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Abstract

Forecasting mortality rates is a problem which involves the analysis of high-dimensional
time series. Most of usual mortality models propose to decompose the mortality rates into sev-
eral latent factors to reduce this complexity. These approaches, in particular those using cohort
factors, have a good �t, but they are less reliable for forecasting purposes. One of the major chal-
lenges is to determine the spatial-temporal dependence structure between mortality rates given
a relatively moderate sample size. This paper proposes a large vector autoregressive (VAR)
model �tted on the di�erences in the log-mortality rates, ensuring the existence of long-run
relationships between mortality rate improvements. Our contribution is threefold. First, spar-
sity, when �tting the model, is ensured by using high-dimensional variable selection techniques
without imposing arbitrary constraints on the dependence structure. The main interest is that
the structure of the model is directly driven by the data, in contrast to the main factor-based
mortality forecasting models. Hence, this approach is more versatile and would provide good
forecasting performance for any considered population. Additionally, our estimation allows a
one-step procedure, as we do not need to estimate hyper-parameters. The variance-covariance
matrix of residuals is then estimated through a parametric form. Secondly, our approach can
be used to detect nonintuitive age dependence in the data, beyond the cohort and the period
e�ects which are implicitly captured by our model. Third, our approach can be extended to
model the several populations in long run perspectives, without raising issue in the estimation
process. Finally, in an out-of-sample forecasting study for mortality rates, we obtain rather
good performances and more relevant forecasts compared to classical mortality models using
the French, US and UK data. We also show that our results enlighten the so-called cohort and
period e�ects for these populations.
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1 Introduction

Identifying patterns in the mortality dynamics of a population is a hard task due to the complex
underlying phenomena that impact the death rates. This problem is of crucial interest for govern-
ment policies, pension funds and insurance companies. A wide range of models has been developed
since the introduction of the famous model proposed by Lee and Carter (1992). Most of these ap-
proaches rely on time-series modeling with past data and forecast the main factors in�uencing the
force of mortality, see among other Booth et al. (2002), Brouhns et al. (2002), Cairns et al. (2006),
Cairns et al. (2009), Renshaw and Haberman (2008), Plat (2009), and Hunt and Blake (2014).
Some reviews are available in the literature, see e.g. Booth and Tickle (2008), Cairns et al. (2008),
and Barrieu et al. (2012). The purpose of the present paper is to provide a new �exible modeling
for the evolution of the mortality. Our high-dimensional vector autoregressive (VAR) approach,
combined with an elastic-net penalty estimation method, aims to capture complex demographic
e�ects without imposing a too restricting shape for the dynamics.

In recent years, some advances have been made to improve the forecast of mortality rates
compared to the traditional factor-based models inspired by Lee and Carter (1992). This innovation
has been provoked in particular by practitioners need for managing longevity risk and responding
to the Solvency II requirements in insurance. Indeed, traditional models, even when a cohort e�ect
is considered, have a reasonable �t, but poorer forecasts, indicating that these models may over�t
the data. In such a context, one of the major concerns is to avoid the divergence of mortality
rates between adjacent ages and di�erent countries. Such inconsistency in the forecasting is pointed
out for example by Börger et al. (2014), who explain that these low performances are due to the
fact that traditional models mainly focus on the central trajectory projection. Several directions
have been explored to overcome this issue. Li et al. (2013) develop an approach letting the age
coe�cients rotate over time, based on an expert judgment. Hunt and Villegas (2015) add an
additional constraint on the cohort e�ect extensions of the Renshaw and Haberman (2006) model
to overcome the convergence and robustness issues induced by the two-stage �tting algorithm for
parameters. Regarding mortality trends of multiple populations, a relatively wide literature is
organized around the idea of a biological convergence at a long horizon, see Dowd et al. (2011),
Jarner and Kryger (2011), Li and Lee (2005), Enchev et al. (2016), and Cairns et al. (2016a) among
others. These approaches estimate the mortality model by bringing together the data of several
countries. Recently, Bohk-Ewald and Rau (2017) propose to approach the turning points of the
mortality problem by combining trends of several countries.

Based on the observation that mortality rates are, in fact, noisy data, other alternative meth-
ods have emerged. If no exceptional event occurs, one can assume that the mortality surface is
rather smooth over the age and time dimensions. Thus, functional data analysis and nonparametric
smoothing techniques have been applied to mortality modeling, leading to a particular family of
mortality models (see e.g. Currie et al., 2004; Hyndman and Ullah, 2007; Li et al., 2016; Doku-
mentov et al., 2018). These models are known to have good �tting and forecasting performances,
however they mostly consider future values as missing ones, making the stochastic generation of
multiple prospective mortality scenarios non intuitive.

Other approaches focusing on the age-period dependency have recently been proposed with the
constraint of being more data-driven. Christiansen et al. (2015) use spatial statistics to forecast
age�period mortality rate improvements using a kriging method. Their approach is parsimonious
and provides good performances for short-term projection. However, it seems that their long-
term results are more questionable. Doukhan et al. (2017) also focus on the surface of mortality
improvements and model it parsimoniously with an AR-ARCH speci�cation for a random �eld
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memory model. A valuable feature of their approach is that both dependencies between cohorts
and the conditional heteroscedasticity of mortality are taken into account. Although they have good
forecasting results, it is di�cult to justify the size of the neighborhoods used to specify the memory
process. Li and Lu (2017) choose a VAR process to consider the spatial dependence of mortality
rates between neighboring ages adapted to short-term and long-term perspectives. These authors
account for sparsity and stationarity in their VAR model by constraining the shape of the Granger
causality matrix (Granger, 1969) as a lower triangular. Their model is also able to consider multiple
populations.

In this paper, we propose an alternative approach that newly forecasts the age-period depen-
dency using a large VAR speci�cation on the log-mortality improvements. Although a VAR model is
suitable for mortality time-series and is able to capture both long-term relationships and short-term
shocks (see e.g. Salhi and Loisel, 2017), it is di�cult to estimate accurately such models using an
ordinary least square (OLS) technique, as these series are highly correlated and histories of data
are relatively short. To avoid overparameterization, existing forecasting approaches impose an a

priori spatio-temporal dependency structure between mortality rates or mortality improvements,
which implies that only some selected series can interact. In contrast, our main contribution is the
introduction of an estimation framework allowing for a large and �exible VAR structure without
excluding potentially relevant relationships. A great feature of such a VAR speci�cation is that all
classical mortality models could naturally be included in our speci�cation, especially the so-called
cohort and period e�ects as noted by Li and Lu (2017).

Following recent developments in economics and �nance (Fan et al., 2011; Furman, 2014), we
develop a penalized VAR method based on the elastic-net (Zou and Hastie, 2005), which allows
to take into account the sparsity correctly. Indeed, such a VAR model has a sparse structure in
high dimension, which requires an accurate estimation method for shrinking zero coe�cients in the
Granger causality matrix. Compared to a classical maximum likelihood estimation approach, the
key idea behind the elastic-net is to incorporate a penalty, which constrains the parameters. This
penalty is a combination of an L2 term (as in a ridge regression) to avoid ill-conditioning matrices,
and an L1 term (as in a LASSO regression) to produce a sparse model. By sparse model, we mean
that our data-driven automatic selection produces a model with a relatively small number of non-
zero parameters. As noted by Furman (2014), this is an attractive alternative to Bayesian VAR
procedures usually considered in an econometrical framework and developed for example by Hahn
(2014) for multiple populations modeling. Indeed, such approaches require to introduce relevant
priors and do not address the sparsity's issue. The residuals are modeled as a Gaussian vector where
the variance-covariance matrix is described using a parametric form for parsimony purposes.

Similarly to Doukhan et al. (2017), but contrary to Li and Lu (2017), our approach models the
log of mortality improvements rather than the log of mortality rates. Several empirical elements have
been advanced in the recent literature showing the interest of mortality improvements. Haberman
and Renshaw (2012) show that a dual approach based on improvement rates can be followed for usual
mortality models. They generally obtain quite comparable (but often better) forecasting results with
this alternative route for the Lee-Carter model and its variants. As also noted by Bohk-Ewald and
Rau (2017), mortality improvements seem to be easier to analyze, which facilitates the identi�cation
of divergences in mortality. As our approach is highly �exible, we expect that it can better capture
complex patterns of mortality improvements. Another argument is that mortality improvements
are generally stationary (see e.g. Chai et al., 2013), which is required for projection as our approach,
contrary to Li and Lu (2017), does not impose constraints for guarantying stationarity.

We compare our high-dimensional VAR model to �ve di�erent benchmark mortality forecasting
models: the usual Lee-Carter model (Lee and Carter, 1992) and the M7 model developed by Cairns
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et al. (2009) which are standard factor-based models; a reference model in smoothing methodolo-
gies developped by Hyndman and Ullah (2007) and the more recent smoothing RESPECT model
introduced by Dokumentov et al. (2018); and �nally the STAR model, based like ours on a high-
dimensional VAR method, developped by Li and Lu (2017). Using the root mean squared error
measure, we show that our approach leads to general better �tting (in-sample) and forecasting
(out-of-sample) of the mortality rate time series from the three countries we have focused our anal-
ysis on. Moreover, our data-driven model implies more stable errors over di�erent countries while
the benchmark models tend to have more variable predictive power depending on the considered
population.

The remainder of this paper is organized as follows. In Section 2 we describe the VAR model we
retained. The high-dimensional estimation of this model is then developed in Section 3. We present
the data we used, di�erent results that we obtained and a comparison to other standard mortality
models in Section 4. Finally, Section 5 proposes an extension of the VAR model to multi-population
modeling, and Section 6 considers some ways of improvement and concludes.

2 A Vector Autoregression approach for mortality rate improve-

ments

In this section, we introduce an econometric model to describe the mortality improvement dynamics
jointly. The mortality models we introduce in the literature in Section 1 are initially based on an
analysis of the main factors explaining a common trend of mortality rates. For instance, many
models have been developed in the past for capturing the cohort e�ect, observed in the residuals for
improvement rates plots (Willets, 2004). Conversely, our approach only imposes an autoregressive
structure, which encountered these classical models1, as shown for example by Salhi and Loisel
(2017) or Li and Lu (2017). In particular, the latter authors explain in details how the cohort
and period e�ects can directly be captured in the VAR(1) representation, without de�ning speci�c
factors explicitly.

Throughout this paper, we focus on the time series yi,t � ln pmi,tq, where mi,t is the crude
annual death rate at age i and at date t. These rates can be easily computed thanks to annual risk
exposures and count of deaths for a country of interest. Those series are usually not stationary, as
a trend can be observed in mortality rates and life expectancy. Since we want to apply our vector
autoregressive model on stationary series, we compute the �rst di�erence of the log-mortality rate
∆yi,t � yi,t � yi,t�1 or, in other words, the log-mortality improvement rates. By working on these
quantities, we remove a linear trend in the yi,t series.

With this notation, we specify the mortality rate improvement process by a stationary vector
autoregressive model of temporal lag p or a VAR ppq. For a minimum age imin and a maximum age
imax, we de�ne the d-dimensional vector of log-mortality rate improvements, with d � imax�imin�1,
as ∆Y t � p∆yimin,t,∆yimin�1,t, . . . ,∆yimax,tqJ. Next, we assume the following dependence structure
dynamic,

∆Y t � C �
p̧

k�1

Ak∆Y t�k �Et, (2.1)

where, for k � 1, . . . , p, Ak are d � d-autoregressive matrices, C is a d-dimensional vector of
constants (an intercept), and Et is a d-dimensional Gaussian white noise with mean 0 and Σ the

1More precisely, it is their alternatives using mortality improvements, as documented by Haberman and Renshaw
(2012).
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related covariance matrix. We denote by εi,t its marginals. The matrices Ak, k P t1, . . . , pu, capture
the relationship between current mortality improvements and the kth lag of ∆Y t. In other words,
this corresponds to the Granger causality between di�erent cohorts for the mortality improvement
rates. As a result, for a VAR(1) model, the coe�cients related to the �rst subdiagonal of the
Granger causality matrix capture a cohort e�ect for individuals born in the same year. As also
noted by Li and Lu (2017), the terms of the diagonal can be interpreted as a period e�ect, since
they measure an e�ect for a �xed age between periods.

The VAR ppq model allows taking into account a more complex dependence structure than
the usual mortality factor models. First, our model enables a larger �exibility in the long-term
spatio-temporal dependence structure through the autoregressive matrices than the standard factor
models. For a given square pi, tq in the Lexis diagram, we let the possibility for the improvement
mortality rates ∆yi,t to be dependent of all the ages among the d-dimensional space of ages, and
through all the p temporal lags. In particular, we notice that this domain includes a cohort e�ect for
these improvement rates. For each factor ∆yi�1,t�1, . . . ,∆yi�p,t�p, this e�ect is indeed captured by
the loading coe�cients positioned on the kth-subdiagonal of the matrix Ak for each k P t1, . . . , pu.
Hence, the VAR ppq structure permits for the shocks to propagate through di�erent periods. Com-
pared to the model proposed by Li and Lu (2017), the lag order p can take a value greater than 1,
allowing to capture a more complex dependence structure.

Furthermore, it has the ability to enlighten some e�ects that are not captured in the standard
mortality literature, e.g. between neighboring cohorts, as we do not impose any constraint on
the matrices Ak, k P t1, . . . , pu. Compared to most of factor models, the second improvement
of our model on the dependence �exibility is that it captures the long-term co-movement by the
autoregressive matrices and the short-term dependence through the covariance matrix at the same
time.

Nevertheless, the major issue of our VAR ppq model is that it is a natural high-dimensional
problem. The number of parameters for the Granger causality matrices is pd2, without considering
the covariance matrix and the constant vector. In mortality modeling studies, it is common to focus
on the age range from 0 to 100, that is to say d � 101, while the historical data for estimation
rarely exceed 70 years. Given this, a VAR p3q implies 30, 704 parameters estimated on only 7, 070
observations, which makes the ordinary least-squares estimation not feasible. To avoid over-�tting,
additional constraints have to be added. In this direction, Li and Lu (2017) impose that some
parameters have to be nil for guarantying that the model is sparse and stationary. Conversely, we
choose a less arbitrary high-dimensional selection variables technique, developed in the next section,
to ensure sparsity.

Similarly, the covariance matrix estimation is also a high-dimensional problem with
d pd� 1q

2
parameters. In order to estimate prediction intervals, we consider an additional speci�cation for
the residuals. Although some high-dimensional techniques do exist for covariance estimation (see
e.g. Schäfer and Strimmer, 2005; Opgen-Rhein and Strimmer, 2007; Bickel and Levina, 2008; Bien
and Tibshirani, 2011), we rather choose a simple parametric form presented in the following part
to reduce the number of parameters.

3 High-dimensional estimation of the VAR model

As highlighted in the previous section, the VAR ppq model estimation is a high-dimensional prob-
lem, especially with mortality data. The estimation can be decomposed into two parts: �rst, we
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estimate the pd2-dimensional autoregressive matrices, then the d2-dimensional covariance matrix.
The dimension reduction in the autoregressive matrices is treated through an elastic penalization
in Section 3.1. We tackle the problem of the covariance through the choice of a parametric form in
Section 3.2.

3.1 Elastic-net

We now described the extension of the elastic-net regularization and variable selection method,
proposed by Zou and Hastie (2005), for the high-dimensional estimation of our autoregressive ma-
trices. This technique can be seen as the combination of the LASSO L1-penalty, introduced by
Tibshirani (1996), and the ridge L2-penalty developed by Hoerl and Kennard (1970). Elastic-net
has similar properties of variable selection as the LASSO. Moreover, it provides a grouping e�ect:
highly correlated variables tend to be selected or dropped together. LASSO and elastic-net have
already been extended to VAR model (Gefang, 2014; Basu et al., 2015), mostly with an economic
application (see e.g. Song and Bickel, 2011; Furman, 2014).

Therefore, we estimate the VAR ppq model presented in Equation (2.1) with T observations of
the process ∆Y t for t � tmin, . . . , tmax by minimizing the criterion

L pC,A1, . . . ,Apq � 1

T � p

tmax̧

t�tmin�p

}∆Y t �C �
p̧

k�1

Ak∆Y t�k}22

� αλ

p̧

k�1

}Ak}1 � p1 � αqλ
2

p̧

k�1

}Ak}22,
(3.1)

where we de�ne for a d-dimensional vector b � pbiq1¤i¤d

}b}22 �
ḑ

i�1

|bi|2,

and for a d� d-dimensional matrix B � pbi,jq1¤i¤d,1¤j¤d

}B}1 �
ḑ

i�1

ḑ

j�1

|bi,j | and }B}22 �
ḑ

i�1

ḑ

j�1

|bi,j |2.

The parameter α P r0, 1s is a hyper-parameter which determines the mix between ridge and LASSO
penalties. We use a 10-folds cross-validation method to choose the penalty coe�cient λ. It deter-
mines the strength of the penalties, for example in the LASSO case, the higher λ gets, the fewer
number of variables are selected. The algorithm we used is described in Friedman et al. (2010). In
theory, the LASSO L1-penalty part forces most of the coe�cients to 0. Nevertheless, in a more
practical approach, the algorithm employed does not lead to exact zeroes. Thus, the R-package
glmnet (Friedman et al., 2010) applies a threshold on the coe�cients. Furthermore, following Chat-
terjee and Lahiri (2011), the sparsevar R-package (Vazzoler et al., 2016) enables to apply a more

tailor-made threshold for time-series estimation which equals to
1?

pd lnT
, that we retain for our

model.

The hyper-parameter α is determined through a grid search. For every value αh of a pre-

de�ned grid tα1, . . . , αHu, we estimate the parameters of the VAR model
!
Ĉ, Â1, . . . , Âp, λ̂

)
αh

, as

explained just before, and deduce the residuals Êαh,t for t P ttmin � p, . . . , tmaxu.
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In the applications, we estimate the tuning parameters by minimizing the prediction error, that
we obtain by computing the root-mean-square error

RMSE pαhq �
gffe 1

d pT � pq
tmax̧

t�tmin�p

}Êαh,t}22. (3.2)

In our application, we considerate the grid t0.5, 0.6, 0.7, 0.8, 0.9, 1u in order to impose a larger weight
to the LASSO penalty for sparsity purposes.

The choice of the lag order p for our VAR elastic-net (VAR-ENET) model di�ers signi�cantly
from the usual lag order selection in the standard VAR models. The parameter p does not fully
determine the number of parameters, since the LASSO penalty force the less signi�cant coe�cients
to zero. By increasing the lag order, some non-null coe�cients can be forced to zero in favor of
other coe�cients in autoregressive matrices of higher lag order. Moreover, if there is no signi�cant
coe�cient above a certain lag order, all autoregressive matrice above the limit order are largely
forced to zero. Thus, we chose a relatively large p to capture eventual high order lag e�ects,
without being worried of over-�tting.

3.2 Variance-covariance estimation

The autoregressive matrices are not the only high-dimensional problem of the VAR ppq model,

the variance-covariance matrix estimation has dpd�1q
2 parameters. This number can quickly get

higher than the number of observations while dealing with mortality modeling, and then can cause
over�tting, as noted e.g. by Li and Lu (2017).

To overcome this issue, we propose an approach to estimate the covariance matrix with a para-
metric covariance function, in a manner similar to Spodarev et al. (2013). Firstly, for each age
i, we estimate the standard empirical variance σ̂2i of the residual, and for each couple of ages
pi, jq P timin, . . . , imaxu2, we estimate the empirical correlation

r̂i,j � σ̂i,j
σ̂iσ̂j

,

where σ̂i,j is the empirical covariance. Then, guided by the form of the empirical correlation matrices
and by the approach of Christiansen et al. (2015), we use a parametric form close to the stable family
of covariance functions

ri,j � βe�pai�ajq�|i�j| � 1ti�ju � 1ti�ju, (3.3)

with β ¥ 0 and ai ¥ 0 for each age i. We �t the model based on the empirical correlation as the OLS
solution. Thus, after determining β̂ and pâimin , . . . , âimaxq, we compute our parametric correlation
r̃i,j given by Equation (3.3). Finally, for each couple of ages pi, jq we estimate the covariance by

σ̃i,j � r̃i,j � σ̂iσ̂j .

4 Empirical analysis

In this section, we apply our high-dimensional VAR-ENET model to real data and show its strengths
in estimating and forecasting populations. Di�erent populations are considered and we analyze both
our in-sample and out-sample results compared to those obtained with retained benchmark models.
In the following, the computations are carried out with the R software (R Core Team, 2019). Our
scripts are available upon request.
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4.1 Data

The datasets that we analyze comes from the Human Mortality Database (2019). We choose
to illustrate our approach with historical mortality data from the England and Wales (UK), the
United States (US) and France (FR), as these populations have been largely studied, but have
speci�c features. At �rst, the overall population is considered, and then both males and females are
segregated. We select the age-period observation t45, . . . , 99u�t1950, . . . , 2016u which was available
for these 3 countries when the data was extracted. We begin our analysis by a visual inspection of
our data. Figure 1 describes the shape of the period log-mortality improvements for populations on
a Lexis diagram where the trajectory of one cohort follows a 45 degree line. Di�erent cohort e�ects
can be observed for these countries with pink (resp. green) shades for positive (resp. negative)
improvements, indicating a lower (resp. higher) survival.

FR UK US

1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010

45

55

65

75

85

95

years

ag
e

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 1: The period log-mortality improvements for England and Wales (UK), the United States
(US) and France (FR) on the age-period observation t45, . . . , 99u � t1950, . . . , 2016u for overall

populations.

On the center, UK improvement rates do exhibit some signi�cant diagonal patterns correspond-
ing to the so-called cohort e�ects. A diagonal stands out, more precisely for individuals aged 45 in
1965. Several vertical patterns corresponding to period e�ects are also observed, especially for the
older ages. Diagonal and vertical structures associated with cohort and period e�ects also stand
out in the American data, even if the patterns are less marked than in the English data. Con-
trary to English and American mortality, the French mortality data doesn't clearly display any
diagonal structures, but only period e�ects. We note that the cohort e�ects (also observable on
residual plots), which used to appear in the French data, were strongly reduced with the correction
developed by Boumezoued (2016), thanks to fertility rates. Female and male data are displayed
in Appendix 1.

We have chosen to apply the VAR-ENET to the �rst di�erence of log-mortality rates series
because they are known in the literature as stationary time series. In order to verify this point, we
perform a Phillips-Perron test (Perron, 1988) and an augmented Dickey-Fuller test (Said and Dickey,
1984) on every age mortality series for each of the nine populations of interest. All of these time
series satisfy the Phillips-Perron test at a con�dence level of 1%, and 93% of them are considered
as stationary by the augmented Dickey-Fuller test at a level of 5%. These results strengthen our
choice to focus on the �rst di�erence of time-series.

8



4.2 Benchmark models

In this section, we present the benchmark mortality models that we compare to the VAR-ENET.
First, we retain two models from the standard factor-based family:

� the usual Lee-Carter (LC) model (Lee and Carter, 1992), estimated with the approach of
Brouhns et al. (2002) and given by

yi,t � αi � βiκt, (4.1)

with the hyper-parameters αi and βi, and the mortality trend κt,

� the M7 model developed by Cairns et al. (2009), which considers a quadratic and a cohort
e�ect, i.e.

yi,t � κ
p1q
t � pi� īqκp2qt � κ

p3q
t

�
pi� īq2 � σ̂2i

	
� γt�i, (4.2)

where κ
pjq
t , j � 1, 2, 3, are period e�ects, γt�i is a cohort e�ect, ī is the average age in the

data, and σ̂2i is the average value of pi� īq2.

These last models are estimated using the R-package StMoMo (Villegas et al., 2017) following their
usual two-stage �tting procedure: �rst, we estimate the factor coe�cients of each model, and then
we forecast it using univariate ARIMA processes, automatically selected by the R-package using an
AIC criterion. To be comparable with our one-stage �tting approach, the results for these models
are those obtained after �tting the time-series parameters.

We also consider two recent models based on smoothing methodologies :

� the classical model proposed by Hyndman and Ullah (2007) (HU) which estimates a non-
parametric smoothing function ftpiq for every period t that smooths mortality rates over the
age dimension, and is then decomposed

ftpiq � µpiq �
Ķ

k�1

βt,kφkpiq, (4.3)

where µpiq is a measure of location of ftpiq, pφkpiqqi�1,...,K is a set of orthonormal basis
functions of dimension K ¥ 1. This model is applied thanks to the R-package demography

(Hyndman, 2019) based on weighted penalized regression splines for smoothing.

� The recent RESPECT model, developed by Dokumentov et al. (2018) and implemented in the
R-package smoothAPC (Dokumentov and Hyndman, 2018), which uses L1-regularized bivariate
smoothing over the age and period dimensions, and further allows identi�cation of period and
cohort e�ects on the smoothing residuals.

Finally, we retain a model closer to the methodology of the VAR-ENET, which is based on a
spatial-temporal autoregressive framework: the STAR method, introduced by Li and Lu (2017). It
models the dynamic of the log mortality rates through a large �rst-order VAR, of which autoregres-
sive matrix's parameters are forced to a sparse estimation by the following constraints:

yimin,t�1 � yimin,t �mimin , (4.4)

yimin�1,t�1 � p1 � αimin�1qyimin�1,t � αimin�1yimin,t �mimin�1, (4.5)
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and
yi�1,t�1 � p1 � αi�1 � βi�1qyi�1,t � αi�1yi,t � βi�1yi�1,t �mi�1, (4.6)

for i P timin � 2, . . . , imaxu, mi�1 a parameter, and αi�1 and βi�1 two positive parameters that are
smaller than 1. The model is estimated using the benchmark ordinary least square proposed by the
authors.

4.3 In-sample analysis

In this section, we present the results of our empirical estimations with the VAR-ENET model for
each population. We especially focus on the study of the estimated Granger causality matrices that
describe the long-term underlying mortality dynamic of the model. The goodness of �t is analyzed
by comparing the in-sample results with the benchmark models presented in Section 4.2.

4.3.1 Parameters estimation

Let us present our estimated results on the period 1950 � 2016. The parameters are estimated as
described in Section 3. For the lag order p, we choose the value 7, which represents between 10%
and 15% of the observation, depending if we analyze the in-sample or, as in the latter sections, out-
sample. Table 1 reports the list of the estimated hyper-parameters for each population of interest.
We note that, for some populations, we retain the value 1 for α, i.e. we estimate the model with
the LASSO constraint only.

Table 1: The estimated VAR-ENET hyper-parameters.

Country Population α λ

FR Female 0.8 0.0012

FR Male 0.6 0.0003

FR Total 0.8 0.0006

US Female 0.6 0.0010

US Male 1.0 0.0005

US Total 1.0 0.0005

UK Female 0.6 0.0004

UK Male 1.0 0.0003

UK Total 0.8 0.0005

Note: This table displays the estimated
hyper-parameters α and λ in Equa-
tion (3.1) for the VAR p7q models. We
consider males, females and the overall
populations for FR, UK and US.

The �rst Granger causality matrix A1 for each population is displayed in Figure 2. These es-
timated matrices are sparse, i.e. most of the coe�cients are estimated to 0 while minimizing the
criterion given in Equation (3.1). We identify two main structures by observing the non-zero coe�-
cients. We interpret these patterns in terms of demographic e�ects, basing our explanations on the
underlying mortality dynamic of the model induced by the matrices and described in Equation (2.1).
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Figure 2: The Granger causality matrix A1 for England and Wales (UK), the United States (US)
and France (FR) on the age range 45-99 for females, males and the overall population.

First, an expected cohort e�ect, induced by individuals belonging to the same generation, is
highlighted by allocated coe�cients on the kth subdiagonal for Ak for k P t1, . . . , pu. Indeed, those
coe�cients in the VAR model describe the Granger causality of ∆yi�k,t�k on ∆yi,t. This e�ect
appears positively mainly for the younger ages of our di�erent samples. It is more di�use between
the ages of 65 and 85 years old. In Figure 2, the di�erence between countries appears clearly and
the so-called cohort e�ect is relatively strong for the US population, compared to the FR and the
UK. The cohort e�ect is also clearly visible for k P t2, . . . , 7u (not shown here).

Second, negative period e�ects are observed on the main diagonals in just about any population,
especially between the ages of 85 and 95. Females in France are more impacted by this e�ect also
for younger ages, whereas almost no cohort e�ect appears for this group. An opposite situation
emerges for the US, where the period e�ect remains limited to the very older ages.

Third, we notice some age-speci�c e�ects corresponding to vertical structure of non-zero co-
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e�cients. This third type of patterns reveal non-trivial interactions between di�erent cohorts
which are non-necessary within a close neighboring. More concretely, a vertical pattern on the
ith column of A1 reveals a persistent e�ect from the term ∆yi,t�1 on t∆yj1,t, . . . ,∆yjl,tu, with
tj1, . . . jlu � timin, . . . , imaxu. It means that the mortality improvement of a single speci�c age i
seems to impact the mortality improvement on a group of ages tj1, . . . jlu one year after. Similar
structures can be observed on the matrices Ak for k P t2, . . . , 7u (not shown here).

This latter e�ect, underlined by our data-driven approach, has not been well documented in the
literature yet to our knowledge. These patterns are quite di�cult to interpret and to explain within
the demographic framework with the available datasets. Disaggregated data would be very useful to
explore these e�ects further. Indeed, these patterns could result from biological, environmental or
societal causes, unless it is due to some anomalies in the HMD (Cairns et al., 2016b; Boumezoued,
2016). At this point, we are unable to conclude on the very causes of such age-e�ects.

On the contrary, the observed cohort and period e�ects have already been well studied in the
literature. However, our model highlights this result in a more data-driven way. Indeed, the existing
models either detect these e�ects in the residuals (e.g. Lee and Carter, 1992; Dokumentov et al.,
2018), or force the estimation of speci�c parameters (e.g. Cairns et al., 2009; Li and Lu, 2017).
In our case, we notice these e�ects by analyzing the parameters estimated without imposing any
speci�c constraints. To exhibit how our data-driven approach can adapt to these e�ects, we estimate
two VAR-ENETp1q models on the French male population over the period 1950-2012, but with the
data downloaded from the HMD at two di�erent dates: 2nd October 2017 and 28th January 2019.
Indeed, between these two dates, the HMD data had been updated, following the work of Cairns
et al. (2016b) and Boumezoued (2016) using fertility rates. With this correction, the residual
plots display a cohort e�ect which is substantially lessened. The two Granger causality matrices
estimated are displayed in Figure 3. In the old version, we clearly remark a subdiagonal in the
estimated parameters. In the new estimation, where many false cohort e�ects had been removed,
the pattern on the �rst subdiagonal is virtually nil, whereas the negative period e�ect on the main
diagonal is only slightly reduced.
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Figure 3: The Granger causality matrix A1 for the French males on the age range 45-99 estimated
with a VAR-ENETp1q over the period 1950-2012, on the HMD data downloaded on the 2nd

October 2017 (Before correction) and the 28th January 2019 (After correction).
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4.3.2 In-sample model comparison

We now study how our approach �ts well and captures better the mortality pattern on these subsets
compared to the benchmark models we retained in Section 4.2. Table 2 contains the values of the
RMSE, as de�ned in Equation (3.2) for each model and each population. Table 3 displays summary
statistics of RMSE values over all the populations considered for each model. Benchmark models
and the VAR-ENET have quite comparable results. Although the VAR-ENET has not the lowest
value for each population, it globally leads to one of the best in-sample results with the HU and
RESPECT model (around 2% in average). More particularly, the RESPECT model outperforms
the VAR-ENET on the US populations.

Table 2: The RMSE of the VAR-ENET and benchmark models.

Country Model RMSE Female RMSE Male RMSE Overall

FR VAR 0.032 0.013 0.021

FR HU 0.022 0.024 0.017

FR LC 0.054 0.050 0.041

FR M7 0.076 0.071 0.065

FR RESPECT 0.021 0.025 0.022

FR STAR 0.042 0.045 0.038

UK VAR 0.014 0.015 0.018

UK HU 0.024 0.029 0.021

UK LC 0.052 0.059 0.050

UK M7 0.058 0.049 0.044

UK RESPECT 0.022 0.027 0.016

UK STAR 0.040 0.044 0.035

US VAR 0.020 0.017 0.017

US HU 0.017 0.016 0.014

US LC 0.045 0.049 0.042

US M7 0.048 0.050 0.046

US RESPECT 0.010 0.009 0.006

US STAR 0.025 0.024 0.023

Note: This table reports the RMSE values obtained after �tting the
VAR-ENET and the considered benchmark models. We compare this indi-
cator for males, females and the overall populations for FR, UK and US.

The RMSE value is also computed for each age and each year, and the results are displayed
respectively on Figures 4 and 5 for all of the overall populations. First, we note that, on top of
having one the lowest RMSE with the smoothing models, the VAR-ENET leads to a more stable
error over the age. This is clearly noticeable on the higher ages, especially for the French and English
data. For example we observe that the M7's �tting error drastically increases for ages above 95.
More generally, on these two populations, all the benchmark model tend to have an increasing age-
marginal RMSE starting from 90 years old, while our model's �tting error stays relatively stable.
On the American data, the results are more nuanced: whereas we still notice an increase of RMSE
values at higher ages for the stochastic benchmark models (LC, M7 and STAR), the smoothing ones
and the VAR-ENET lead to stable errors.
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Table 3: Summary statistics for the RMSE of the VAR-ENET and the benchmark models.

Model Mean Standard Deviation Minimum Maximum

VAR 0.019 0.006 0.013 0.032

HU 0.020 0.005 0.014 0.029

LC 0.049 0.006 0.041 0.059

M7 0.056 0.012 0.044 0.076

RESPECT 0.018 0.008 0.006 0.027

STAR 0.035 0.009 0.023 0.045

Note: This table reports statistics of the RMSE values obtained after
�tting the VAR-ENET and the considered benchmark models over the
males, females and the overall populations for FR, UK and US.

The RMSE patterns across periods are more erratic. While the errors of smoothing models (HU
and RESPECT) are quite stable over the periods, many peaks are observed for all the stochastic
models. More particularly, we note that these peaks tend to occur at the same period for all
the concerned models, especially on the French and American data. We remark that, among the
stochastic models, the VAR-ENET is the one producing the peaks of the lowest amplitude, and
is the closest of the smoothing models in terms of goodness-of-�t. Finally, we notice that, on the
American data, the errors of the VAR-ENET and the STAR model are highly correlated, mainly
starting from 1985. This shows the methodological closeness of these two methods. The results for
females and males are given in Appendix 2 with similar �ndings.

Some of the period peaks may be explained by speci�c events that have an unexpected impact
on the mortality rates, such as an in�uenza epidemic or a heat wave (Huynen et al., 2001). Indeed,
this type of exogenous stresses is di�cult to predict with only mortality rate series, which explains
why the peaks are observable for the three models. For example, we try to explain the relatively
high RMSE in France in 2004. In 2003 a heat wave led to one of the hottest summer ever recorded
in France and, as a direct consequence, to higher mortality rates during this year, especially for the
elderly. Then, the mortality was much lower in 2004 due to the so-called harvesting e�ect (Toulemon
and Barbieri, 2008; Izraelewicz, 2012). On the contrary, in the calculation of the RMSE, the
mortality rates of the year 2004 are forecasted from the observation of the 2003 rates in accordance
with the temporal dynamics we have imposed; in this way, the 2004 mortality was expected to be
relatively high. This must explain why we observe a RMSE peak in 2004 for the French population.

4.4 Out-of-sample performance

For risk management in insurance or more generally for demographers or public policy purposes,
mortality rates require being predicted based on the past information. A quite usual test for
accuracy is to analyze how the model is able to reproduce the mortality rates correctly. Note
that this objective is more demanding than measuring the prediction power on the residual life
expectancy. A reasonable model should be able to predict a kind of convergence for mortality at a
similar level.

We focus on the prediction power of the VAR-ENET model compared to the benchmark models
through an analysis of the out-sample forecasting performance on the same age-period space. To
this end, we �rst estimate each model based on the observations from 1950 to 2000, then we forecast
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Figure 4: The RMSE for England and Wales (UK), the United States (US) and France (FR)
grouped by age for the overall populations.
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Figure 5: The RMSE for England and Wales (UK), the United States (US) and France (FR)
grouped by period for the overall populations.

the mortality rates for the period 2001-2016. Note of course that the mortality rates can be easily
calculated using the VAR model, based on the predicted improvement rates and the initial values
known for the last year of the training sample. We choose a similar measure to the one taken for the
in-sample analysis, the root mean squared forecast error (RMSFE) that we de�ne for a projection
horizon h as

RMSFE �
gffe 1

dh

imax̧

i�imin

t0�ḩ

t�t0�1

pyi,t � ŷi,tq2, (4.7)

where t0 is the year 2000 and h equals to 16 years in our study.

We compare the predictive power of the di�erent models on the period 2001 � 2016 for the 3
populations (overall, female, male) of the 3 countries of interest. The results are displayed in Table 4
and 5 (we also display the results for di�erent estimation years but with the same forecasting period
in Appendix 3). We note in Table 5 that the average RMSFE is smaller with the VAR-ENET than
with the benchmark models, indicating that the former one has higher predictive power in general.
However, it is locally outperformed by other models for some populations. Thus, we note for
example that the RESPECT model slightly outperforms the VAR-ENET on the French data, and
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the STAR's RMSFE value on the US male population (5%) is signi�cantly lower than the one
obtained with the VAR-ENET (11.6%) and the other models.

Furthermore, we observe that, in the VAR-ENET applications, all the forecasting errors are of
the same order of magnitude, no matter the selected population. This point is highlighted by the
standard deviation of RMSFE values over the 9 populations displayed in Table 5 for each model.
Although the RESPECT and STAR models locally outperform the VAR-ENET, they are more
sensible to population considered, leading to a signi�cantly higher standard deviation (respectively
9.4% and 11.3% against only 1.4% for our model). The M7, and to a lesser extent the LC and HU
models, also tend to have more variable forecasting errors, depending on the considered popula-
tion. These results highlight the stability of the prediction error of the VAR-ENET over di�erent
populations compared to the other benchmark models due to the more data-driven approach of the
�rst one, allowing it to better capture the features of each populations' mortality dynamic. By
analyzing the results displayed in Appendix 3, we also notice a better stability of the VAR-ENET
over di�erent estimation periods.

Table 4: The RMSFE of the VAR and the benchmark models estimated on the period 1950 � 2000.

Country Model RMSFE Female RMSFE Male RMSFE Overall

FR VAR 0.088 0.110 0.078

FR HU 0.082 0.112 0.067

FR LC 0.111 0.113 0.067

FR M7 0.676 0.193 0.257

FR RESPECT 0.083 0.091 0.071

FR STAR 0.098 0.127 0.417

UK VAR 0.095 0.087 0.080

UK HU 0.109 0.138 0.122

UK LC 0.142 0.141 0.138

UK M7 0.228 0.099 0.145

UK RESPECT 0.281 0.230 0.296

UK STAR 0.083 0.115 0.156

US VAR 0.078 0.116 0.078

US HU 0.061 0.141 0.085

US LC 0.085 0.122 0.087

US M7 0.237 0.144 0.135

US RESPECT 0.110 0.081 0.075

US STAR 0.071 0.050 0.049

Note: This table reports the out-of-sample performance via the RMSFE values
for the HU, the LC, the M7, the RESPECT, the STAR and the VAR-ENET mod-
els estimated on the period 1950 � 2000. We compare this indicator for males,
females and the overall populations for FR, UK and US.

We plot the RMSFE in Figure 6 for the overall population of our three countries of interest.
The results for female and male populations are postponed in Appendix 3. First, we note that the
forecasting errors from most models tend to converge with the projection horizon, suggesting that
obtaining a signi�cant enhancement of the forecasting accuracy on the long term seems very chal-
lenging. However, we observe that for speci�c population, some models fail to capture the mortality
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Table 5: Summary statistics for the RMSFE of the VAR-ENET and the benchmark models.

Model Mean Standard Deviation Minimum Maximum

VAR 0.090 0.014 0.078 0.116

HU 0.102 0.030 0.061 0.141

LC 0.112 0.027 0.067 0.142

M7 0.235 0.174 0.099 0.676

RESPECT 0.146 0.094 0.071 0.296

STAR 0.129 0.113 0.049 0.417

Note: This table reports statistics of the out-of-sample performance via

the RMSFE values for the VAR-ENET and the considered benchmark
models models estimated on the period 1950 � 2000 over the males, fe-
males and the overall populations for FR, UK and US.

dynamics, therefore the RMSFE strongly diverges, see e.g. M7 and STAR on the French data or HU
on the English data. Nevertheless, our model doesn't su�er from this drawback. Furthermore, it
always belongs among the best models for any population and any period considered in this study.
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Figure 6: The RMSFE for England and Wales (UK), the United States (US) and France (FR)
grouped by period for the overall populations.

We now focus on the forecasting error by age groups. We choose to separate the age dimension
into 5 classes and compute the RMSFE at a projection horizon of 10 years. By doing so, we
compare the predictive power over the di�erent ages. Indeed, depending on the purpose of the
mortality forecasting application, one could be more interested in producing accurate predictions
for some speci�c ages. We show the results of the three models in Figure 7.

Yet again, we observe that the VAR-ENET is the most stable model over the age classes, when
analyzing the forecasting errors at a 15 years projection horizon. While the M7 consistently fails
to capture the mortality dynamic at higher ages, the other models have more local issues. For
example, we note poorer predictions for the STAR on the French age class 85-94. On the English
mortality, the two models LC and HU, and the RESPECT methodology, have respectively higher
RMSFE on the age classes 65-74 and 85-94. This point highlights the capacity of our model to
uniformly forecast the mortality rates over the age dimension for any of the considered populations.
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Figure 7: The RMSFE for England and Wales (UK), the United States (US) and France (FR)
grouped by age for the overall populations.

The results presented in this section suggest that our model slightly outperforms the benchmark
methodologies in average for the considered data, even though it doesn't lead to the best accuracy
for every population. In all the tested situation, it is at least a credible competitor compared
to the best model. More importantly, the VAR-ENET seems to be more stable according to the
selected population. This last point is the most noticeable di�erence between our in and out-of-
sample results. Whereas, in our in-sample study, the models' �t seems to be relatively equally
stable in respect of the considered population, the out-of-sample analysis emphasizes a noticeable
heterogeneity in the outcomes depending on the selected dateset. In that regard, the VAR-ENET
tends to provide signi�cantly more consistent forecasts.

4.5 Forecasting application

Figure 8 displays the median forecasts of the log of death rates for ages in t45, 65, 85, 95u using
the VAR-ENET model from 2017 to 2066. We note that the trends seem rather realistic. We
remark that the male and female mortality rates tend to converge rapidly for the UK population.
This forecasting result has already been observed in the literature with other models with a similar
estimation period (see e.g. Bohk-Ewald and Rau (2017)). We note on the forecasted series that
there are some limited shocks during the �rst projection years, followed by a linear trend. This
e�ect is characteristic of the VAR model and shows how it can propagate innovation shocks among
a cohort for example.

Figure 9 compares the median forecasts of the log of death rates of two popular models LC,
the HU model with the VAR-ENET model from 2013 to 2062. First, we note that for many of
the forecasted series, the three models produce very similar projections, especially on the female
populations at higher ages. On the contrary, for the British male mortality dynamics, the forecasts
are noticeably di�erent. While the LC and HU models predict a stabilization of the mortality rates,
and even a slight increase at age 45 for the smoothing methodology, our VAR-ENET forecasts
a decrease consistent with the average longevity improvement over the last decades. The two
benchmark models seems to be more impacted by the slowdown of this enhancement observed
during the very recent years. To a lesser extent, we also notice a comparable results on the French
male population.
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Figure 8: The observed and the projected log of death rates for British (UK), American (US) and
French(FR) females and males with the 97.5% prediction intervals, obtained from the VAR-ENET

model.
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Figure 9: The observed and the projected log of death rates for British (UK), American (US) and
French (FR) females and males. This �gure compares trends obtained with the HU, the LC and

the VAR-ENET models.

5 A multi-population extension

Some of the standard mortality forecasting models can be extended to multi-population. However,
many of these extensions su�er from limits. One of the recurrent limits in multi-population mor-
tality modeling is the restriction of the extension to only 2 populations. For example, we can note
the GRAVITY model of Dowd et al. (2011) or the Bayesian model of Cairns et al. (2011). Another
restriction imposed by some existing multi-population models is the necessity to determine a dom-
inant population and sub-populations, see e.g. the SAINT model of Jarner and Kryger (2011), or
a common trend for the di�erent populations like in Li and Lee (2005). In this section, we explore
the possibility of extending our model for multi-population mortality forecasting and we give the
needed details.

We denote M the number of selected populations and ym,i,t the log of mortality rates for the
mth population. We suppose that the pair pimin, imaxq is the same for all the populations to avoid
exaggerated notations, although we could have chosen M di�erent pairs of age limits. Thus, we
de�ne M di�erent d-dimensional vectors ∆Y m,t that we concatenate into a single Md-dimensional

vector ∆Y t � p∆y1,imin,t, . . . ,∆y1,imax,t,∆y2,imin,t, . . . ,∆yM,imax,tqJ. We then apply the same model
as in Equation (2.1) except that the dimension equals now to Md.

The pMdq � pMdq-dimensional autoregressive matrices and the Md-dimensional vector of con-
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stants are estimated through the same elastic-net methodology as in the single population problem.
However, the covariance matrix estimation needs to be extended since its structure may change
signi�cantly compared to the single population case.

In the multi-population context, the covariance matrix Σ is pMdq � pMdq-dimensional. Firstly,
we propose to consider this matrix as a block matrix broken into M2 di�erent d � d-dimensional
submatrices noted Σm,n for each population couple pm,nq P t1, . . . ,Mu2. Then, for each population
m, we estimate the diagonal submatrix Σm,m through the same methodology as in the single popu-
lation, obtaining in this way Σ̃m,m. Since Σ̃m,m is a positive-de�nite matrix, we de�ne its Cholesky
decomposition

Σ̃m,m � R̃J
mR̃m,

where R̃m is an upper triangular matrix. Finally, for a couple of populations pm,nq we estimate
the covariance submatrix as

Σ̃m,n � ρm,n � R̃J
mR̃n,

where ρm,n P r�1, 1s is the empirical Pearson's correlation coe�cient between the observations of
residuals pεm,i,tqpi,tq and pεn,i,tqpi,tq for pi, tq P timin, . . . , imaxu � ttmin � p, . . . , tmaxu.

Thus, our extended covariance model has only M p2d� 1q � MpM�1q
2 parameters. The number

of ages, d, being generally much larger than the number of populations in mortality modeling, we
note that M p2d� 1q " MpM�1q

2 , meaning that we do not add many parameters for covariance
estimation while modeling M populations together compared to �tting M single models.

6 Conclusions

In this paper, we have proposed a vector-autoregression elastic-net (VAR-ENET) model on the
di�erentiated log-mortality, leading to three key results. First, this new high-dimensional time
series analysis outperforms in �tting the mortality rate series of each of the nine populations we
considered, compared with the three stochastic benchmark models (LC, M7 and STAR). Moreover,
in average, it leads to in-sample errors of same order as the two smoothing benchmark models
(HU and RESPECT). Even though our model doesn't produce the most accurate forecasts on
each population, it leads to relatively close results compared to the best model each time. In
addition, the average RMSFE over the 9 population is lower than the one obtained with any other
benchmark models. Furthermore, thanks to its data-driven approach, the VAR-ENET leads to
more stable errors than the benchmark models over populations, showing its power of adaptability
to the speci�c mortality dynamics of di�erent populations. Compared to the usual strategy which
requires to compare a variety of possible models and then select the best for a particular age-period
population, our approach gives directly and with little e�ort a serious candidate for a consistent
modeling of the mortality, regardless of the population features. The second key result is that,
although we let a large freedom in the spatio-temporal dependence structure without imposing a
priori constraints, the VAR-ENET model enlightens three main e�ects: the so-called cohort and
period e�ects and a speci�c age e�ect. While the �rst two models have already been well studied
in many papers on mortality modeling, we develop in this paper a new ways for detect the e�ects
for any population. The last e�ect is less known or possibly even unknown in the literature. Future
researches are needed, probably on a �nest dataset to understands such a phenomena. Finally,
the proposed extension of the VAR-ENET to multi-population mortality modeling seems a priori
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straightforward, without raising unavoidable issues on the number of populations or on the hierarchy
between them, considering the estimation process.

Some points should however be improved and need further researches. The �rst one concerns
the interpretation of the results given by our VAR-ENET model. Although it seems to have a better
forecasting and adaptability power than the standard factor-based models, the last ones do bene�t
from a greater interpretability. Indeed, even if most of the coe�cients in the autoregressive matrices
are estimated to zero in the VAR-ENET and that the non-null coe�cients seems to form speci�c
patterns, the comprehension of the underlying dynamics remains complex. On the contrary, it is
much easier to understand the mortality dynamics in terms of period, age and cohort e�ects, which
are directly visible through the use of the classical factor-based models.

Second, we are also aware that some of the hyper-parameter selection techniques we applied can
be improved. Firstly, we imposed the lag order p equals to 7 for all the population. In a sensibility
analysis, we have noted that according to the considered population, the highest predictive power
of the VAR-ENET(p) model is not reached at the same lag order p. These results suggest that
an optimization on the hyper-parameter p could be developed. The second hyper-parameter to be
improved is the mixing weight parameter α between the LASSO and ridge penalties. In the general
context of elastic-net regression, it is usually selected with a grid search. However, Friedman et al.
(2010) propose to optimize it through a cross-validation by following the same methodology as the
λ selection.

Third, the log-mortality rates series yi,t are known to not be stationary, but also to be cointe-
grated (see e.g. Chen et al., 2015; Salhi and Loisel, 2017; Li and Lu, 2017). In our paper, we choose
to study the �rst di�erence in the log mortality-rates and, by doing so, we lose some information
about the long-term co-movement. Another way that we can deal with the non-stationarity and co-
integration is to rather select the Vector Error Correcting Model (VECM). Nevertheless, although
high-dimensional VAR model has been relatively well studied and recently documented especially
in �nancial econometrics, VECM sparse estimation with elastic-net or other techniques seems to
be a new �eld (see e.g. Wilms and Croux, 2016), and could be developed further for the mortality
projection. A major improvement of our model would be to implement the elastic-net procedure to
VECM estimation and apply it to the log-mortality series.

Finally, even though we introduce an extension to multi-population mortality forecasting of our
model, we don't show any empirical studies on that subject in this paper, which rather focuses on
the single population case. Many points need to be analyzed in greater detail to correctly assess the
behavior of the VAR-ENET model applied to multi-population. It notably includes the examination
of a broader list of countries, the speci�c case of sub-regional populations and the comparison of
forecasts to recent multi-population models. Further more speci�c studies should be conducted to
examine the multi-population model.

Acknowledgments

This work bene�ted from the �nancial support of the ANR project "LoLitA" (ANR-13-BS01-0011).
The authors are thankful to the anonymous referee for valuable advice and suggestions provided in
relation to the �rst draft of this paper.

22



References

Barrieu, P., Bensusan, H., El Karoui, N., Hillairet, C., Loisel, S., Ravanelli, C., and Salhi, Y.
(2012). Understanding, modelling and managing longevity risk: key issues and main challenges.
Scandinavian Actuarial Journal 2012.3, pp. 203�231. doi: 10.1080/03461238.2010.511034.

Basu, S., Michailidis, G., and others (2015). Regularized estimation in sparse high-dimensional time
series models. The Annals of Statistics 43.4, pp. 1535�1567. doi: 10.1214/15-AOS1315.

Bickel, P. J. and Levina, E. (2008). Covariance regularization by thresholding. The Annals of Statis-
tics 6, pp. 2577�2604. doi: 10.1214/08-AOS600.

Bien, J. and Tibshirani, R. J. (2011). Sparse estimation of a covariance matrix. Biometrika 98.4,
pp. 807�820. doi: 10.1093/biomet/asr054.

Bohk-Ewald, C. and Rau, R. (2017). Probabilistic mortality forecasting with varying age-speci�c
survival improvements. Genus 73.1, p. 1. doi: 10.1186/s41118-016-0017-8.

Booth, H. and Tickle, L. (2008). Mortality Modelling and Forecasting: a Review of Methods. Annals
of Actuarial Science 3.1-2, pp. 3�43. doi: 10.1017/S1748499500000440.

Booth, H., Maindonald, J., and Smith, L. (2002). Applying Lee-Carter under conditions of variable
mortality decline. Population studies 56.3, pp. 325�336. doi: 10.1080/00324720215935.

Boumezoued, A. (2016). Improving HMD mortality estimates with HFD fertility data. To appear
in the North American Actuarial Journal. HAL preprint: hal-01270565v1.

Börger, M., Fleischer, D., and Kuksin, N. (2014). Modeling the Mortality Trend under Modern
Solvency Regimes. ASTIN Bulletin 44.01, pp. 1�38. doi: 10.1017/asb.2013.24.

Brouhns, N., Denuit, M., and Vermunt, J. K. (2002). A Poisson log-bilinear regression approach to
the construction of projected lifetables. Insurance: Mathematics and Economics 31.3, pp. 373�
393. doi: 10.1016/S0167-6687(02)00185-3.

Cairns, A. J. G., Blake, D., and Dowd, K. (2006). A Two-Factor Model for Stochastic Mortality with
Parameter Uncertainty: Theory and Calibration. Journal of Risk and Insurance 73.4, pp. 687�
718. doi: 10.1111/j.1539-6975.2006.00195.x.

� (2008). Modelling and management of mortality risk: a review. Scandinavian Actuarial Journal

2008.2-3, pp. 79�113. doi: 10.1080/03461230802173608.
Cairns, A. J. G., Kallestrup-Lamb, M., Rosenskjold, C. P., Blake, D., Dowd, K., and others (2016a).

Modelling Socio-Economic Di�erences in the Mortality of Danish Males Using a New A�uence
Index. Tech. rep. Working paper, Heriot-Watt University. Department of Economics and Busi-
ness Economics, Aarhus University.

Cairns, A. J. G., Blake, D., Dowd, K., and Kessler, A. R. (2016b). Phantoms never die: living
with unreliable population data. Journal of the Royal Statistical Society: Series A (Statistics in

Society) 179.4, pp. 975�1005. doi: 10.1111/rssa.12159.
Cairns, A. J., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., and Balevich, I. (2009). A

quantitative comparison of stochastic mortality models using data from England and Wales and
the United States. North American Actuarial Journal 13.1, pp. 1�35. doi: 10.1080/10920277.
2009.10597538.

Cairns, A. J., Blake, D., Dowd, K., Coughlan, G. D., and Khalaf-Allah, M. (2011). Bayesian Stochas-
tic Mortality Modelling for Two Populations. ASTIN Bulletin: The Journal of the International

Actuarial Association 41.01, pp. 29�59. doi: 10.2143/AST.41.1.2084385.
Chai, C. M. H., Siu, T. K., and Zhou, X. (2013). A double-exponential GARCH model for stochastic

mortality. European Actuarial Journal 3.2, pp. 385�406. doi: 10.1007/s13385-013-0077-5.
Chatterjee, A. and Lahiri, S. N. (2011). Bootstrapping lasso estimators. Journal of the American

Statistical Association 106.494, pp. 608�625. doi: 10.1198/jasa.2011.tm10159.

23



Chen, H., MacMinn, R., and Sun, T. (2015). Multi-population mortality models: A factor copula
approach. Insurance: Mathematics and Economics. Special Issue: Longevity Nine - the Ninth
International Longevity Risk and Capital Markets Solutions Conference 63, pp. 135�146. doi:
10.1016/j.insmatheco.2015.03.022.

Christiansen, M. C., Spodarev, E., and Unseld, V. (2015). Di�erences in European Mortality Rates:
A Geometric Approach on the Age�Period Plane. ASTIN Bulletin: The Journal of the Interna-

tional Actuarial Association 45.03, pp. 477�502. doi: 10.1017/asb.2015.13.
Currie, I. D., Durban, M., and Eilers, P. H. (2004). Smoothing and forecasting mortality rates.

Statistical Modelling 4.4. 00309, pp. 279�298. doi: 10.1191/1471082X04st080oa.
Dokumentov, A. and Hyndman, R. (2018). smoothAPC: Smoothing of Two-Dimensional Demo-

graphic Data, Optionally Taking into Account Period and Cohort E�ects. R package version
0.3.

Dokumentov, A., Hyndman, R. J., and Tickle, L. (2018). Bivariate smoothing of mortality surfaces
with cohort and period ridges. Stat 7.1, e199. doi: 10.1002/sta4.199.

Doukhan, P., Pommeret, D., Rynkiewicz, J., and Salhi, Y. (2017). A class of random �eld memory
models for mortality forecasting. Insurance: Mathematics and Economics 77, pp. 97�110. doi:
10.1016/j.insmatheco.2017.08.010.

Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., and Khalaf-Allah, M. (2011). A Gravity
Model of Mortality Rates for Two Related Populations. North American Actuarial Journal 15.2,
pp. 334�356. doi: 10.1080/10920277.2011.10597624.

Enchev, V., Kleinow, T., and Cairns, A. J. G. (2016). Multi-population mortality models: �tting,
forecasting and comparisons. Scandinavian Actuarial Journal 2017.4, pp. 319�342. doi: 10.
1080/03461238.2015.1133450.

Fan, J., Lv, J., and Qi, L. (2011). Sparse High Dimensional Models in Economics. Annual review of

economics 3, pp. 291�317. doi: 10.1146/annurev-economics-061109-080451.
Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear

Models via Coordinate Descent. Journal of Statistical Software 33.1, pp. 1�22. doi: 10.18637/
jss.v033.i01.

Furman, Y. (2014). VAR Estimation with the Adaptive Elastic Net. SSRN Scholarly Paper ID
2456510. Rochester, NY: Social Science Research Network.

Gefang, D. (2014). Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage. International
Journal of Forecasting 30.1, pp. 1�11. doi: 10.1016/j.ijforecast.2013.04.004.

Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral
Methods. Econometrica 37.3, pp. 424�438. doi: 10.2307/1912791.

Haberman, S. and Renshaw, A. (2012). Parametric mortality improvement rate modelling and pro-
jecting. Insurance: Mathematics and Economics 50.3, pp. 309�333. doi: 10.1016/j.insmatheco.
2011.11.005.

Hahn, L. J. (2014). A Bayesian Multi-Population Mortality Projection Model. Master thesis. Ulm,
Germany: Universität Ulm.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12.1, pp. 55�67. doi: 10.1080/00401706.1970.10488634.

Human Mortality Database (2019). University of California, Berkeley (USA), and Max Planck Insti-
tute for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de
(data downloaded on 2019-01-28).

Hunt, A. and Blake, D. (2014). A General Procedure for Constructing Mortality Models. North
American Actuarial Journal 18.1, pp. 116�138. doi: 10.1080/10920277.2013.852963.

24



Hunt, A. and Villegas, A. M. (2015). Robustness and convergence in the Lee�Carter model with
cohort e�ects. Insurance: Mathematics and Economics 64, pp. 186�202. doi: 10 . 1016 / j .
insmatheco.2015.05.004.

Huynen, M. M., Martens, P, Schram, D, Weijenberg, M. P., and Kunst, A. E. (2001). The impact
of heat waves and cold spells on mortality rates in the Dutch population. Environmental Health

Perspectives 109.5, pp. 463�470. doi: 10.1289/ehp.01109463.
Hyndman, R. J. (2019). demography: Forecasting Mortality, Fertility, Migration and Population

Data. R package version 1.21.
Hyndman, R. J. and Ullah, S. (2007). Robust forecasting of mortality and fertility rates: A functional

data approach. Computational Statistics & Data Analysis 51.10, pp. 4942�4956. doi: 10.1016/
j.csda.2006.07.028.

Izraelewicz, E. (2012). L'e�et moisson - l'impact des catastrophes vie sur la mortalité à long terme
- Exemple de la canicule de l'été 2003. Bulletin Français d'Actuariat 12.24, pp. 113�159.

Jarner, S. F. and Kryger, E. M. (2011). Modelling Adult Mortality in Small Populations: The Saint
Model. ASTIN Bulletin: The Journal of the International Actuarial Association 41.02, pp. 377�
418. doi: 10.2143/AST.41.2.2136982.

Lee, R. D. and Carter, L. R. (1992). Modeling and Forecasting U. S. Mortality. Journal of the
American Statistical Association 87.419, pp. 659�671. doi: 10.2307/2290201.

Li, H., O'hare, C., and Vahid, F. (2016). Two-Dimensional Kernel Smoothing of Mortality Surface:
An Evaluation of Cohort Strength. Journal of Forecasting 35.6, pp. 553�563.

Li, H. and Lu, Y. (2017). Coherent Forecasting of Mortality Rates: A Sparse Vector-Autoregression
Approach. ASTIN Bulletin: The Journal of the IAA 47.2, pp. 563�600. doi: 10.1017/asb.
2016.37.

Li, N. and Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of
the Lee-Carter method. Demography 42.3, pp. 575�594.

Li, N., Lee, R., and Gerland, P. (2013). Extending the Lee-Carter method to model the rotation
of age patterns of mortality-decline for long-term projection. Demography 50.6, pp. 2037�2051.
doi: 10.1007/s13524-013-0232-2.

Opgen-Rhein, R. and Strimmer, K. (2007). From correlation to causation networks: a simple ap-
proximate learning algorithm and its application to high-dimensional plant gene expression data.
BMC systems biology 1.1, p. 37. doi: 10.1186/1752-0509-1-37.

Perron, P. (1988). Trends and random walks in macroeconomic time series: Further evidence from
a new approach. Journal of economic dynamics and control 12.2-3, pp. 297�332. doi: 10.1016/
0165-1889(88)90043-7.

Plat, R. (2009). On stochastic mortality modeling. Insurance: Mathematics and Economics 45.3,
pp. 393�404. doi: 10.1016/j.insmatheco.2009.08.006.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria.

Renshaw, A. E. and Haberman, S. (2006). A cohort-based extension to the Lee�Carter model for
mortality reduction factors. Insurance: Mathematics and Economics 38.3, pp. 556�570. doi:
10.1016/j.insmatheco.2005.12.001.

� (2008). On simulation-based approaches to risk measurement in mortality with speci�c reference
to Poisson Lee�Carter modelling. Insurance: Mathematics and Economics 42.2, pp. 797�816. doi:
10.1016/j.insmatheco.2007.08.009.

Said, S. E. and Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models
of unknown order. Biometrika 71.3, pp. 599�607.

Salhi, Y. and Loisel, S. (2017). Basis risk modelling: a cointegration-based approach. Statistics 51.1,
pp. 205�221. doi: 10.1080/02331888.2016.1259806.

25



Schäfer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics. Statistical applications in genetics and molecular

biology 4.1. doi: 10.2202/1544-6115.1175.
Song, S. and Bickel, P. J. (2011). Large vector auto regressions. arXiv preprint arXiv:1106.3915.
Spodarev, E., Shmileva, E., and Roth, S. (2013). Extrapolation of stationary random �elds. arXiv

preprint arXiv:1306.6205.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statis-

tical Society. Series B (Methodological) 58.1, pp. 267�288.
Toulemon, L. and Barbieri, M. (2008). The mortality impact of the August 2003 heat wave in France:

Investigating the `harvesting' e�ect and other long-term consequences. Population Studies 62.1,
pp. 39�53. doi: 10.1080/00324720701804249.

Vazzoler, S., Frattarolo, L., and Billio, M. (2016). sparsevar: A Package for Sparse VAR/VECM
Estimation. Tech. rep. R package version 0.0.10.

Villegas, A. M., Kaishev, V., and Millossovich, P. (2017). StMoMo: An R Package for Stochastic
Mortality Modelling. R package version 0.4.1.

Willets, R. (2004). The cohort e�ect: insights and explanations. British Actuarial Journal 10.4,
pp. 833�877.

Wilms, I. and Croux, C. (2016). Forecasting using sparse cointegration. International Journal of
Forecasting 32.4, pp. 1256�1267.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 67.2, pp. 301�320.

26



Appendix 1 Improvement rates data for females and males

Figures 10 and 11 describe the log-mortality improvements for females and males.
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Figure 10: The period log-mortality improvements for England and Wales (UK), the United States
(US) and France (FR) on the age-period observation t45, . . . , 99u � t1950, . . . , 2016u for females.
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Figure 11: The period log-mortality improvements for England and Wales (UK), the United States
(US) and France (FR) on the age-period observation t45, . . . , 99u � t1950, . . . , 2016u for males.

Appendix 2 In-sample analysis for females and males

Figures 12 and 13 present the in-sample performance in terms of RMSE for females. Figures 14
and 15 present the in-sample performance in terms of RMSE for males.

Appendix 3 Out-of-sample analysis for females and males

Tables 6 and 8 present the out-of-sample performance in terms of RMSFE for di�erent model
estimation period, respectively t1970, . . . , 2000u and t1980, . . . , 2000u. Tables 7 and 9 outlines the
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Figure 12: The RMSE for England and Wales (UK), the United States (US) and France (FR)
grouped by age for the female populations.
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Figure 13: The RMSE for England and Wales (UK), the United States (US) and France (FR)
grouped by period for the female populations.

global statistics of out-sample performance in terms of RMSFE.

Figures 16 and 17 present the out-of-sample performance in terms of RMSFE for females. Fig-
ures 18 and 19 present the out-of-sample performance in terms of RMSFE for males.
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Table 6: The RMSFE of the VAR and the benchmark models estimated on the period 1970 � 2000.

Country Model RMSFE Female RMSFE Male RMSFE Overall

FR VAR 0.088 0.092 0.068

FR HU 0.081 0.085 0.058

FR LC 0.085 0.086 0.055

FR M7 0.266 0.137 0.139

FR RESPECT 0.077 0.085 0.074

FR STAR 0.101 0.110 0.172

UK VAR 0.074 0.091 0.067

UK HU 0.116 0.134 0.126

UK LC 0.133 0.146 0.129

UK M7 0.148 0.111 0.097

UK RESPECT 0.321 0.232 0.260

UK STAR 0.073 0.083 0.069

US VAR 0.105 0.116 0.092

US HU 0.105 0.118 0.087

US LC 0.133 0.123 0.090

US M7 0.192 0.133 0.133

US RESPECT 0.148 0.081 0.077

US STAR 0.120 0.070 0.079

Note: This table reports the out-of-sample performance via the RMSFE values
for the HU, the LC, the M7, the RESPECT, the STAR and the VAR-ENET p4q
models estimated on the period 1970�2000. We compare this indicator for males,
females and the overall populations for FR, UK and US.

Table 7: Summary statistics for the RMSFE of the VAR-ENET
and the benchmark models estimated on the period 1970 � 2000.

Model Mean Standard Deviation Minimum Maximum

VAR 0.088 0.017 0.067 0.116

HU 0.101 0.025 0.058 0.134

LC 0.109 0.031 0.055 0.146

M7 0.151 0.051 0.097 0.266

RESPECT 0.151 0.096 0.074 0.321

STAR 0.097 0.033 0.069 0.172

Note: This table reports statistics of the out-of-sample performance via

the RMSFE values for the VAR-ENET and the considered benchmark
models models estimated on the period 1970 � 2000 over the males, fe-
males and the overall populations for FR, UK and US.
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Table 8: The RMSFE of the VAR and the benchmark models estimated on the period 1980 � 2000.

Country Model RMSFE Female RMSFE Male RMSFE Overall

FR VAR 0.092 0.092 0.077

FR HU 0.071 0.093 0.068

FR LC 0.068 0.088 0.065

FR M7 0.219 0.113 0.125

FR RESPECT 0.091 0.086 0.072

FR STAR 0.295 0.081 0.764

UK VAR 0.088 0.095 0.079

UK HU 0.106 0.124 0.110

UK LC 0.114 0.125 0.113

UK M7 0.111 0.099 0.097

UK RESPECT 0.286 0.269 0.197

UK STAR 0.236 0.065 0.288

US VAR 0.122 0.122 0.109

US HU 0.106 0.121 0.096

US LC 0.107 0.121 0.097

US M7 0.161 0.129 0.141

US RESPECT 0.101 0.085 0.080

US STAR 0.942 0.088 0.322

Note: This table reports the out-of-sample performance via the RMSFE values
for the HU, the LC, the M7, the RESPECT, the STAR and the VAR-ENET p4q
models estimated on the period 1980�2000. We compare this indicator for males,
females and the overall populations for FR, UK and US.

Table 9: Summary statistics for the RMSFE of the VAR-ENET
and the benchmark models estimated on the period 1980 � 2000.

Model Mean Standard Deviation Minimum Maximum

VAR 0.097 0.017 0.077 0.122

HU 0.099 0.020 0.068 0.124

LC 0.100 0.022 0.065 0.125

M7 0.133 0.038 0.097 0.219

RESPECT 0.141 0.086 0.072 0.286

STAR 0.342 0.309 0.065 0.942

Note: This table reports statistics of the out-of-sample performance via

the RMSFE values for the VAR-ENET and the considered benchmark
models models estimated on the period 1980 � 2000 over the males, fe-
males and the overall populations for FR, UK and US.
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Figure 14: The RMSE for England and Wales (UK), the United States (US) and France (FR)
grouped by age for the male populations.
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Figure 15: The RMSE for England and Wales (UK), the United States (US) and France (FR)
grouped by period for the male populations.
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Figure 16: The RMSFE for England and Wales (UK), the United States (US) and France (FR)
grouped by period for the female populations.
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Figure 17: The RMSFE for England and Wales (UK), the United States (US) and France (FR)
grouped by age for the female populations.
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Figure 18: The RMSFE for England and Wales (UK), the United States (US) and France (FR)
grouped by period for the male populations.
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Figure 19: The RMSFE for England and Wales (UK), the United States (US) and France (FR)
grouped by age for the male populations.
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