
HAL Id: hal-02402876
https://hal.science/hal-02402876

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight Stream Cipher Scheme for
Resource-Constrained IoT Devices

Hassan Noura, Raphael Couturier, Congduc Pham, Ali Chehab

To cite this version:
Hassan Noura, Raphael Couturier, Congduc Pham, Ali Chehab. Lightweight Stream Cipher Scheme
for Resource-Constrained IoT Devices. International Conference on Wireless and Mobile Computing,
Networking and Communications, Oct 2019, Barcelona, Spain. �hal-02402876�

https://hal.science/hal-02402876
https://hal.archives-ouvertes.fr

Lightweight Stream Cipher Scheme for
Resource-Constrained IoT Devices

Hassan Noura
Electrical and Computer Engineering

American University of Beirut
Beirut, Lebanon

Raphaël Couturier
FEMTO-ST Institute,

Univ. Bourgogne Franche-Comté,
Belfort, France

Congduc Pham
University of Pau, LIUPPA laboratory

Pau, France

Ali Chehab
Electrical and Computer Engineering
American University of Beirut (AUB)

Beirut, Lebanon

Abstract—The Internet of Things (IoT) systems are
vulnerable to many security threats that may have drastic
impacts. Existing cryptographic solutions do not cater for
the limitations of resource-constrained IoT devices, nor for
real-time requirements of some IoT applications. Therefore,
it is essential to design new efficient cipher schemes with
low overhead in terms of delay and resource requirements.
In this paper, we propose a lightweight stream cipher
scheme, which is based, on one hand, on the dynamic
key-dependent approach to achieve a high security level,
and on the other hand, the scheme involves few simple
operations to minimize the overhead. In our approach,
cryptographic primitives change in a dynamic lightweight
manner for each input block. Security and performance
study as well as experimentation are performed to validate
that the proposed cipher achieves a high level of efficiency
and robustness, making it suitable for resource-constrained
IoT devices.

Index Terms—Lightweight cryptography; key-dependent
encryption, security, IoT.

I. INTRODUCTION

The Internet of Things (IoT) systems introduced new
smart applications such as smart houses/ buildings/
cities, environment monitoring, traffic monitoring, and
health monitoring, among others. For most of IoT ap-
plications, the devices are resource-constrained and are
used to monitor and to collect data from the physical
environment.

IoT systems are constantly facing dangerous security
and privacy threats. The different types of threats target
various security services such as confidentiality (data
confidentiality and privacy), integrity (device system
integrity) and authentication (device/user and data ori-
gin authentication), as well as availability (data and
system). Therefore, in order to ensure the appropriate
security measures, two types of solutions are considered,

cryptographic and non-cryptographic. In general, data
confidentiality, data integrity, and data origin authenti-
cation are ensured by cryptographic algorithms. On the
other hand, user/device authentication can be ensured
by using a cryptographic protocol that can be based
on cryptographic algorithms such as an encryption algo-
rithm or a hash function. When IoT applications com-
municate sensitive information, confidentiality may be
simply breached via eavesdropping and traffic analysis.
The eavesdropper will be able to extract the message
contents, while the traffic analysis is able to recover
useful information (privacy issues) from the traffic such
as source and destination from the header of the com-
municated messages.

A. Problem Formulation

Based on the characteristics of IoT devices and appli-
cations, the existing security solutions are not suitable
for delay-sensitive applications, nor for tiny devices that
have a limited battery lifetime and limited computa-
tional power. Moreover, different IoT applications have
stringent QoS requirements. As such, there is a critical
need for new security solutions that are compatible with
the limitations and requirements of IoT devices and
applications.

B. Related Work

Traditional cryptographic algorithms such as the Ad-
vanced Encryption Standard (AES) [1] require several
iterations over a round function, which introduces rela-
tively a large overhead in terms of latency and required
resources. The minimum required number of rounds
for a traditional block cipher is 4 as it is for the
Hummingbird2 cipher [2]. Therefore, such cryptographic

algorithms would result into a poor performance in the
context of IoT networks. Recently, several lightweight
ciphers such as Simon and Speck [3] have been pro-
posed and they require less computation and resources
compared to AES. Speck has a lower overhead compared
to Simon and it was shown to be suitable for tiny devices.
However, Speck still uses the multi-round structure,
although the round function is simple and optimized.

On the other hand, the chaotic cryptographic al-
gorithms also suffer from different limitations such
as floating-point computations and conversion opera-
tions, finite periodicity and complex hardware imple-
mentation [4]. Also, they are based on the multi-
round structure. Accordingly, a new paradigm emerged
for cryptographic algorithms, which are referred to as
”lightweight” since they exhibit low latency and over-
head [5], [6]. Lightweight cryptographic algorithms that
are based on the dynamic key approach have been
proposed in [2], [7]–[9]. The cipher schemes described
in [7]–[9] require two iterations of a round function,
while [2] requires a single iteration of a round function,
and it processes 2 blocks at a time, which makes it
faster than the one in [7]–[9]. These solutions use the
dynamic key-dependent approach to reduce the required
computations and resources while preserving a high
security level.

C. Motivation and Contributions

This paper focuses on the design of a new efficient
cipher scheme for IoT devices; it requires a single iter-
ation and it provides a better performance and security
level compared to the previous dynamic key-dependent
ciphers and recent static lightweight ciphers [3].

The proposed solution follows the same logic and
results in a flexible, simple lightweight stream cipher
scheme (LSC) with 2 simple functions, a round function
and an update function that are iterated only once to
produce a key-stream. These functions are designed with
the minimum possible number of operations to preserve
the desirable cryptographic performance. To accomplish
this objective, a new dynamic key is generated for each
input message, which can be an audio, an image or
even a video message. The dynamic key is produced
as a function of a secret key and a nonce, which makes
the cryptographic primitives non-static and unknown to
attackers and hence, introducing a higher complexity for
such attackers. The substitution and permutation tables
are dynamic and key-dependent, and they are based
on the methods proposed in [2]. They are respectively
based on the Key Setup Algorithm (KSA) and modified
KSA of RC4. These techniques have been validated to
ensure a good cryptographic performance in a dynamic

manner according to [2]. Having said that, the novelty
of this work stems from the encryption algorithm and
how it makes use of the dynamic key and cryptographic
primitives. The advantages of LSC compared to [2] are
related to the excellent balance between the security level
and performance for IoT devices:

1) Minimum effect of error propagation: LSC encrypts
1 block at a time instead of 2 blocks to reduce the
effect of error propagation

2) Low overhead: LSC requires fewer operations and
does not apply the block permutation operation to
reduce delay and memory consumption. LSC also
avoids chaining and diffusion operations to further
reduce the computational complexity.

3) Simpler implementation: [2] cannot be applied to
resource-constrained tiny devices, such as Arduino
boards, due to the need for a large memory capacity.

4) Variable cipher primitives: LSC updates the cryp-
tographic primitives after each encrypted/decrypted
block to provide a higher security level.

D. Organization of the paper

The rest of the paper is organized as follows. The pro-
posed key derivation algorithm along with the proposed
cipher construction primitives are described in Section II.
Section III presents the proposed lightweight stream
cipher (LSC) scheme. Then, extensive security analysis
is performed in Section IV to prove the robustness of
the scheme. Section V investigates the immunity of
LSC against different kinds of existing attacks. The
effectiveness of LSC is then validated in Sections VI
and VII. Conclusions are derived in Section VIII.

II. PROPOSED KEY DERIVATION FUNCTION

In this section, the proposed key derivation function is
described. All the notations used are shown in Table I.
Figure 1 shows all the steps of the proposed dynamic
key generation technique, where the input is a shared
secret session key (SK) between two legal entities. This
session key can be renewed after each new session,
depending on the IoT application. Key management
among IoT devices are beyond the scope of this paper
and readers can refer to [10] for more details about
possible key management approaches in IoT systems.

A dynamic key (DK) is produced for each new input
message by hashing the secret key SK with a nonce that
can be produced in a synchronous manner between both
entities. This procedure allows any secure cryptographic
hash function to be used at this step. In this paper,
SHA-512 [11] is used and the output dynamic key is
64 bytes long: DK = hashSHA−512(SK ⊕ nonce).
The produced dynamic key is therefore different for

2

Table I: Table of notations

Symbol Definition
SK A shared secret Session Key
nonce A dynamic nonce which can be changed for each input

message
DK A Dynamic Key that is updated for each input message
kS1 and kS2 First and second substitution sub-Keys
S1 and S2 First and second dynamic substitution tables
π Dynamic permutation table
kRM Seed for a stream cipher to produce RM and IM
RM and IM Two pseudo-random blocks
kPRM A permutation sub-Key and it is used to produce the permu-

tation table πRM

len length of input message after reshaped to a table form.
nb Number of blocks in one input message and it is equals to

e len
h

d
h Number of bytes in one block message
M The original message
mi The ith original plain block
C The encrypted message
ci The ith encrypted block

Figure 1: Proposed dynamic key derivation function and
construction cipher primitives

each input message and the secure cryptographic hash
function ensures a high resistance against collision. In
our approach, the dynamic key is divided into four sub-
keys: DK = {kRM , kPRM , kS1, kS2}. Each sub-key has
a length of 128 bits (16 bytes). These sub-keys will be
employed for different purposes:

• Pseudo-Random Key kRM consists of the first
most significant 16 bytes and is used to construct
a pseudo-random vector RM and an initial vector
IM . Both have a length equal to h2 bytes. These
two matrices can be generated by using any stream
cipher scheme. In this paper, we use RC4 [12] with
kRM as a seed to produce 2×h2 bytes key-stream.
The first h2 bytes and the next h2 bytes are reshaped
to respectively form the RM and IM vector.

• Permutation sub-key kPRM consists of the next
most significant 16 bytes of DK and is used to
construct a flexible permutation table πRM of length
h2 by using the modified key setup algorithm of
RC4 which was presented in [2]. The values of the
elements in the permutation table πRM range from
1 to h2.

• Substitution sub-key kS1 consists of the next 16

bytes of DK and is used to construct the first substi-
tution table S1 by using the key setup algorithm of
RC4 as described in [2]. The substitution operation
is done at the byte level and the elements in table
S1 have values between 0 and 255.

• Substitution sub-key kS2 consists of the next 16
bytes of DK and is used to construct the second
substitution table S2 similar to S1.

By construction, all cipher primitives are related to
any bit of difference in the secret key or nonce, and will
provide a different dynamic key. Therefore, LSC ensures
high key sensitivity since all cipher primitives are related
to the dynamic key.

III. LIGHTWEIGHT STREAM CIPHER SCHEME (LSC)

LSC is based on the dynamic key dependence ap-
proach which means that a different dynamic key is
used for each input message, increasing randomness of
ciphertext and making cryptanalysis approaches more
difficult to be applied. Therefore, for each input message
the various cipher primitives are updated to encrypt the
next message. The encryption and decryption algorithms
will be described in the next paragraphs.

A. Encryption algorithm

The input message M is divided into nb blocks
M = m1, m2, . . . , mnb, where each block has a length
of h bytes. h can be configured according to the IoT
applications. A smaller value of h is preferable for real-
time applications.

LSC produces a new keystream block for each it-
eration as the different stream cipher primitives are
changed for each input message. The ith ciphertext block
ci = mi ⊕ Ri of each message is obtained by mixing
the ith keystream block Ri with the ith plain block mi

and i = {1 , 2, . . . , nb}.
To recover the original ith block we compute m′i =

ci ⊕ Ri where the ith ciphertext block ci is ”XORed”
with the same Ri.

As explained previously, LSC is divided into
two sub-functions: RoundFunction (RF) and
Update− RM− vectorFunction (URM). RF is
iterated to produce a required key-stream block Ri.
However, this requires that RM is updated which can
be achieved by calling the URM .

RoundFunction (RF)

RF produces the ith keystream block by applying the
following five steps:

1) Update the pseudo-random vector RM as described
below.

3

2) Iterate the selected Pseudo-Random Generator
(PRG) for only once. Any Pseudo-random number
generator (PRNG) can be used at this step. In this
paper, a XorShift64 PRNG is used to produce h
bytes for each iteration. The output of XorShift64
is a 64 bits word so XorShift64 should be iterated
for dh8 e. For example, for h=16 or 32, XorShift64
will be respectively iterated for 2 and 4 times. The
PRNG is iterated in a recursive manner where the
output IC becomes the next input.

3) Mixing the updated RM with the PRNG output and
the initial vector M through the use of XOR.

4) Substitute the output by using the two substitution
tables (S1 and S2) to produce the ith keystream
Ri. In this step, the proposed substitution technique
uses the second substitution table S2 to substitute
the bytes with odd indexes and the first substitution
table S1 to substitute the bytes with even indexes.

5) Initial vector IM is updated and becomes equal to
Ri.

These steps to produce the ith keystream block Ri are
illustrated in Figure 2 and described in Eq. 1.

IC = XorShift64(IC)

RM = updateRM(RM,S1, S2, πRM)

Ri = S(IV ⊕RM ⊕ IC)
IM = Ri

(1)

Figure 2: LSC architecture

All plain blocks will be encrypted to form the en-
crypted message C, which will be securely sent to the
desired destination, or to be safely stored locally. The
URM function is now presented to explain how RM is
updated.

Update− RM− vectorFunction (URM)

RM is updated first before being permuted by using
the permutation table πRM . Then, the output will be
substituted by using the first table S1 to substitute the
bytes with even indexes and the second table S2 to
substitute the bytes with odd indexes.

Figure 3: Updating RM for each iteration

Xorshift PRNG

Xorshift is a PRNG class that represents linear-
feedback shift registers (LFSRs) such as the one de-
scribed in Algorithm 1. In addition, Xorshift allows an
efficient implementation without the need of excessively
using sparse polynomials. This makes them extremely
fast on any modern computer architecture. Similar to
LFSRs, the parameters must be chosen with extreme
cautiousness in order to achieve a long period [13].
However, Xorshift generators do not have non-linear
steps which can make some statistical tests to fail [13].
Otherwise, Xorshift generators do have numerous ad-
vantages including a lower execution time with a very
simple implementation.

Algorithm 1 Xorshift64 code

d e v i c e i n l i n e
u long x o r s h i f t 6 4 (u long t)
{

u long x = t ;
x ˆ= x >> 1 2 ;
x ˆ= x << 2 5 ;
x ˆ= x >> 2 7 ;
r e t u r n x ;

}

B. Decryption algorithm

The decryption algorithm uses the same steps to
produce the same key-stream sequence and recover the
original message by mixing the key-stream with the
cipher-text.

IV. SECURITY ANALYSIS

The proposed cipher scheme should resist different
kinds of analytic attacks such as statistical and algebraic

4

attacks, as well as brute-force attacks [14], [15]. We use
the security tests already applied in [2] to validate the
cryptographic level and consequently the immunity of
LSC against crypatanalysis attacks. We consider input
messages filled with zeros.

A. Resistance against statistical analysis

Statistical attacks can be prevented if the encrypted
message reaches a high randomness and uniformity
level in addition to a high periodicity [14]. Several
hard statistical tests were carried out (TestU01 [16]
and practrand [17]) on the produced keystream to
validate that it reaches the required uniformity and
randomness properties. The most difficult scenario where
we use the same message with constant values is tested
and we found that the produced keystream successfully
passed all the tests of TestU01 and practrand
with more than 100 different seed values. It is worth
mentioning that these statistical tests are the hardest
ones. We also found that the produced keystream reaches
the required uniformity and randomness levels. These
results are summarized in Figure 4-a-b-c to show the
probability density function and the uniform distribution
of the produced keystream. More details on these tests
can be found in [2], [18].

(a) KS (b) NS

Figure 5: Key (a) and nonce (b) sensitivity against 1,000
random keys.

B. Key Sensitivity Test

The sensitivity test is used to validate the key
avalanche effect by quantifying the difference (percent-
age) between the produced keystream for a given differ-
ence in the secret key or nonce. If one bit differs in the
secret key or nonce, this will produce a new dynamic
key, and consequently different cipher primitives and
different keystreams. The desired value is 50% difference
at the bit level. Figure 5 shows the key and nonce
sensitivity for 1,000 random runs. We can see that

the difference between produced keystreams for both
sensitivity tests is very close to the desired value.

C. High periodicity

LSC is based on the dynamic key dependence ap-
proach and can be considered as a perturbation technique
since different cipher primitives are updated. Moreover,
as the nonce has a long periodicity in addition to updat-
ing initial and random matrices in a recursive manner
LSC exhibits high periodicity.

V. DISCUSSIONS ON ANALYTIC AND BRUTE FORCE
ATTACKS

We discuss in this section on how LSC can resist
to some well-known attacks. First, LSC proposes a
new way of designing stream cipher and to reach the
desired cryptographic properties such as confusion and
diffusion. We found above that LSC reaches a high
level of randomness and uniformity according to hard
statistical tests such as TestU01 and practrand. In
addition, the independence among produced keystreams
is ensured.

Then, as both dynamic key’s sensitivity and nonce’s
sensitivity are achieved as shown in Figure 5, this
makes key-related attacks much more difficult to suc-
ceed. Furthermore, as the dynamic key changes for each
input message, algebraic, linear and differential attacks
will also become very hard to succeed. Each collected
message is encrypted differently with a different dynamic
key, and consequently with different cipher primitives
making LSC harder to break. All analytic attacks will
be unable to break LSC since they are designed to break
static ciphers with static cipher primitives.

Finally, the size of the secret key can be set to 128,
196, or 256 bits, whereas the size of the nonce and
dynamic key is 512 bits. These sizes are large enough
to make brute force attacks unfeasible.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the
proposed cipher scheme towards quantifying its effec-
tiveness. Two important metrics are presented in details,
which are the effect of error propagation and the asso-
ciated encryption/decryption time.

A. Effect of error propagation

The effect of any bit error in the encrypted block ci
will only affect its corresponding bits in the decrypted
block.

5

(a) (b) (c)

Figure 4: Amplitude variation of the produced keystream (a) in addition to its corresponding probability density
function (b), recurrence for a random key and for h = 16.

B. Encryption/Decryption time

The main objective of the proposed cipher approach
is to reach a high level of security with the minimum
number of operations. This requires reducing the com-
putational complexity, encryption/decryption time and
resources (especially energy) for the data confidentiality
process. The execution time of the proposed cipher with
and without chaining operation mode, is presented and
quantified. To assess the total associated overheads, we
quantify several delays as follows:

1) TS denotes the required substitution execution time
for a block of N bytes.

2) Txor denotes the required ”XOR” execution time
between two blocks of N bytes.

3) TPRNG denotes the required time to iterate the
employed PRNG.

4) TP denotes the required time to permute a block of
bytes.

Therefore, the total Computational Delay (CD) of the
proposed scheme to encrypt one block is:

CD = 3× TS + 2× Txor + TPRNG + TP (2)

while the total computation delay of the standard AES
described in [1] to encrypt one block is:

CDAES = rTS +(r+1)Txor +(r−1)TD + rTSR (3)

where TD represents the required delay for the AES
“mix-column” operations (for all 4 columns), which has
a very high delay compared to other AES operations.
TSR represents the required delay for the AES “shift-
rows” operations, and r represents the number of rounds.
The minimum value of r is 10 for 128 bits secret key

and the minimum AES computation delay is given by:

CDAES(r=10) = 10TS + 11Txor + 9TD + 10TSR (4)

Consequently, the AES computation time is larger
compared to our proposed solution with or without
relying on the chaining operation mode. In addition, our
proposed solution avoids any diffusion operation such
as the “mix-column” operations of AES in order to
reduce the delay: the delay of the XOR and substitution
operations are far less than that of the “mix-column”
diffusion of AES. Accordingly, our proposed scheme
requires a lesser computational complexity compared to
the AES standard cipher with 128 bits length secret key.
For 192-bit and 256-bit secret keys, r are equal to 12
and 14 respectively which requires much more execution
time compared to the 128-bit secret key.

VII. EXPERIMENTATIONS

In this section we present results from additional
experimentations conducted on real hardware platforms
used in many IoT deployments: low-cost 8-bit AVR
ATmega328P MCU at 8MHz (which is used on the well-
known Arduino ProMini board and many other similar
boards) and a 32-bit Cortex-M4 (MK20DX256VLH7)
ARM MCU at 48MHz (which is used on the Teensy32
board for instance). We implemented LSC and integrated
it into our LoRa IoT framework [19]. In all the tests, we
compared the encryption time of LSC with an efficient
implementation of 128-bit AES for resource-constrained
devices [20] and Speck. We varied the message size from
16 bytes to 240 bytes.

Figure 6 compares the encryption time of our LSC
algorithm with AES and Speck. On the ProMini, LSC
outperforms both AES and Speck. On the Teensy32, LSC

6

also outperforms AES but is slightly slower than Speck,
probably due to higher optimization of bit rotation op-
erations on Cortex architecture. In Figure 6(bottom), the
data tags from 10us to 115us are for LSC while the tags
from 8us to 109us are for Speck. Figure 7 shows the
corresponding encryption time ratio of AES and Speck
compared to LSC.

264 472 704 928 1160 1376 1608 1832 2040 2264 2496 2736 2952 3168 3392

2496 4968 7464 9944 1214614912
17392

19872
22352

24832
27304

29784
32280

34760
37256

1984 3944 5784 7616 9472 1131213176
1499216832

1868020544
2238424216

2607227888

0

10000

20000

30000

40000

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0En
cr
yp
tio

n	
tim

e	
in
	u
s

Message	size	in	bytes

LSC	vs	AES	vs	Speck	on	Arduino	ProMini
Encryption	 time

LSC AES SPECK

10 18 26 32 41 48 55 63 71 78 86 93 101 108 115287
574

857
1143

1427
1715

1998
2283

2568
2855

3139
3426

3709
3995

4282

8 15 22 30 37 44 50 61 66 73 80 87 95 101 1090
1000
2000
3000
4000
5000

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0En
cr
yp
tio

n	
tim

e	
in
	u
s

Message	size	in	bytes

LSC	vs	AES	vs	Speck	on	Teensy32
Encryption	time

LSC	- 48MHz AES	- 48MHz SPECK	- 48MHz

Figure 6: Encryption time

Even if the encryption time may not be important
for some IoT applications because of non real-time
constraint, a higher encryption time also means a higher
energy consumption. As there is an increasing interest
in multimedia IoT, especially image IoT, where small
images can be transmitted from IoT devices, we devel-
oped a long-range image sensor using LoRa radio and
a Teensy32 board for surveillance applications [21] as
shown in Figure 8.

When transmitting 1 image every hour (about 8
packets of 240 bytes per image) and a mean power
consumption of 35mA while in active state and 5µA in
deep sleep mode, the lower encryption time of our LSC
algorithm provides an additional estimated autonomy of

9.45 10.53 10.60 10.72 10.47 10.84 10.82 10.85 10.96 10.97 10.94 10.89 10.93 10.97 10.98

7.52 8.36 8.22 8.21 8.17 8.22 8.19 8.18 8.25 8.25 8.23 8.18 8.20 8.23 8.22
0

10

20

1
6

3
2

4
8

6
4

8
0

9
6

1
1
2

1
2
8

1
4
4

1
6
0

1
7
6

1
9
2

2
0
8

2
2
4

2
4
0

Message	size	in	bytes

LSC	vs	AES	&	SPECK	on	Arduino

Encryption	 time ratio

AES-LSC	ratio SPECK-LSC	 ratio

28.70 31.89 32.96 35.72 34.80 35.73 36.33 36.24 36.17 36.60 36.50 36.84 36.72 36.99 37.23

0.80 0.83 0.85 0.94 0.90 0.92 0.91 0.97 0.93 0.94 0.93 0.94 0.94 0.94 0.95

0

20

40

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

Message	size	in	bytes

LSC	vs	AES	&	SPECK	on	Teensy32
Encryption	 time ratio

AES-LSC	ratio SPECK-LSC	 ratio

Figure 7: Encryption time ratio

56° lens

76° lens

116° lens

+

RX

Pin 1

GND

MOSI

UART1

ucamII

Pin 1

MISO CS

SCK

SCK

CS

3.3v

3.3v RAW

TX

Figure 8: Long-range image IoT

more than 1 month: for instance 730 days compared to
686 days.

VIII. CONCLUSIONS

In this paper, an efficient lightweight stream cipher
scheme (LSC) was proposed for tiny IoT devices that
are limited in terms of energy, resources, and sometimes
real-time requirements. The existing standard ciphers are
not adapted for these devices since a higher number of
round iterations is required to reach the desired security
level. In addition, a static round function is usually

7

applied for each iteration which is why existing ap-
proaches use a larger number of rounds r. Our proposed
solution LSC reduces r to one iteration and requires less
computation and resource overheads. LSC is based on
the dynamic key dependence approach to reach a good
balance between security level and device’s performance.
The statistical tests and the experimentations on real IoT
hardware show that LSC is a promising candidate for
resource-constrained IoT as it exhibits high randomness
and uniformity level in addition to a high periodicity in
the worst-case scenario, while outperforming traditional
AES in terms of encryption/decryption time as well as
the more recent Speck algorithm. In addition to the
obvious latency reduction, significant energy saving have
been quantified when encryption is performed on small
images.

ACKNOWLEDGMENTS

This work is supported by (a) the WAZIHUB project
funded by EU Horizon 2020 program under grant agree-
ment No 780229, (b) the Maroun Semaan Faculty of
Engineering and Architecture at the American University
of Beirut and (c) by the EIPHI Graduate School (contract
ANR-17-EURE-0002). We also thank the supercomputer
facilities of the Mésocentre de calcul de Franche-Comté.

REFERENCES

[1] Daemen, Joan and Rijmen, Vincent, The design of Rijndael: AES-
the advanced encryption standard. Springer Science & Business
Media, 2013.

[2] Noura, Hassan and Chehab, Ali and Sleem, Lama and Noura,
Mohamad and Couturier, Raphaël and Mansour, Mohammad
M, “One round cipher algorithm for multimedia IoT devices,”
Multimedia Tools and Applications, vol. 77, no. 14, pp. 18 383–
18 413, 2018.

[3] Beaulieu, Ray and Shors, Douglas and Smith, Jason and
Treatman-Clark, Stefan and Weeks, Bryan and Wingers, Louis,
“SIMON and SPECK: Block Ciphers for the Internet of Things.”
IACR Cryptology ePrint Archive, vol. 2015, p. 585, 2015.

[4] Noura, Hassan, “Conception et simulation des générateurs,
crypto-systèmes et fonctions de hachage basés chaos perfor-
mants,” Ph.D. dissertation, université de Nantes, 2012.

[5] McKay, Kerry A and Bassham, Larry and Turan, Meltem Sönmez
and Mouha, Nicky, “Report on lightweight cryptography,” NIST
DRAFT NISTIR, vol. 8114, 2016.

[6] Poschmann, Axel York, “Lightweight cryptography: crypto-
graphic engineering for a pervasive world,” in PH. D. THESIS.
Citeseer, 2009.

[7] Noura, Hassan and Sleem, Lama and Noura, Mohamad and Man-
sour, Mohammad M. and Chehab, Ali and Couturier, Raphaël,
“A new efficient lightweight and secure image cipher scheme,”
Multimedia Tools and Applications, vol. 77, no. 12, pp. 15 457–
15 484, Jun 2018.

[8] Noura, Hassan and Courousse, Damien, “Method of encryption
with dynamic diffusion and confusion layers,” December 2017.

[9] Noura, Hassan N and Noura, Mohamad and Chehab, Ali and
Mansour, Mohammad M and Couturier, Raphaël, “Efficient and
secure cipher scheme for multimedia contents,” Multimedia Tools
and Applications, pp. 1–30, 2019, to appear.

[10] Roman, Rodrigo and Alcaraz, Cristina and Lopez, Javier and
Sklavos, Nicolas, “Key management systems for sensor networks
in the context of the Internet of Things,” Computers & Electrical
Engineering, vol. 37, no. 2, pp. 147–159, 2011.

[11] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr,
T. Lehman, and B. Schott, “Comparative analysis of the hardware
implementations of hash functions sha-1 and sha-512,” in Inter-
national Conference on Information Security. Springer, 2002,
pp. 75–89.

[12] Paul, Goutam and Maitra, Subhamoy, RC4 stream cipher and its
variants. CRC press, 2011.

[13] Panneton, François and L’ecuyer, Pierre, “On the xorshift ran-
dom number generators,” ACM Transactions on Modeling and
Computer Simulation (TOMACS), vol. 15, no. 4, pp. 346–361,
2005.

[14] Paar, Christof and Pelzl, Jan, Understanding cryptography: a
textbook for students and practitioners. Springer Science &
Business Media, 2009.

[15] Stallings, William, Cryptography and network security: princi-
ples and practice. Pearson Upper Saddle River, NJ, 2017.

[16] Pierre L’Ecuyer and Richard J. Simard , “TestU01: A C library
for empirical testing of random number generators ,” ACM Trans.
Math. Softw , 2007.

[17] Doty-Humphrey, C., “PractRand,” 2014. [Online]. Available:
{http://pracrand.sourceforge.net/}

[18] Noura, Hassan and Martin, Steven and Al Agha, Khaldoun
and Chahine, Khaled, “ERSS-RLNC: Efficient and robust secure
scheme for random linear network coding,” Computer networks,
vol. 75, pp. 99–112, 2014.

[19] C. Pham, “DIY low-cost LoRa IoT framework,”
2016. [Online]. Available: {https://github.com/CongducPham/
LowCostLoRaGw}

[20] Gerben den Hartog, “Efficient AES implementation for Arduino,”
2016. [Online]. Available: {\url{https://github.com/Ideetron/
RFM95W Nexus/tree/master/LoRaWAN V31}}

[21] C. Pham, “Low-cost, low-power and long-range image sensor for
visual surveillance,” in SmartObjects@MobiCom. ACM, 2016,
pp. 35–40.

8

