, Directorate-General for Mobility and Transport (DGMT), European Commission (EC), pp.1-85, 2018.

, Summary of Motor Vehicle Crashes, pp.1-8, 2018.

J. Petit, F. Schaub, M. Feiri, and F. Kargl, Pseudonym schemes in vehicular networks: A survey, IEEE Communications Surveys Tutorials, vol.17, issue.1, pp.228-255, 2015.

, Framework For Misbehavior Detection (F 2 MD). (2019) F 2 MD website

R. W. Van-der-heijden, S. Dietzel, T. Leinmüller, and F. Kargl, Survey on misbehavior detection in cooperative intelligent transportation systems, IEEE Communications Surveys Tutorials, vol.21, issue.1, pp.779-811, 2019.

R. K. Schmidt, T. Leinmüller, E. Schoch, A. Held, and G. Schaefer, Vehicle behavior analysis to enhance security in vanets, V2VCOM 2008, pp.1-8, 2008.

N. Bißmeyer, C. Stresing, and K. M. Bayarou, Intrusion detection in vanets through verification of vehicle movement data, 2010 IEEE Vehicular Networking Conference, pp.166-173, 2010.

T. Leinmüller, R. K. Schmidt, and A. Held, Cooperative position verification -defending against roadside attackers 2.0, Proceedings of 17th ITS World Congress, 2010.

C. A. Kerrache, N. Lagraa, C. T. Calafate, J. Cano, and P. Manzoni, T-vnets: A novel trust architecture for vehicular networks using the standardized messaging services of etsi its, Computer Communications, vol.93, pp.68-83, 2016.

R. W. Van-der-heijden, T. Lukaseder, and F. Kargl, Veremi: A dataset for comparable evaluation of misbehavior detection in vanets, pp.318-337, 2018.

S. So, P. Sharma, and J. Petit, Integrating plausibility checks and machine learning for misbehavior detection in vanet, 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp.564-571, 2018.

P. K. Singh, S. Gupta, R. Vashistha, S. K. Nandi, and S. Nandi, Machine learning based approach to detect position falsification attack in vanets, pp.166-178, 2019.

P. K. Singh, M. K. Dash, P. Mittal, S. K. Nandi, and S. Nandi, Misbehavior detection in c-its using deep learning approach, Intelligent Systems Design and Applications, pp.641-652, 2020.

J. Kamel, I. Ben-jemaa, A. Kaiser, and P. Urien, Misbehavior reporting protocol for c-its, 2018 IEEE Vehicular Networking Conference (VNC), pp.1-4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917456

R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, vol.82, issue.1, p.35, 1960.

A. Jaeger, N. Bißmeyer, H. Stübing, and S. A. Huss, A novel framework for efficient mobility data verification in vehicular ad-hoc networks, International Journal of Intelligent Transportation Systems Research, vol.10, issue.1, pp.11-21, 2012.

J. Kamel, A. Kaiser, I. Ben-jemaa, P. Cincilla, and P. Urien, CaTch: a confidence range tolerant misbehavior detection approach, 2019 IEEE Wireless Communications and Networking Conference (WCNC) (IEEE WCNC 2019), 2019.
URL : https://hal.archives-ouvertes.fr/hal-02126960

J. Kamel, Github repository: Framework for misbehavior detection (f 2 md), 2019.

J. Grover, M. S. Gaur, and V. Laxmi, Position forging attacks in vehicular ad hoc networks: Implementation, impact and detection, 2011 7th International Wireless Communications and Mobile Computing Conference, pp.701-706, 2011.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ser. COLT '92, pp.144-152, 1992.

T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD '16, pp.785-794, 2016.

C. Van-der and . Malsburg, Frank rosenblatt: Principles of neurodynamics: Perceptrons and the theory of brain mechanisms, pp.245-248, 1986.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, vol.9, issue.8, pp.1735-1780, 1997.

C. Sommer, R. German, and F. Dressler, Bidirectionally coupled network and road traffic simulation for improved ivc analysis, IEEE Transactions on Mobile Computing, vol.10, issue.1, pp.3-15, 2011.

A. Varga, The omnet++ discrete event simulation system, 2001.

D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, Recent development and applications of SUMO -Simulation of Urban MObility, International Journal On Advances in Systems and Measurements, vol.5, issue.3&4, pp.128-138, 2012.

L. Codeca, R. Frank, and T. Engel, Luxembourg sumo traffic (lust) scenario: 24 hours of mobility for vehicular networking research, IEEE Vehicular Networking Conference (VNC), pp.1-8, 2015.

L. Van-der-maaten and G. Hinton, Visualizing data using t-sne, Journal of Machine Learning Research, 2008.