X. Y. Liu, P. K. Chu, and C. X. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R-Rep, vol.47, pp.49-121, 2004.

Y. Sul, C. Johansson, E. Byon, and T. Albrektsson, The bone response of oxidized bioactive and non-bioactive titanium implants, Biomaterials, vol.26, pp.6720-6730, 2005.

M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants -a review, Prog. Mater. Sci, vol.54, pp.397-425, 2009.

L. T. De-jonge, S. C. Leeuwenburgh, J. G. Wolke, and J. A. Jansen, Organic-inorganic surface modifications for titanium implant surfaces, Pharm. Res, vol.25, pp.2357-2369, 2008.

H. B. Wen, J. R. De-wijn, F. Z. Cui, and K. De-groot, Preparation of bioactive Ti6Al4V surfaces by a simple method, Biomaterials, vol.19, pp.215-221, 1998.

H. Kim, F. Miyaji, T. Kokubo, and T. Nakamura, Preparation of bioactive Ti and its alloys via simple chemical surface treatment, J. Biomed. Mater. Res, vol.32, pp.409-417, 1996.

L. Joná?ová, F. A. Müller, A. Helebrant, J. Strnad, and P. Greil, Biomimetic apatite formation on chemically treated titanium, Biomaterials, vol.25, pp.1187-1194, 2004.

C. Ohtsuki, H. Iida, S. Hayakawa, and A. Osaka, Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides, J. Biomed. Mater. Res, vol.35, pp.39-47, 1997.

F. M. He, G. L. Yang, Y. N. Li, X. X. Wang, and S. F. Zhao, Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit, Int. J. Oral Maxillofac. Surg, vol.38, pp.677-681, 2009.

K. De-groot, J. G. Wolke, and J. A. Jansen, Calcium phosphate coatings for medical implants, J. Eng. Med, vol.212, pp.137-147, 1998.

A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta et al., Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method, vol.26, pp.4085-4089, 2005.

A. M. Smith, J. Z. Paxton, Y. Hung, M. J. Hadley, J. Bowen et al., Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces, Mater. Sci. Eng. C, vol.48, pp.5-10, 2015.

H. Wang, N. Eliaz, Z. Xiang, H. Hsu, M. Spector et al., Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy, Biomaterials, vol.27, pp.4192-4203, 2006.

L. Sun, C. C. Berndt, and K. , Gross, a & kucuk, A. material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review, J. Biomed. Mater. Res, vol.58, pp.570-592, 2001.

O. Albayrak, O. El-atwani, and S. Altintas, Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition, Surf. Coat. Technol, vol.202, pp.2482-2487, 2008.

M. Kim, J. Ryu, and Y. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem. Commun, vol.9, 2007.

H. Kim, Y. Koh, L. Li, S. Lee, and H. Kim, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method, Biomaterials, vol.25, pp.2533-2538, 2004.

P. B. Habibovic, Biomimetic hydroxyapatite coating on metal implants, J. Am. Ceram. Soc, vol.85, pp.517-522, 2002.

E. Pfender, Fundamental studies associated with the plasma spray process, Surf. Coat. Technol, vol.34, pp.1-14, 1988.

L. Yan, Y. Leng, and L. Weng, Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings, Biomaterials, vol.24, pp.2585-2592, 2003.

F. M. Fazan and P. M. Marquis, Dissolution behavior of plasma-sprayed hydroxyapatite coatings, J. Mater. Sci. Mater. Med, vol.11, pp.787-792, 2000.

X. Wang, S. Hayakawa, K. Tsuru, and A. Osaka, A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces, J. Biomed. Mater. Res, vol.54, pp.172-178, 2001.

M. Navarro, A. Michiardi, O. Castaño, and J. A. Planell, Biomaterials in orthopaedics, vol.5, pp.1137-1158, 2008.

L. Pea, The role of hydrated silica, titania, and alumina in inducing apatite on implants, J. Biomed. Mater. Res, vol.28, pp.7-15, 1994.

K. I. Sano, A hexapeptide motif that electrostatically binds to the surface of titanium, J. Am. Chem. Soc, vol.125, pp.14234-14235, 2003.

A. D. Roddick-lanzilotta and A. J. Mcquillan, An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO 2: implications for the biocompatibility of titanium, J. Colloid Interface Sci, vol.227, pp.48-54, 2000.

A. D. Roddick-lanzilotta, P. A. Connor, and A. J. Mcquillan, An in situ infrared spectroscopic study of the adsorption of lysine to TiO2 from an aqueous solution, Langmuir, vol.14, pp.6479-6484, 1998.

A. D. Roddick-lanzilotta and A. J. Mcquillan, An in situ infrared spectroscopic investigation of lysine peptide and polylysine adsorption to TiO2 from aqueous solutions, J. Colloid Interface Sci, vol.217, pp.194-202, 1999.

R. Fujisawa, Y. Wada, Y. Nodasaka, and Y. Kuboki, Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals, Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol, vol.1292, pp.53-60, 1996.

S. Koutsopoulos and E. Dalas, The effect of acidic amino acids on hydroxyapatite crystallization, J. Cryst. Growth, vol.217, pp.410-415, 2000.

D. Wang, S. Miller, M. Sima, P. Kope?ková, and K. J. Synthesis, Evaluation of water-soluble polymeric bone-targeted drug delivery systems, Bioconjugate Chem, vol.14, pp.853-859, 2003.

M. B. Murphy, J. D. Hartgerink, A. Goepferich, and A. G. Mikos, Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties, Biomacromolecules, vol.8, pp.2237-2243, 2007.

G. K. Hunter, C. L. Kyle, and H. A. Goldberg, Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation, Biochem. J, vol.300, pp.723-728, 1994.

G. K. Hunter and H. A. Goldberg, Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein, Biochem. J, vol.302, pp.175-179, 1994.

M. Nagassa, A. Daw, W. G. Rowe, A. Carley, D. W. Thomas et al., Optimisation of the hydrogen peroxide pre-treatment of titanium: surface characterisation and protein adsorption, Clin. Oral Implants Res, vol.19, pp.1317-1326, 2008.

D. E. Macdonald, N. Deo, B. Markovic, M. Stranick, and P. Somasundaran, Adsorption and dissolution behaviour of human plasma fibronectin on thermally and chemically modified titanium dioxide particles, Biomaterials, vol.23, pp.1269-1279, 2002.

D. E. Macdonald, B. E. Rapuano, N. Deo, M. Stranick, P. Somasundaran et al., Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment, Biomaterials, vol.25, pp.3135-3146, 2004.

B. Feng, J. Weng, B. C. Yang, S. X. Qu, and X. D. Zhang, Characterization of surface oxide films on titanium and adhesion of osteoblast, Biomaterials, vol.24, pp.4663-4670, 2003.

L. Ponsonnet, Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour, Mater. Sci. Eng. C, vol.23, pp.551-560, 2003.

F. Taraballi, A. Natalello, M. Campione, O. Villa, S. M. Doglia et al., Glycine-spacers influence functional motifs exposure and self-assembling propensity of functionalized substrates tailored for neural stem cell cultures, Front. Neuroeng, vol.3, p.1, 2010.

H. Zeng, K. K. Chittur, and W. R. Lacefield, Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces, Biomaterials, vol.20, pp.377-384, 1999.

K. L. Kilpadi, P. L. Chang, and S. L. Bellis, Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel, J. Biomed. Mater. Res, vol.57, pp.258-267, 2001.

J. Shen, T. Wu, Q. Wang, and H. Pan, Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces, Biomaterials, vol.29, pp.513-532, 2008.