)
Chitosan-Fe Acid Red 73 206 Zhou et al. (2017a)
Semi-IPN hydrogel Methyl Orange 185.2 Zhao et al. (2012)
Cyanoguanidine-chitosan Food Blue 2 180 Gonçalves et al. (2015)
GLU–chitosan (pH 9) Basic Green 4 137 Jóźwiak et al. (2013)
Powder Malachite Green 166 Subramani and Thinakaran (2017)
Hyper-cross-linked hydrogel Indigo Carmine 118 de Luna et al. (2017b)
Hyper-cross-linked hydrogel Rhodamine 6G 78 de Luna et al. (2017b)
Hyper-cross-linked hydrogel Sunset Yellow 72 de Luna et al. (2017b)
N-maleyl chitosan cross-linker Methylene Blue 66.89 Nakhjiri et al. (2018)
N-maleyl chitosan cross-linker Crystal Violet 64.56 Nakhjiri et al. (2018)
GLU–chitosan (pH 5) Basic Green 4 56 Jóźwiak et al (2013)
Oxide-based nanoparticles Acid Black 26 52.6 Salehi et al. (2010)
Acrylamide–chitosan Astrazone Blue 47 Aly (2017)
Terephthaloyl thiourea chitosan Congo Red 44 El-Harby et al. (2017)
GLU–chitosan (pH 3) Basic Green 4 19 Jóźwiak et al. (2013)
Semi-IPN hydrogel Rhodamine B 17.5 Al-Mubaddel et al. (2017)
Magnetic hydrogel Methyl Orange 6.936 Wang et al. (2018)



of material used (Crini 2015; Yong et al. 2015; Kyzas et al. 
2017; Wang and Zhuang 2017; Desbrières and Guibal 2018). 
Indeed, each material has its specific application as well 
as inherent advantages and disadvantages in dye removal. 
These problems can explain why it is difficult to develop 
chitosan-based materials at an industrial scale.

A recent review of the literature on dye removal 
by chitosan‑based hydrogels

Chitosan-based hydrogels are competitive against conven-
tional sorbents or other biosorbents as recently reported by 
Li et al. (2017). The authors proposed a versatile low-cost 
material prepared by simple thermal cross-linking chitosan 
in the presence of polyacrylic acid. This material (1 g) was 
able to remove 990.1 mg of Methylene Blue dye which 
was higher than most of conventional materials, in parallel 
agreement with a report by Guo and Wilson (2012). The 
biosorption properties were reproducible for a wide range 
of experimental conditions. The interaction between the dye 
molecules and material was driven mainly by electrostatic 
attractions. It also presented high selectivity and permitted 
to separate dye mixtures. The materials were stable and can 
be recycled for 10 times with negligible reduction of effi-
ciency. The biosorption results were reproducible. In view 
of industrial development, these features are also of utmost 
importance. The regeneration of saturated commercial car-
bon by thermal or chemical procedure is known to be expen-
sive and results in loss of the material. The authors con-
cluded that chitosan complexation was a procedure of choice 
for dye removal in terms of cost, efficiency, and reusability.

Zahir et al. (2017), El-Sayed et al. (2017), and Lin et al. 
(2017) also reported that cross-linked chitosan hydrogels 
were very efficient for the removal of dyes at different con-
centrations and competitive against commercial systems. 
The materials exhibited high biosorption capacities toward 
various dyes present in monocontaminated solutions and 
possessed a high rate of biosorption, high efficiency and 
selectivity in detoxifying either very dilute or concentrated 
solutions. Indeed, chitosan hydrogels are more selective than 
traditional materials and can reduce dye concentrations to 
ppb levels. Zahir et al. (2017), El-Sayed et al. (2017), and 
Lin et al. (2017) concluded that the use of cross-linked chi-
tosan hydrogels as biosorbents was a promising tool for the 
purification of dye-containing textile wastewaters.

However, the choice of the cross-linking agent has a sig-
nificant influence on the biosorption properties because the 
chemical structure of the synthesized beads depends on the 
nature of the cross-linking agent and the degree of cross-
linking. Despite the large number of papers dedicated to 
the removal of dyes by hydrogels, most of them focus on 
the evaluation of biosorption performance and only a few 
of them aim at gaining a better understanding of the role 

of the cross-linking agent. Copello et al. (2014) proposed 
chitosan hydrogel beads modified by three different cross-
linking treatments, glutaraldehyde and epichlorohydrin and 
tetraethoxysilane. The authors studied and characterized the 
behavior of hydrogel cross-linked using a tetraethoxysilane 
/chitosan ratio of 1 mmol/g. At this ratio, chitosan was in 
excess compared to tetraethoxysilane, which contrasted 
with the developments described in the literature where the 
alkoxysilane was the main component of the composite. 
The three different hydrogels were used as biosorbent for 
the removal of an anionic dye, namely Remazol Black. The 
tetraethoxysilane cross-linking leads to a safer and environ-
mentally friendly hydrogel stable in acidic media and with 
desirable biosorption characteristics. Their results showed 
that none of the treatments affected the expected biosorption 
tendency in regard to media pH. The uptake rate of Rema-
zol Black showed that the three types of beads followed a 
similar kinetic behavior. The pseudo-first-order model fitted 
the best for almost all cases, followed by pseudo-second-
order model. The model which showed to have a good fitting 
for all systems was the Sips model. The performances were 
strongly pH-dependent. The tetraethoxysilane cross-linked 
beads demonstrated the higher maximum biosorption capac-
ity, followed by epichlorohydrin and glutaraldehyde cross-
linked beads.

Crini (2015) reported that glutaraldehyde interaction with 
chitosan required the consumption of two glucosamine units 
to form the corresponding Schiff bases, which leads to a 
loss of biosorption sites. Moreover, polymerization of glu-
taraldehyde also occurred forming a greater cross-linking 
chain which diminished biosorption capacity in terms of 
dye-mass/biosorbent-mass ratio. Filipkowska et al. (2016) 
and Udoetok et al. (2016) reported similar conclusions. The 
experimental data published demonstrated that, compared 
with glutaraldehyde, the use of a tripolyphosphate-based 
cross-linking agent increased color removal. The com-
parison of the maximum biosorption capacity at the same 
experimental conditions for Reactive Red 5 dye by glutar-
aldehyde–chitosan and tripolyphosphate–chitosan showed 
846.9 mg/g for glutaraldehyde and 1125.7 mg/g for pen-
tasodium tripolyphosphate. However, the mechanisms need 
to be explored.

de Luna et al. (2017a, b) recently developed new compos-
ite chitosan-based hydrogels containing hyper-cross-linked 
polymer particles to be used as broad-spectrum biosorbents. 
The hydrogels were obtained by phase inversion method in 
order to efficiently combine the dye biosorption ability of 
chitosan and the capacity of the porous particles of trap-
ping pollutant molecules. The particles exhibited improved 
mechanical properties with possible use in batch or col-
umn procedures (de Luna et al. 2017a). Batch biosorption 
experiments revealed a synergistic effect between chitosan 
and hydrogels, and the samples are able to remove both 



anionic and cationic dyes such as Indigo Carmine (qmax = 
118 mg/g), Rhodamine 6G (qmax = 78 mg/g) and Sunset 
Yellow (qmax = 72 mg/g) from water (de Luna et al. 2017b). 
The maximum dye uptakes were higher than those of com-
parable biosorbents. However, dependencies in relation to 
the chemical structure of the dye molecules were not identi-
fied. The mechanical properties of hydrogels were enhanced 
respect to pure chitosan, and the samples can be regenerated 
and reused keeping their adsorption ability unaltered over 
successive cycles of biosorption, desorption, and washing. 
The authors, focusing on the structure-property relation-
ships of chitosan hydrogels, also showed that the conditions 
of preparations played a crucial role in their performances. 
The concentration of the starting solution determined the 
density and strength of intermolecular interactions, and 
that the gelation kinetics dictated the hydrogel structure at 
the microscale. Consequently, even subtle changes in the 
preparation protocol can cause significant differences in the 
performances of chitosan hydrogels in terms of mechanical 
properties and dye biosorption capacity. The observed trends 
can be interpreted looking at the chitosan network structure, 
which can be inferred by rheological measurements.

In a series of works, Jóźwiak et al. (2013, 2015, 2017a, 
b) also focused on the structure-property relationships of
chitosan hydrogels. Their works compared properties of 
hydrogel chitosan biosorbents cross-linked with nine agents 
(Jóźwiak et al. 2017b), including five ionic ones (sodium 
citrate, sodium tripolyphosphate, sodium edetate, sulfos-
uccinic acid, and oxalic acid) and four covalent ones (glu-
taraldehyde, epichlorohydrin, trimethylpropane triglycidyl 
ether, and ethylene glycol diglycidyl ether). The effect of 
cross-linking process conditions (pH, temperature) and 
dose of the cross-linking agent on material stability during 
biosorption and on the effectiveness of Reactive Black 5 
dye biosorption were examined. The influence of chemical 
nature of chitosan, e.g., degree of deacetylation, was also 
studied (Jóźwiak et al. 2017a). The optimal parameters of 
cross-linking ensuring biosorbent stability in acidic solu-
tions and high biosorption capability were established for 
each cross-linking agent tested. The susceptibility of cross-
linked biosorbents to mechanical damages was analyzed as 
well. The process of ionic cross-linking was the most effec-
tive at the pH value below which hydrogel chitosan biosorb-
ent began to dissolve (pH 4). The cross-linking temperature 
ranging from 25 to 60 °C had no effect upon biosorbent 
stability. The higher temperature during ionic cross-linking, 
however, slightly decreased Reactive Black 5 biosorption 
effectiveness. The ionic cross-linking significantly decreased 
the susceptibility of hydrogels to mechanical damages. In the 
case of covalent cross-linking of chitosan hydrogel beads, 
the effect of process conditions, e.g., pH and temperature, 
on the properties of the cross-linked biosorbent depended on 
the type of cross-linking agent. The biosorbents cross-linked 

with covalent agents were usually harder but also more frag-
ile, and therefore more susceptible to mechanical damages. 
The authors showed that increasing the degree of deacety-
lation, ranging from 75 to 90%, involved an increase in the 
relative proportion of amine groups, which were able to be 
protonated, favoring dye biosorption. The higher degree of 
deacetylation chitosan provided a better biosorption. The 
highest biosorption capacity (qmax = 1559.7 mg/g) was 
obtained for the hydrogel in the form of granules (degree 
of deacetylation = 90%). Due to a loose structure and an 
easy access to biosorption centers, chitosan hydrogel gran-
ules may ensure up to 224% higher biosorption capacity (for 
degree of deacetylation = 75%, qmax = 1307.5 mg/g) than 
chitosan in the form of flakes (for degree of deacetylation = 
75%, qmax = 403.4 mg/g). The results were also found to be 
strongly dependent on the pH of the solution. The authors 
concluded that biosorption onto hydrogels was a promis-
ing alternative to replace conventional materials used for 
decolorization purposes. These materials were efficient in 
dye removal with the additional advantage of being cheap 
and nontoxic. However, their performances were strongly 
depended on their structure. In particular, the extent of 
cross-linking was accompanied by a decrease in dye uptake. 
Moreover, which cross-linking agent is better? There is no 
direct answer to this question.

El-Harby et al. (2017) investigated the biosorption capac-
ity of three antimicrobial terephthaloyl thiourea cross-
linked chitosan hydrogels for Congo Red dye removal. The 
hydrogels were prepared by reacting chitosan with various 
amounts of terephthaloyl diisothiocyanate cross-linker in 
order to study the structure-property relationships of chi-
tosan hydrogels. The results showed that the cross-linking 
ratio slightly affected the equilibrium biosorption capacity 
and the performance decreased with an increase in cross-
linking density under the range studied. An optimum tereph-
thaloyl thiourea/amine ratio was found for dye biosorption. 
This decrease in biosorption was interpreted in terms of the 
decrease in hydrophilicity and accessibility of complexing 
groups. The cross-linking reaction also decreased the avail-
ability of amine groups for the complexation of dyes. The 
biosorption isotherms and kinetics showed that the experi-
mental data were better fitted by the Langmuir equation and 
the pseudo-second-order equation, respectively. Isotherms 
were characterized by a steep increase in the biosorption 
capacity, indicating a great affinity of the hydrogel for the 
dye, followed by a plateau representing the maximum capac-
ity at saturation of the monolayer (qmax = 44.2 mg/g). The 
biosorption phenomena were most likely to be controlled by 
chemisorption process. It was spontaneous in nature, indi-
cated by the negative value for the Gibbs energy change ΔG, 
more favorable at lower concentrations of dye molecules 
compared with higher concentrations, and was most likely 
to be controlled by chemisorption. The positive values of 



enthalpy change ΔH and entropy change ΔS suggested the 
endothermic nature of biosorption and increased random-
ness at the solid/solution interface during the biosorption 
of dye on chitosan derivatives. The authors concluded that 
cross-linked chitosan hydrogels may be promising biosorb-
ents in wastewater treatment.

Recently, some novel procedures such as irradiation-
based techniques, e.g., ionizing radiation, gamma rays, and 
electron beam, have been reported for cross-linking poly-
saccharides. The preparation of gels by radiation treatment 
carries some advantages over the conventional methods. 
The reaction can be initiated at ambient temperature and, 
in certain cases, it does not require the presence of cross-
linking agents. The method is also relatively simple and the 
process control is easy. The degree of cross-linking, which 
strongly determines the extent of properties in gels, can be 
easily controlled by varying the irradiation dose. In the syn-
thesis of gels by chemical methods, cross-linking density is 
controlled by the concentration of the cross-linker, reaction 
time, temperature and other factors. While for the radia-
tion method it is determined by the absorbed dose, which 
means by the irradiation time. Moreover, cross-linking by 
the chemical methods is generally performed mainly in the 
liquid state. Since the ionizing radiation is highly penetrat-
ing, it is possible to initiate chemical reactions in liquid or in 
solid state. Piątkowski et al. (2017) proposed a novel, waste-
free method for obtaining multifunctional chitosan hydrogels 
under microwave irradiation without the presence of a cross-
linking agent. Their chemical and morphological structure, 
swelling properties, and biosorption capability of a model 
dye were described. Bifunctional materials containing both 
negative and positive surface charges were fully biodegrad-
able, and capable to absorb high amounts of water, as well 
as to remove various water contaminants.

Wach’s group has applied electron beam irradiation to 
prepare gels from chitosan. They synthesized a series of 
novel gels of carboxymethylated chitosan derivatives by 
electron beam for biomedical applications and their char-
acteristics are being studied in detail (Mozalewska et al. 
2017; Czechowska-Biskup et al. 2016). Solutions of chitosan 
and carboxymethyl-chitosan were subjected to irradiation 
by electron beam in the presence of poly(ethylene glycol) 
diacrylate in order to produce carboxymethyl-chitosan- and 
chitosan-based hydrogels. Poly(ethylene glycol) diacrylate 
monomer itself undergoes simultaneous polymerization and 
cross-linking either in neutral water or in acidic medium. 
Acidic solutions of chitosan of 0.5, 1 and 2% can be effec-
tively cross-linked with poly(ethylene glycol) diacrylate to 
form a gel. Although carboxymethyl-chitosan undergoes 
radiation-initiated cross-linking only at high concentration 
in water (over 10%), the presence of poly(ethylene glycol) 
diacrylate in solution facilitated hydrogel formation even 
at lower concentration of carboxymethyl-chitosan. The 

formation of chitosan and carboxymethyl-chitosan hydro-
gels required irradiation doses lower than those needed 
for sterilization, i.e., 25 kGy, in some cases even as low as 
200 Gy. Sol–gel analysis revealed relatively high gel fraction 
of obtained hydrogels, up to 80%, and good swelling ability. 
Both parameters can be easily controlled by composition 
of the initial solution and irradiation dose. Possible mecha-
nisms of cross-linking reactions were proposed, involving 
addition of the polysaccharide macro-radicals to a termi-
nal double bond of poly(ethylene glycol) diacrylate. Even 
though the polymer chains may be partly degraded during 
irradiation, the authors concluded that ionizing radiation was 
a convenient tool to synthetize hydrogels based on chitosan 
for potential applications not only in the biomedical field but 
also in water and wastewater treatment.

Practical industrial applications of hydrogels in column-
based biosorption processes are limited due to hydrodynamic 
limitations (Esquerdo et al. 2014, 2015). Certain hydrogels 
are also too soft and degrade at fast rates which can pose 
major handling difficulties during their applications. Various 
hyper-cross-linked chitosan gels/beads, chitosan scaffolds, 
sponges, and chitosan-based composites have been designed 
to overcome these problems. Different techniques such as 
blending between two or more polymers, copolymerization 
with (hydrophobic) synthetic monomers, synthesis of inter-
penetrating network and semi-interpenetrating network have 
been proposed. These techniques are useful because they 
improve the mechanical strength, enhance swelling/deswell-
ing response and avoid the loosening of their structure in wet 
environments. Dragan (2014) reviewed the main synthesis 
strategies of fully- and semi-interpenetrating network hydro-
gels and their potential applications.

Hyper-cross-linked hydrogel beads were prepared from 
monodisperse water-in-oil emulsions using a microchannel 
emulsification technique for the first time and proposed for 
Acid Orange 7 removal by Kuroiwa et al. (2017). Mono-
disperse emulsion droplets can be generated spontaneously 
via an interfacial tension-driven process without generating 
severe shear force and heat by a two-step gelation process. 
They were formed by physical gelation of chitosan-contain-
ing water droplets by alkali treatment followed by chemi-
cal cross-linking treatment using ethylene glycol diglycidyl 
ether. To clarify the effect of various process parameters 
such as chitosan concentration and flow rate of chitosan 
solution on the emulsification, microchannel emulsifica-
tion was performed under various conditions. The mean 
diameter and diameter distribution were affected by the vis-
cosity and flow rate of the chitosan solution pressed into 
microchannels. The biosorption results showed that chi-
tosan gel microbeads exhibited high biosorption capacities 
toward Acid Orange 7 (qmax = 1670 mg/g). Electrostatic 
attractions between the positively charged polymer chains 
(–NH3

+ groups) and the negatively charged anionic dye 



molecules (–SO3
− groups) were the most prevalent mecha-

nism with the pH as the main factor affecting performances. 
Although these properties were pH responsive, the micro-
beads can be applied under acidic and neutral pH condi-
tions. The high value of qmax suggested that the molar ratio 
of –NH3

+/–SO3
− was 1.0/0.82 at maximum biosorption, 

i.e., 82% of –NH3
+ groups in chitosan hydrogel would be

bound to –SO3
−. This result indicated that the biosorption 

was achieved by electrostatic interactions. The microbeads 
were also stable for more than 120 days and could be reused 
in repetitive adsorption-desorption cycles (at least 10 times) 
without decrease in performance. The authors concluded 
that these new hydrogels would be interesting in wastewater 
treatment for the removal of anionic organic dyes due to 
their intrinsic properties (small diameter < 20 µm, high size 
uniformity with coefficient of variation < 10%), outstanding 
biosorption performance, high stability under various condi-
tions, and reusability. The preparation of chitosan-containing 
emulsions and chitosan gel microbeads using the microchan-
nel emulsification technique represents an innovative and 
easy method of preparation.

Esquerdo et al. (2014) prepared a chitosan scaffold with 
a mega-porous structure as an alternative biosorbent to 
remove food dyes from solutions. The new material was 
characterized by infrared spectroscopy, scanning electron 
microscopy and other structural tools. It presented pore sizes 
from 50 to 200 µm, porosity of 92.2 ± 1.2% and specific 
surface area of 1135 ± 2 m2/g. Its potential to remove five 
food dyes from solutions was investigated by equilibrium 
isotherms and thermodynamic studies. The chitosan mega-
porous scaffold showed both good structural characteristics 
and high biosorption capacities (788–3316 mg/g) at 298 K. 
The two-step Langmuir model was suitable to represent the 
equilibrium data. The process was spontaneous, favorable, 
exothermic and an enthalpy-controlled process. Results were 
explained by the presence of electrostatic interactions that 
occurred the between chitosan scaffold and dye species. This 
was demonstrated from infrared spectroscopy, and scanning 
electron microscopy with energy dispersive X-ray mappings.

New interpenetrating network hydrogels were prepared 
by Mandal and Ray (2014) from chitosan and cross-linked 
copolymers of acrylic acid, sodium acrylate and hydroxy-
ethyl methacrylate. Acrylic acid, sodium acrylate, hydrox-
yethyl methacrylate and N’N’-methylenebisacrylamide 
monomers were free radically copolymerized and then 
cross-linked in aqueous solutions of chitosan. Several inter-
penetrating network hydrogels were prepared by varying the 
concentration of initiator and weight (%) of chitosan. The 
biosorption of cationic Methyl Violet and anionic Congo 
Red dyes by these hydrogels were studied. The materials 
showed high abatement expressed in % (98–73% for Congo 
Red and 94–66% for Methyl Violet) over the feed concentra-
tion of 10–140 mg/L of dye in water. The materials were pH 

responsive and the performances depended on the type of 
hydrogel. Hydrogels prepared with 1 wt.% initiator, 1 wt.% 
cross-linker and 12 wt.% chitosan showed the best swelling 
characteristics and performances. The good reusability of 
the materials was another cited advantage (Mandal and Ray 
2014).

Semi-interpenetrating network technology is a feasi-
ble route to produce new hydrogels as recently reported 
by Al-Mubaddel et al. (2017). It is a combination of two 
or more polymers in which one forms a network and the 
other remains in a linear form. The linear polymer remains 
physically bonded to the network via various interactions 
such as electrostatic forces, hydrophobic interactions, and 
van der Waals forces. Using this technology, the authors 
prepared chitosan/polyacrylonitrile semi-interpenetrating 
network hydrogel via glutaraldehyde vapors for Rhodamine 
B removal from aqueous solutions. The main advantages 
of these hydrogels as biosorbents include ease in loading, 
chelation complex formation, semi-continuous operation, 
wettability and high swelling, and reusability. Wettability 
and swelling facilitate the biosorption of target molecules 
since swelling provides more specific surface area and 
expose more functional groups for biosorption.

Cross-linked hydrogels with glutaraldehyde and hydro-
gels with activated carbon were developed, characterized 
and applied for the biosorption of Food Blue 2 and Food Red 
17 from aqueous binary system by Gonçalves et al. (2017). 
Their results revealed that the insertion of activated carbon 
on the chitosan hydrogel structure provided an improvement 
in the biosorption performance. The materials can be eas-
ily regenerated by alkaline solutions and were reusable for 
more than 5 cycles. The biosorption capacities remained 
unchanged after regeneration, showing that both the chemi-
cal stability of the composites and reproducibility of the 
biosorption process.

The interaction between a new hydrogel composite (chi-
tosan-poly(acrylic acid)/rice husk ash hydrogel) and Methyl-
ene Blue was investigated by Vaz et al. (2017). Their studies 
clearly indicated that the hydrogel had a natural selectiv-
ity for dye molecules and was very useful for the treatment 
of wastewater. Biosorption capacities ranged from 1450 to 
1950 mg/g with increasing the initial Methylene Blue con-
centration from 1500 to 2500 mg/L at pH > 5. The removal 
efficiency was higher than 90% for all samples. The dye 
biosorption onto the composite material was spontaneous 
in nature and the kinetic measurements showed that the pro-
cess was rapid (the equilibrium time was found to be 60 min 
in all the experiments). The biosorption system obeyed the 
pseudo-second-order kinetic model for the entire biosorp-
tion period studied. Using kinetic studies, the authors also 
showed that the mechanism of action was chemisorption 
rather than physisorption. After saturation, the hydrogels are 
easily regenerated in acidic solution and after five cycles of 



biosorption/desorption, they maintained their dye removal 
efficiency (> 91%).

Zhou et al. (2017b) proposed new nano-TiO2/chitosan/
poly(N-isopropylacrylamide) composite hydrogels by using 
a two-step polymerization synthetic method. The hydrogels 
exhibited both high biosorption capacity and efficiency 
of photocatalytic degradation for Acid Fuchsin dye. The 
mechanism was clearly established for the interpretation 
of experimental data. Dye elimination is assumed to occur 
through chemisorption with the pH as the main factor affect-
ing the process. Amine sites were the main reactive groups 
for dyes even though hydroxyl groups may also contribute 
to the biosorption process. The biosorption performance was 
observed to be pH-dependent. An accurate mathematical 
description of biosorption capacity at equilibrium was indis-
pensable for reliable prediction of biosorption parameters 
and quantitative comparison of adsorption behavior for dif-
ferent materials and/or for varied experimental conditions.

Liu et al. (2018) synthesized a three-dimensional porous 
beta-cyclodextrin/chitosan functionalized graphene oxide 
hydrogel by a simple and facile chemical reduction method 
in the presence of sodium ascorbate which acted as a reduc-
ing agent. This new hydrogel was used as biosorbent to 
remove Methylene Blue from aqueous solutions. The mate-
rial showed an ultrahigh biosorption capacity (1134 mg/g) 
for this dye. The unique 3D structure enabled the rapid reuse 
and recyclability of hydrogel without a complicated filtra-
tion system. The biosorption process was well fitted with the 
pseudo-second-order equation and Freundlich model. The 
simulation of the intraparticle diffusion model illustrated 
that both film diffusion and intraparticle diffusion were 
involved in the process. The characteristics of hydrogels 
were expressed in thermodynamic parameters, indicating 
that the biosorption process was spontaneous and endother-
mic. The authors concluded that this new material could be 
a cost-effective and promising biosorbent for dye removal.

Graphene oxide-based materials were recently proposed 
for potential application in water treatment. Although these 
materials have shown high performance in both concen-
trated and diluted solutions, their separation from water for 
reuse remains a challenge. Qi et al. (2018) investigated the 
self-assembly of graphene oxide sheets in the presence of 
chitosan into sponges. The results showed that about 93% 
of added chitosan could be combined with graphene oxide, 
regardless of the chitosan concentration. Upon freeze dry-
ing, a stable sponge was generated only at a chitosan content 
of  ≥ 9%. The qmax for Methylene Blue was determined to 
be 275.5 of dye per gram of material. The performances 
increased with the chitosan content between 9 and 41%. 
From X-ray diffraction, scanning electron microscopy and 
transform infrared spectroscopy data, both electrostatic 
attraction and hydrophobic interactions were responsible for 
Methylene Blue biosorption by sponges. Another advantage 

was the use of fixed-bed column and the easy recycling of 
the materials after biosorption. Indeed, desorption can be 
carried out in the same column using an alkaline solution. 
This regeneration step restored the material close to the 
original condition for effective reuse with undiminished dye 
uptake and no physical change or damage. Sabzevari et al. 
(2018) similarly demonstrated the utility of cross-linking 
chitosan with graphene oxide to yield adsorbent materials 
with greater adsorption over that of colloidal graphene oxide 
with Methylene Blue. The facile cross-linking strategy of 
graphene oxide reveals that such polymer composites display 
tunable physicochemical properties and functional versatil-
ity for a wider fields of application versus graphene oxide, 
especially for contaminant removal over multiple adsorp-
tion-desorption cycles.

Melo et al. (2018) proposed the use of cellulose nano-
whiskers to enhance the biosorption capacity of chitosan-
g-poly(acrylic acid) hydrogel. The composites contained up 
to 20 w/w-% cellulose nanowhiskers showed an improved 
biosorption capacity toward Methylene Blue as compared to 
the pristine hydrogel. At 5 w/w-% cellulose nanowhiskers, 
the biosorbent presented the highest performance (qmax = 
1968 mg/g). The maximum removal of Methylene Blue (> 
98% of initial concentration 2 g/L) was achieved at the fol-
lowing conditions: contact time 60 min, pH 6, ionic strength 
0.1 M, and room temperature. The biosorption mechanism 
was explained with the Langmuir type I model suggesting 
the formation of a Methylene Blue monolayer on the mate-
rial surface. Using kinetic data, the interaction between the 
biosorbent and dye molecules was explained by chemisorp-
tion. The regeneration step was easy and the materials were 
regenerated at low cost by a simple immersion with an acidic 
solution. They were reusable more than 5 cycles without 
any loss of mechanical or chemical efficacy. This change in 
the pH of the solution reversed the biosorption because the 
electrostatic attraction mechanism was very sensible to pH.

Yang et al. (2016b) developed a novel green biopoly-
mer-based aerogel by freeze drying a hydrogel from cross-
linking bifunctional hairy nanocrystalline cellulose and 
carboxymethylated chitosan through a Schiff base reac-
tion. The authors used a sequential periodate and partial 
chlorite oxidation of cellulose, followed by a hot water 
treatment. The nanocelluloses, bearing aldehyde and car-
boxylic acid groups, facilitated the cross-linking with 
chitosan through imine bond formation while providing 
negatively charged functional groups, where chitosan was 
modified to accommodate carboxylic acid. The material 
was highly porous (pore size in the range of 35–70 µm) 
and negatively charged (the carboxyl group content was 
3.2 mmol/g). It showed excellent biosorption performance 
over a wide range of pH. At pH = 7.5, the maximum 
Methylene Blue dye biosorption capacity of the aerogel 
was 785 mg/g, obtained by fitting the equilibrium data to 



the Langmuir isotherm, yielding the highest biosorption 
capacity for any reported reusable biosorbents prepared 
from biopolymers. The performance was also comparable 
to commercial activated carbon (980.3 mg/g) and an as-
received starch microparticle (716.3 mg/g), reported by 
Karoyo et al. (2018). The maximum biosorption is about 
86% of the amount calculated from charge stoichiometry, 
i.e., in reference to the chitosan carboxylated materials.
The mechanism was explained by electrostatic complexa-
tion between acidic groups on the anionic aerogel with 
the cationic dye. At pH = 3, the qmax was about 192 mg/g, 
which was about 25% of the maximum biosorption at pH 
= 7.5. This decrease was due to the protonation of car-
boxylic acid groups. Dynamics of biosorption was mod-
eled by numerically solving the unsteady-state diffusion-
sorption mass balance in a 1D spherical coordinate, which 
attested to a diffusion-controlled process. The aerogel can 
be regenerated using acidic solution (pH < 2) in 60 min. 
Successful biosorption-regeneration cycles proved an 
excellent reusability (at least six cycles), and the biosorp-
tion capacity remained constant over a wide pH range.

Biosorption mechanisms

In the context of adsorption technology, the major challenge 
is to select the most promising types of adsorbent, mainly 
in terms of high capacity, often expressed by the qmax value. 
The next real challenge is to clearly identify the mechanism. 

For chitosan hydrogels used for the removal of dyes, the 
mechanisms have been demonstrated (Crini and Badot 
2008; Elwakeel 2010; Sudha 2011). Biosorption involves 
similar binding mechanisms than those used with commer-
cial synthetic organic resins, where dye binding takes place 
essentially on amine groups, although the contribution of 
hydroxyl groups is also possible. In general, dye elimination 
by chitosan involves two different mechanisms, complexa-
tion versus ion-exchange, depending on the pH since this 
parameter may affect the protonation of the macromolecule 
chains. Amine groups are susceptible to ionization as a func-
tion of pH  (pka values in the range 6.3–6.5), that allow chi-
tosan to form a polycation species. Hence, the protonated 
amine groups can form complexes with anionic species by 
electrostatic attractions and/or ion-exchange (Guo and Wil-
son 2012; Olivera et al. 2016; Salehi et al. 2016; Kyzas et al. 
2017; Subramani and Thinakaran 2017; Wang and Zhuang 
2017; Karimi et al. 2018). Figure 3 illustrates the mechanism 
of anionic dye adsorption by a cross-linked chitosan hydro-
gel under acidic conditions. In this case, the main interaction 
is electrostatic attraction.

It is also possible that these two interactions can occur 
simultaneously depending on the composition of the mate-
rial, the dye structure and its properties, and the solution 
conditions, e.g., pH, ionic strength and temperature. In 
neutral or alkaline solutions, chitosan is a weakly alkaline 
material due to the fact that amino groups are deprotonated. 
These reactive groups can bind dye species by complexation 

Fig. 3  Mechanism of anionic dye adsorption by a cross-linked chitosan hydrogel under acidic conditions



including chelation and coordination. Some of other reported 
interactions cited in other studies also include surface 
adsorption, physical adsorption and diffusion in the mac-
romolecular network, hydrogen bonding (hydroxyl groups 
contribute to stabilizing dye binding on amine groups), and 
acid-base interactions.

Personal comment

Future research needs to explore some of the following 
aspects. To date, despite the large number of papers devoted 
to the biosorption of dyes onto chitosan hydrogels, the out-
standing removal capabilities reported reveal unquestionable 
progress. However, biosorption processes of such materials 
are often limited by laboratory-based studies (Crini 2015). 
Indeed, the materials have already been shown to be effec-
tive in laboratory experiments, but no pilot-scale demonstra-
tion has yet been carried out.

As industrial production of cross-linked chitosan hydro-
gels has not started, the biosorbents produced at lab-scale 
suffer from variability in their characteristics and lack of 
reproducibility, e.g., difficulty to produce materials at the 
same cross-linking density. Indeed, although various labo-
ratories and a few companies can synthesize these materials 
to order, it is very difficult to find commercial sources of 
cross-linked hydrogels with guaranteed reproducible proper-
ties. Yet, the performance can vary depending on the condi-
tions and the mode of preparation of hydrogels. However, 
this aspect is often neglected in the literature (Ahmed 2015; 
Ullah et al. 2015; Akhtar et al. 2016; de Luna et al. 2017a; 
Pakdel and Peighambardoust 2018; Van Tran et al. 2018). 
A more detailed study appears to be necessary to show how 
the chemical structure of the hydrogels affects the biosorp-
tion performance.

Most studies focused on solutions contaminated with a 
single type of dye using standard conditions. Studies involv-
ing treatment of polycontaminated solutions and real efflu-
ents are indeed scarce. The experimental conditions should 
be chosen to simulate real wastewater on the basis of ther-
modynamics and studies of reaction kinetics. Much work 
in this area is necessary to demonstrate the possibilities on 
an industrial scale. Moreover, in spite of the abundance of 
literature reports, there is yet little information that details 
comprehensive studies that compare various biosorbents and 
conventional commercial adsorbents at similar conditions. 
Comparisons of different materials are however difficult 
because of inconsistencies in the manner of data presen-
tation. Due to scarcity of consistent cost information, cost 
comparisons are also difficult to make. This economic aspect 
is often neglected.

In addition, there is no systematic and comparative study 
taking into account the physicochemical properties of the 
different kind of dyes. Recently, some investigators have 

focused on studying the influence of the chemical structure 
of dyes on biosorption capacity. These studies would help in 
optimizing the type and amount of chitosan, i.e., in reference 
to material dosage and/or the manner in which composite 
materials are prepared. The development of mechanistic 
and mathematical models in order to simulate the biosorp-
tion process are also important aspects in future studies that 
should be further developed.

Finally, most studies have focused on the evaluation of 
biosorption performance, where only a few aim at gain-
ing a greater understanding of the desorption strategy. On 
this topic, Kyzas et al. (2014) developed a phenomenologi-
cal model which was capable of describing the data for all 
the initial dye concentrations. The model was extended 
to repeated batch biosorption/desorption cycles. Results 
showed that the decrease in biosorption efficiency during 
the cycles can be attributed to the requirement for total 
adsorbate mass conservation during each step, rather than 
thermodynamic irreversibility of the process. The inherent 
irreversibility cannot be identified by the biosorption /des-
orption cycle only, but requires advanced diagnostic tools 
such as spectroscopic techniques to show any changes in the 
structure and functional groups of the biosorbent.

Conclusion

The past two decades have shown an explosion in the devel-
opment of new hydrogels that contain chitosan for use as 
biosorbents in dye removal from solution. Their potential 
use in biosorption-oriented processes is now recognized. 
However, in spite of numerous results, publications, and 
patents, cross-linked chitosan hydrogels are not yet pro-
duced on an industrial scale and are still not widely used 
for water treatment. Nevertheless, they will find industrial 
environmental applications due to their outstanding biosorp-
tion capacities and efficiency to treat either concentrated 
or diluted solutions of contaminants in aqueous media. In 
Europe, the tightening of regulations concerning effluent 
implies a better level of treatment of waste to tend toward 
zero pollution. With most types of conventional water treat-
ment, it is difficult to remove pollutants including dyes pre-
sent at low or very low levels in heterogeneous and variable 
effluents. Cross-linked chitosan hydrogels are shown to have 
efficacy to remove pollution present at trace levels. Further 
efforts will be necessary to convince industry to use these 
materials as part of the treatment strategy in their wastewater 
treatment plants.
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