R. Laxminarayan, Antibiotic resistance-the need for global solutions, Lancet Infect Dis, vol.13, pp.1057-1098, 2013.

A. Cassini, Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis, Lancet Infect Dis, vol.19, pp.56-66, 2019.

T. A. Johnson, Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture, MBio, vol.7, pp.2214-02215, 2016.

H. Venter, M. L. Henningsen, and S. L. Begg, Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines, Essays Biochem, vol.61, pp.1-10, 2017.

C. Lübbert, Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum betalactamase and carbapenemase-producing pathogens, Infection, vol.45, pp.479-491, 2017.

A. Chatterjee, Quantifying drivers of antibiotic resistance in humans: a systematic review, Lancet Infect Dis, issue.18, pp.30296-30298, 2018.

S. David, Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread, Nat Microbiol, 2019.

N. Safdar and D. G. Maki, The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida, Ann. Intern. Med, vol.136, pp.834-844, 2002.

E. S. Snitkin, Tracking a hospital outbreak of carbapenemresistant Klebsiella pneumoniae with whole-genome sequencing, Sci Transl Med, vol.4, pp.148-116, 2012.

M. L. Manning, Antimicrobial stewardship and infection prevention-leveraging the synergy: A position paper update, Am J Infect Control, vol.46, pp.364-368, 2018.

D. A. Goff, A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail, Lancet Infect Dis, vol.17, pp.56-63, 2017.

S. W. Lemmen and K. Lewalter, Antibiotic stewardship and horizontal infection control are more effective than screening, isolation and eradication, Infection, vol.46, pp.581-590, 2018.

D. B. Chastain, B. P. White, D. A. Cretella, and C. M. Bland, Is It Time to Rethink the Notion of Carbapenem-Sparing Therapy Against Extended-Spectrum ?-Lactamase-Producing Enterobacteriaceae Bloodstream Infections? A Critical Review, Ann Pharmacother, vol.52, pp.484-492, 2018.

J. V. Robotham, Cost-effectiveness of national mandatory screening of all admissions to English National Health Service hospitals for meticillin-resistant Staphylococcus aureus: a mathematical modelling study, Lancet Infect Dis, vol.16, pp.348-356, 2016.

L. Karda?-s?oma, Universal or targeted approach to prevent the transmission of extended-spectrum beta-lactamase-producing Enterobacteriaceae in intensive care units: a cost-effectiveness analysis, BMJ Open, vol.7, p.17402, 2017.

E. Weiss, Elaboration of a consensual definition of deescalation allowing a ranking of ?-lactams, Clin. Microbiol. Infect, vol.21, pp.1-10, 2015.

J. Acar, Broad-and narrow-spectrum antibiotics: an unhelpful categorization, Clin. Microbiol. Infect, vol.3, pp.395-396, 1997.

B. Huttner, C. Pulcini, and J. Schouten, De-constructing de-escalation, Clin. Microbiol. Infect, vol.22, pp.958-959, 2016.

V. Schechner, E. Temkin, S. Harbarth, Y. Carmeli, and M. J. Schwaber, Epidemiological interpretation of studies examining the effect of antibiotic usage on resistance, Clin. Microbiol. Rev, vol.26, pp.289-307, 2013.

D. C. Burton, J. R. Edwards, T. C. Horan, J. A. Jernigan, and S. Fridkin,

K. , Methicillin-resistant Staphylococcus aureus central line-associated bloodstream infections in US intensive care units, JAMA, vol.301, pp.727-736, 1997.

R. Levins, Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control, Bull Entomol Soc Am, vol.15, pp.237-240, 1969.

I. Hanski, A Practical Model of Metapopulation Dynamics, Journal of Animal Ecology, vol.63, pp.151-162, 1994.

I. Hanski, Metapopulation dynamics, Nature, vol.396, p.41, 1998.

J. L. Macpherson and P. W. Bright, Metapopulation dynamics and a landscape approach to conservation of lowland water voles (Arvicola amphibius), Landscape Ecology, vol.26, pp.1395-1404, 2011.

G. W. Heard, Refugia and connectivity sustain amphibian metapopulations afflicted by disease, Ecology Letters, vol.18, pp.853-863, 2015.

S. Dolrenry, J. Stenglein, L. Hazzah, R. S. Lutz, and L. Frank, A Metapopulation Approach to African Lion (Panthera leo) Conservation, PLoS One, vol.9, 2014.

F. Spagnolo, P. Cristofari, N. P. Tatonetti, L. R. Ginzburg, and D. E. Dykhuizen, Pathogen population structure can explain hospital outbreaks, ISME J, vol.12, pp.2835-2843, 2018.

T. N. Vilches, The role of intra and inter-hospital patient transfer in the dissemination of heathcare-associated multidrug-resistant pathogens, 29. Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain, vol.42, pp.3-16, 1991.

B. G. Bell, F. Schellevis, E. Stobberingh, H. Goossens, and M. Pringle, A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance, BMC Infectious Diseases, vol.14, p.13, 2014.

D. M. Patrick and J. Hutchinson, Antibiotic use and population ecology: How you can reduce your "resistance footprint, CMAJ, vol.180, pp.416-421, 2009.

M. Lipsitch and M. H. Samore, Antimicrobial use and antimicrobial resistance: A population perspective, Emerg Infect Dis, vol.8, pp.347-354, 2002.

T. Donker, J. Wallinga, and H. Grundmann, Patient Referral Patterns and the Spread of Hospital-Acquired Infections through National Health Care Networks, PLOS Computational Biology, vol.6, p.1000715, 2010.

T. Donker, Measuring distance through dense weighted networks: The case of hospital-associated pathogens, PLOS Computational Biology, vol.13, p.1005622, 2017.

T. N. Vilches, The role of intra and inter-hospital patient transfer in the dissemination of heathcare-associated multidrug-resistant pathogens, Epidemics, vol.26, pp.104-115, 2019.

A. Seigal, P. Mira, B. Sturmfels, and M. Barlow, Does Antibiotic Resistance Evolve in Hospitals?, Bull. Math. Biol, vol.79, pp.191-208, 2017.

A. Cusini, Intra-hospital differences in antibiotic use correlate with antimicrobial resistance rate in Escherichia coli and Klebsiella pneumoniae: a retrospective observational study, Antimicrob Resist Infect Control, vol.7, p.89, 2018.

I. Willemsen, D. Bogaers-hofman, M. Winters, and J. Kluytmans, Correlation between antibiotic use and resistance in a hospital: temporary and ward-specific observations, Infection, vol.37, pp.432-437, 2009.

T. Huang, Temocillin and piperacillin/tazobactam resistance by disc diffusion as antimicrobial surrogate markers for the detection of carbapenemase-producing Enterobacteriaceae in geographical areas with a high prevalence of OXA-48 producers, J. Antimicrob. Chemother, vol.69, pp.445-450, 2014.

P. N. Harris, P. A. Tambyah, and D. L. Paterson, ?-lactam and ?lactamase inhibitor combinations in the treatment of extendedspectrum ?-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options?, The Lancet Infectious Diseases, vol.15, pp.475-485, 2015.

L. R. Peterson, Antibiotic policy and prescribing strategies for therapy of extended-spectrum ?-lactamase-producing Enterobacteriaceae: the role of piperacillin-tazobactam, Clinical Microbiology and Infection, vol.14, pp.181-184, 2008.

H. Ofer-friedman, Carbapenems Versus Piperacillin-Tazobactam for Bloodstream Infections of Nonurinary Source Caused by Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae, Infect Control Hosp Epidemiol, vol.36, pp.981-985, 2015.

P. D. Tamma, Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum ?-lactamase bacteremia, Clin. Infect. Dis, vol.60, pp.1319-1325, 2015.

P. N. Harris, Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial, JAMA, vol.320, pp.984-994, 2018.

M. Mclaughlin, Correlations of antibiotic use and carbapenem resistance in enterobacteriaceae, Antimicrob. Agents Chemother, vol.57, pp.5131-5133, 2013.

G. Raman, E. E. Avendano, J. Chan, S. Merchant, and L. Puzniak, Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and metaanalysis, Antimicrob Resist Infect Control, vol.7, p.79, 2018.

P. Marchenay, Acquisition of carbapenem-resistant Gramnegative bacilli in intensive care unit: predictors and molecular epidemiology, Med Mal Infect, vol.45, pp.34-40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01114625

C. A. Arias and B. E. Murray, The rise of the Enterococcus: beyond vancomycin resistance, Nat. Rev. Microbiol, vol.10, pp.266-278, 2012.

L. Hsu, Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia, Clin. Microbiol. Rev, vol.30, pp.1-22, 2017.

T. Donker, Measuring distance through dense weighted networks: The case of hospital-associated pathogens, PLOS Computational Biology, vol.13, p.1005622, 2017.

E. H. Simpson, Measurement of Diversity, Nature, vol.163, p.688, 1949.

P. R. Hunter and M. A. Gaston, Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity, J. Clin. Microbiol, vol.26, pp.2465-2466, 1988.

T. C. Hsieh, K. H. Ma, and A. Chao, iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers), Methods in Ecology and Evolution, vol.7, pp.1451-1456, 2016.

M. P. Weinstein, Comparative evaluation of penicillin, ampicillin, and imipenem MICs and susceptibility breakpoints for vancomycinsusceptible and vancomycin-resistant Enterococcus faecalis and Enterococcus faecium, J. Clin. Microbiol, vol.39, pp.2729-2731, 2001.