Skip to Main content Skip to Navigation
Journal articles

Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO2 rutile nanoceramics

Abstract : Dielectric spectroscopy was performed on a Nb and In co-doped rutile TiO2 nano-crystalline ceramic (n-NITO) synthesized by a low-temperature spark plasma sintering (SPS) technique. The dielectric properties of the n-NITO were not largely affected by the metal electrode contacts. Huge dielectric relaxation was observed at a very low temperature below 35 K. Both the activation energy and relaxation time suggested that the electronic hopping motion is the underlying mechanism responsible for the colossal dielectric permittivity (CP) and its relaxation, instead of the internal barrier layer effect or a dipolar relaxation. With Havriliak–Negami (H–N) fitting, a relaxation time with a large distribution of dielectric relaxations was revealed. The broad distributed relaxation phenomena indicated that Nb and In were involved, controlling the dielectric relaxation by modifying the polarization mechanism and localized states. The associated distribution function is calculated and presented. The frequency-dependent a.c. conductance is successfully explained by a hopping conduction model of the localized electrons with the distribution function. It is demonstrated that the dielectric relaxation is strongly correlated with the hopping electrons in the localized states. The CP in SPS n-NITO is then ascribed to a hopping polarization.
Document type :
Journal articles
Complete list of metadatas

Cited literature [47 references]  Display  Hide  Download
Contributor : Open Archive Toulouse Archive Ouverte (oatao) <>
Submitted on : Tuesday, December 10, 2019 - 8:51:50 AM
Last modification on : Thursday, December 17, 2020 - 10:36:02 AM
Long-term archiving on: : Wednesday, March 11, 2020 - 2:39:15 PM


Files produced by the author(s)




Kosuke Tsuji, Hyuksu Han, Sophie Guillemet Fritsch, Clive A. Randall. Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO2 rutile nanoceramics. Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2017, 19 (12), pp.8568-8574. ⟨10.1039/C7CP00042A⟩. ⟨hal-02401486⟩



Record views


Files downloads