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Abstract
Approximate Bayesian computation (ABC) has become an essential part of the

Bayesian toolbox for addressing problems in which the likelihood is prohibitively ex-
pensive or entirely unknown, making it intractable. ABC defines a quasi-posterior by
comparing observed data with simulated data, traditionally based on some summary
statistics, the elicitation of which is regarded as a key difficulty. In recent years, a
number of data discrepancy measures bypassing the construction of summary statistics
have been proposed, including the Kullback–Leibler divergence, the Wasserstein dis-
tance and maximum mean discrepancies. Here we propose a novel importance-sampling
(IS) ABC algorithm relying on the so-called two-sample energy statistic. We establish
a new asymptotic result for the case where both the observed sample size and the sim-
ulated data sample size increase to infinity, which highlights to what extent the data
discrepancy measure impacts the asymptotic pseudo-posterior. The result holds in the
broad setting of IS-ABC methodologies, thus generalizing previous results that have
been established only for rejection ABC algorithms. Furthermore, we propose a consis-
tent V-statistic estimator of the energy statistic, under which we show that the large
sample result holds. Our proposed energy statistic based ABC algorithm is demon-
strated on a variety of models, including a Gaussian mixture, a moving-average model
of order two, a bivariate beta and a multivariate g-and-k distribution. We find that our
proposed method compares well with alternative discrepancy measures.

Keywords: approximate Bayesian computation, energy statistic, Kullback–Leibler di-
vergence, importance sampling, maximum mean discrepancy, Wasserstein distance.
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1 Introduction

In recent years, Bayesian inference has become a popular paradigm for machine learning
and statistical analysis. Good introductions and references to the primary methods and
philosophies of Bayesian inference can be found in texts such as Press (2003), Ghosh et al.
(2006), Koch (2007), Koop et al. (2007), Robert (2007), Barber (2012), and Murphy (2012).

In this article, we are concerned with the problem of parametric, or classical Bayesian
inference. For details regarding nonparametric Bayesian inference, the reader is referred to
the expositions of Ghosh & Ramamoorthi (2003), Hjort et al. (2010), and Ghosh & van der
Vaart (2017).

When conducting parametric Bayesian inference, we observe some realizations x of the
data X ∈ X that are generated from some data generating process (DGP), which can be
characterized by a parametric likelihood, given by a probability density function (PDF)
f (x|θ), determined entirely via the parameter vector θ. Using the information that the
parameter vector θ is a realization of a random variable Θ ∈ T, which arises from a DGP
that can be characterized by some known prior PDF π (θ), we wish to characterize the
posterior distribution

π (θ|x) =
f (x|θ) π (θ)

c (x)
, (1)

where
c (x) =

∫
T
f (x|θ)π (θ) dθ .

In very simple cases, such as cases when the prior PDF is a conjugate of the likelihood
(cf. Robert, 2007, Sec. 3.3), the posterior distribution (1) can be expressed explicitly. In the
case of more complex but still tractable pairs of likelihood and prior PDFs, one can sample
from (1) via a variety of Monte Carlo methods, such as those reported in Press (2003, Ch.
6).

In cases where the likelihood function is known but not tractable, or when the likelihood
function has entirely unknown form, one cannot exactly sample from (1) in an inexpensive
manner, or at all. In such situations, a sample from an approximation of (1) may suffice in
order to conduct the user’s desired inference. Such a sample can be drawn via the method
of approximate Bayesian computation (ABC).

It is generally agreed that the ABC paradigm originated from the works of Rubin (1984),
Tavaré et al. (1997), and Pritchard et al. (1999); see Tavaré (2019) for details. Stemming
from the initial listed works, there are now numerous variants of ABC methods. Some good
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reviews of the current ABC literature can be found in the expositions of Marin et al. (2012),
Voss (2014, Sec. 5.1), Lintusaari et al. (2017), and Karabatsos & Leisen (2018). The volume
of Sisson et al. (2019) provides a comprehensive treatment regarding ABC methodologies.

The core philosophy of ABC is to define a quasi-posterior by comparing data with plausi-
bly simulated replicates. The comparison is traditionally based on some summary statistics,
the choice of which being regarded as a key challenge of the approach.

In recent years, data discrepancy measures bypassing the construction of summary statis-
tics have been proposed by viewing data sets as empirical measures. Examples of such an
approach is via the use of the Kullback–Leibler divergence, the Wasserstein distance, or a
maximum mean discrepancy (MMD) variant.

In this article, we develop upon the discrepancy measurement approach of Jiang et al.
(2018), via the importance sampling ABC (IS-ABC) approach which makes use of a weight
function (see e.g., Karabatsos & Leisen, 2018). In particular, we report on a class of ABC
algorithms that utilize the two-sample energy statistic (ES) of Szekely & Rizzo (2004) (see
also Baringhaus & Franz, 2004, Szekely & Rizzo, 2013, and Szekely & Rizzo, 2017). Our
approach is related to the maximum MMD ABC algorithms that were implemented in Park
et al. (2016), Jiang et al. (2018), and Bernton et al. (2019). The MMD is a discrepancy
measurement that is closely related to the ES (cf. Sejdinovic et al., 2013).

We establish new asymptotic results that have not been proved in these previous pa-
pers. In the IS-ABC setting and in the regime where both the observation sample size and
the simulated data sample size increase to infinity, our theoretical result highlights how the
data discrepancy measure impacts the asymptotic pseudo-posterior. More specifically, un-
der the assumption that the data discrepancy measure converges to some asymptotic value
D∞ (θ0,θ), we show that the pseudo-posterior distribution converges almost surely to a dis-
tribution proportional to π(θ)w(D∞ (θ0,θ)): the prior distribution times the IS weight w
function evaluated at D∞ (θ0,θ), where θ0 stands for the ‘true’ parameter value associated
to the DGP that generates observations X. Although devised in settings where likelihoods
are assumed intractible, ABC can also be cast in the setting of robustness with respect to
misspecification, where the ABC posterior distribution can be viewed as a special case of a
coarsened posterior distribution (cf. Miller & Dunson, 2018).

The remainder of the article proceeds as follows. In Section 2, we introduce the general
IS-ABC framework. In Section 3, we introduce the two-sample ES and demonstrate how it
can be incorporated into the IS-ABC framework. Theoretical results regarding the IS-ABC
framework and the two-sample ES are presented in Section 4. Illustrations of the IS-ABC
framework are presented in Section 5. Conclusions are drawn in Section 6.

3



2 Importance sampling ABC

Assume that we observe n independent and identically distributed (IID) replicates ofX from
some DGP, which we put into Xn = {Xi}ni=1. We suppose that the DGP that generates X
is dependent on some parameter vector θ, a realization of Θ from space T, which is random
and has prior PDF π (θ).

Denote f (x|θ) to be the PDF of X, given θ, and write

f (xn|θ) =
n∏
i=1

f (xi|θ) ,

where xn is a realization of Xn, and each xi is a realization of Xi (i ∈ [n] = {1, . . . , n}).
If f (xn|θ) were known, then we could use (1) to write the posterior PDF

π (θ|xn) =
f (xn|θ) π (θ)

c (xn)
, (2)

where c (xn) =
∫
T f (xn|θ) π (θ) dθ is a constant that makes

∫
T π (θ|xn) dθ = 1. When eval-

uating f (x|θ) is prohibitive and ABC is required, then operating with f (xn|θ) is similarly
difficult. We suppose that given any θ0 ∈ T, we at least have the capability of sampling
from the DGP with PDF f (x|θ0). That is, we have a simulation method that allows us to
feasibly sample the IID vector Ym = {Yi}mi=1, for any m ∈ N, for a DGP with PDF

f (yn|θ) =
m∏
i=1

f (yi|θ) .

Using the simulation mechanism that generates samples Ym and the prior distribution
that generates parameters Θ, we can simulate a set of N ∈ N simulations ZN = {Zm,k}Nk=1,
where Z>m,k =

(
Y>m,k,Θ

>
k

)
and (·)> is the transposition operator. Here, for each k ∈ [N ],

Zm,k is an observation from the DGP with joint PDF f (ym|θ) π (θ), hence each Zm,k is
composed of a parameter value and a datum conditional on the parameter value. We now
consider how Xn and ZN can be combined in order to construct an approximation of (2).

Following the approach of Jiang et al. (2018), we defineD (xn,ym) to be some non-negative
real-valued function that outputs a small value if xn and ym are similar, and outputs a large
value if xn and ym are different, in some sense. We call D (xn,ym) the data discrepancy
measurement between xn and ym, and we say that D (·, ·) is the data discrepancy function.
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Next, we let w (d, ε) be a non-negative, decreasing (in d), and bounded (importance
sampling) weight function (cf. Section 3 of Karabatsos & Leisen, 2018), which takes as inputs
a data discrepancy measurement d = D (xn,ym) ≥ 0 and a calibration parameter ε > 0.
Using the weight and discrepancy functions, we can propose the following approximation for
(2).

In the language of Jiang et al. (2018), we call

πm,ε (θ|xn) =
π (θ)Lm,ε (xn|θ)

cm,ε (xn)
(3)

the quasi-posterior PDF, where

Lm,ε (xn|θ) =

∫
Xm

w (D (xn,ym) , ε) f (ym|θ) dym

is the approximate likelihood function, and

cm,ε (xn) =

∫
T
π (θ)Lm,ε (xn|θ) dθ

is a normalization constant. We can use (3) to approximate (2) in the following way. For
any functional of the parameter vector Θ of interest, g (Θ) say, we may approximate the
posterior Bayes estimator of g (Θ) via the expression

E [g (Θ) |xn] ≈
∫
T g (θ) π (θ)Lm,ε (xn|θ) dθ

cm,ε (xn)
, (4)

where the right-hand side of (4) can be unbiasedly estimated using ZN via

M [g (Θ) |xn] =

∑N
k=1 g (Θk)w (D (Xn,Ym,k) , ε)∑N

k=1w (D (Xn,Ym,k) , ε)
. (5)

We call the process of constructing (5), to approximate (4), the IS-ABC procedure. The
general form of the IS-ABC procedure is provided in Algorithm 1.

Algorithm 1. IS-ABC procedure for approximating E [g (Θ) |xn].
Input: a data discrepancy function D, a weight function w, and a calibration parameter

ε > 0.
For k ∈ [N ];
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sample Θk from the DGP with PDF π (θ);
generate Ym,k from the DGP with PDF f (ym|Θk);
put Zk = (Ym,k,Θk) into ZN .
Output: ZN and construct the estimator M [g (Θ) |xn].

3 The energy statistic (ES)

Let δ define a metric and let X ∈ X ⊆ Rd and Y ∈ X be two random variables that are in
a metric space endowed with δ, where d ∈ N. Furthermore, let X ′ and Y ′ be two random
variables that have the same distributions as X and Y , respectively. Here, X, X ′, Y , and
Y ′ are all independent of one another.

Upon writing

Eδ (X,Y ) = 2E [δ (X,Y )]− E [δ (X,X ′)]− E [δ (Y ,Y ′)] ,

we can define the original ES of Baringhaus & Franz (2004) and Szekely & Rizzo (2004),
as a function of X and Y , via the expression Eδ2 (X,Y ), where δp (x,y) = ‖x− y‖p is the
metric corresponding to the `p-norm (p ∈ [1,∞]). Thus, the original ES statistic, which we
shall also denote as E (X,Y ), is defined using the Euclidean norm δ2.

The original ES has numerous useful mathematic properties. For instance, under the
assumption that E ‖X‖2 + E ‖Y ‖2 <∞, it was shown that

E (X,Y ) =
Γ
(
d+1
2

)
π(d+1)/2

∫
Rd

|ϕX (t)− ϕY (t)|2

‖t‖d+1
2

dt, (6)

in Proposition 1 of Szekely & Rizzo (2013), where Γ (·) is the gamma function and ϕX
(respectively, ϕY ) is the characteristic function of X (respectively, Y ). Thus, we have the
fact that E (X,Y ) ≥ 0 for any X,Y ∈ X, and E (X,Y ) = 0 if and only if X and Y are
identically distributed.

The result above is generalized in Proposition 3 of Szekely & Rizzo (2013), where we have
the following statement. If δ (x,y) = δ (x− y) is a continuous function and X,Y ∈ Rd are
independent random variables, then it is necessary and sufficient that δ (·) is strictly negative
definite (see Szekely & Rizzo, 2013 for the precise definition) for the following conclusion to
hold: Eδ (X,Y ) ≥ 0 for any X,Y ∈ X, and Eδ (X,Y ) = 0 if and only if X and Y are
identically distributed.
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We observe that there is thus an infinite variety of functions δ from which we can construct
energy statistics. We shall concentrate on the use of the original ES, based on δ2, since it is
the most well known and popular of the varieties.

3.1 The V-statistic estimator

Suppose that we observe Xn = {Xi}ni=1 and Ym = {Yi}mi=1, where the former is a sample
containing n IID replicates ofX, and the latter is a sample containing m IID replicates of Y ,
respectively, with Xn and Ym being independent. In Gretton et al. (2012), it was shown that
for any δ, upon assuming that δ (x,y) <∞, the so-called V-statistic estimator (cf. Serfling,
1980, Ch. 5 and Koroljuk & Borovskich, 1994)

Vδ (Xn,Ym) =
2

mn

n∑
i=1

m∑
j=1

δ (Xi,Yj)−
1

n2

n∑
i=1

n∑
j=1

δ (Xi,Xj)−
1

m2

m∑
i=1

m∑
j=1

δ (Yi,Yj) , (7)

can be proved to converge in probability to Eδ (X,Y ), as n → ∞ and m → ∞, under the
condition that m/n→ α <∞, for some constant α (see also Gretton et al., 2007).

We note that the assumption of this result is rather restrictive, since it either requires
the bounding of the space X or the function δ. In the sequel, we will present a result for the
almost sure convergence of the V-statistic that depends on the satisfaction of a more realistic
hypothesis.

It is noteworthy that if the ES is non-negative, then the V-statistic retains the non-
negativity property of its corresponding ES (cf. Gretton et al., 2012). That is, for any
continuous and negative definite function δ (x,y) = δ (x− y), we have Vδ (Xn,Ym) ≥ 0.

3.2 The ES-based IS-ABC algorithm

From Algorithm 1, we observe that an IS-ABC algorithm requires three components. A data
discrepancy measurement d = D (Xn,Ym) ≥ 0, a weighting function w (d, ε) ≥ 0, and a
tuning parameter ε > 0. We propose the use of the ES in the place of the data discrepancy
measurement d, in combination with various weight functions that have been used in the
literature. That is we set

D (Xn,Ym) = Vδ (Xn,Ym) ,

in Algorithm 1.
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In particular, we consider original ES, where δ = δ2. We name our framework the ES-
ABC algorithm. In Section 4, we shall demonstrate that the proposed algorithm possesses
desirable large sample qualities that guarantees its performance in practice, as illustrated in
Section 5.

3.3 Related methods

The ES-ABC algorithm that we have presented here is closely related to ABC algorithms
based on the maximum mean discrepancy (MMD) that were implemented in Park et al.
(2016), Jiang et al. (2018), and Bernton et al. (2019). For each positive definite Mercer
kernel function χ (x,y) (x,y ∈ X), the corresponding MMD is defined via the equation

MMD2
χ (X,Y ) = E [χ (X,X ′)] + E [χ (Y ,Y ′)]− 2E [χ (X,Y )] ,

where X,X ′,Y ,Y ′ are random variable such that X and Y are identically distributed to
X ′ and Y ′, respectively.

The MMD as a statistic for testing goodness-of-fit was studied prominently in articles
such as Gretton et al. (2007), Gretton et al. (2009), and Gretton et al. (2012). It is clear that
if δ = −χ, the forms of the ES and the squared MMD are identical. More details regarding
the relationship between the two classes of statistics can be found in Sejdinovic et al. (2013).

We note two shortcomings with respect to the applications of the MMD as a basis for
an ABC algorithm in the previous literature. Firstly, no theoretical results regarding the
consistency of the MMD-based methods have been proved. And secondly, in the application
by Park et al. (2016) and Jiang et al. (2018), the MMD was implemented using the unbiased
U-statistic estimator, rather than the biased V-statistic estimator. Although both estimators
are consistent, in the sense that they can be proved to be convergent to the desired limiting
MMD value, the U-statistic estimator has the unfortunate property of not being bounded
from below by zero (cf. Gretton et al., 2012). As such, it does not meet the criteria for a
data discrepancy measurement.
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4 Theoretical results

4.1 General asymptotic analysis

We now establish a consistency result for the quasi-posterior density (3), when n and m

approach infinity. Our result generalizes the main result of Jiang et al. (2018) (i.e., Theorem
1), which is the specific case when the weight function is restricted to the form

w (d, ε) = Jd < εK , (8)

where J·K is the Iverson bracket notation, which equals 1 when the internal statement is true,
and 0, otherwise (cf. Graham et al., 1994).

The weighting function of form (8), when implemented within the IS-ABC framework,
produces the common rejection ABC algorithms, that were suggested by Tavaré et al. (1997),
and Pritchard et al. (1999). We extended upon the result of Jiang et al. (2018) so that we may
provide theoretical guarantees for more exotic ABC procedures, such as the kernel-smoothed
ABC procedure of Park et al. (2016), which implements weights of the form

w (d, ε) = exp (−dq/ε) , (9)

for q > 0. See Karabatsos & Leisen (2018) for further discussion and examples.
In order to prove our consistency result, we require Hunt’s lemma, which is reported in

Dellacherie & Meyer (1980), as Theorem 45 of Section V.5. For convenience to the reader,
we present the result, below.

Theorem 1. Let (Ω,F ,P) be a probability space with increasing σ-fields {Fn} and let F∞ =

∪nFn. Suppose that {Un} is a sequence of random variables that is bounded from above in
absolute value by some integrable random variable V , and further suppose that Un converges
almost surely to the random variable U . Then, limn→∞ E (Un|Fn) = E (U |F∞) almost surely,
and in L1 mean, as n→∞.

Define the continuity set of a function d 7→ w (d) as

C (w) = {d : w is continuous at d} .

Using Theorem 1, we can now prove the following result regarding the asymptotic behavior
of the quasi-posterior density function (3).
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Theorem 2. Let Xn and Ym be IID samples from DGPs that can be characterized by PDFs
f (xn|θ0) =

∏n
i=1 f (xi|θ0) and f (ym|θ) =

∏m
i=1 f (yi|θ), respectively, with corresponding

parameter vectors θ0 and θ. Suppose that the data discrepancy D (Xn,Ym) converges to
some D∞ (θ0,θ), which is a function of θ0 and θ, almost surely as n → ∞, for some m =

m (n)→∞. If w (d, ε) is piecewise continuous and decreasing in d and w (d, ε) ≤ a <∞ for
all d ≥ 0 and any ε > 0, and if

D∞ (θ0,θ) ∈ C (w (·, ε)) ,

then we have
πm,ε (θ|xn)→ π (θ)w (D∞ (θ0,θ) , ε)∫

π (θ)w (D∞ (θ0,θ) , ε) dθ
, (10)

almost surely, as n→∞.

Proof. Using the notation of Theorem 1, we set Un = w (d (Xn,Ym) , ε). Since w (d, ε) ≤
a <∞, for any d, we have the existence of a |Un| ≤ V <∞ such that V is integrable, since
we can take V = a. Since D (Xn,Ym) converges almost surely to D∞ (θ0,θ), and w (·, ε) is
continuous at D∞ (θ0,θ), we have Un → U = w (D∞ (θ0,θ) , ε) with probability one by the
extended continuous mapping theorem (cf. DasGupta, 2011, Thm. 7.10).

Now, let Fn be the σ-field generated by the sequence {X1, . . . ,Xn}. Thus, Fn is an
increasing σ-field, which approaches F∞ = ∪nFn. We are in a position to directly apply
Theorem 1. This yields

E [w (D (Xn,Ym) , ε) |Xn]→ E [w (D∞ (θ0,θ) , ε) |X∞] ,

almost surely, as n→∞, where the right-hand side equals w (D∞ (θ0,θ) , ε).
Notice that the left-hand side has the form

E [w (D (Xn,Ym) , ε) |Xn] = Lm,ε (Xn|θ)

and therefore Lm,ε (Xn|θ)→ w (D∞ (θ0,θ) , ε), almost surely, as n→∞. Thus, the numera-
tor of (3) converges to

π (θ)w (D∞ (θ0,θ) , ε) , (11)

almost surely.
To complete the proof, it suffices to show that the denominator of (3) converges almost
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surely to ∫
T
π (θ)w (D∞ (θ0,θ) , ε) dθ. (12)

Since Lm,ε (Xn|θ) → w (D∞ (θ0,θ) , ε) and cm,ε (xn) =
∫
T π (θ)Lm,ε (xn|θ) dθ, we obtain our

desired convergence via the dominated convergence theorem, because w (d, ε) ≤ a <∞. An
application of a Slutsky-type theorem yields the almost sure convergence of the ratio between
(11) and (12) to the right-hand side of (10), as n→∞.

The following result and proof guarantees the applicability of Theorem 2 to rejection ABC
procedures, and to kernel-smoothed ABC procedures, as used in Jiang et al. (2018) and Park
et al. (2016), respectively.

Proposition 1. The result of Theorem 2 applies to rejection ABC and importance sampling
ABC, with weight functions of respective forms (8) and (9).

Proof. For weights of form (8), we note that w (d, ε) = Jd < εK is continuous in d at all
points, other than when d = ε. Furthermore, w (d, ε) ∈ {0, 1} and is hence non-negative and
bounded. Thus, under the condition that D∞ (θ0,θ) 6= ε, we have the desired conclusion of
Theorem 2.

For weights of form (9), we note that for fixed ε, w (d, ε) is continuous and positive in
d. Since w is uniformly bounded by 1, differentiating with respect to d, we obtain dw/dd =

− (q/ε) dq−1 exp (−dq/ε), which is negative for any d ≥ 0 and q > 0. Thus, (9) constitutes a
weight function and satisfies the conditions of Theorem 2.

4.2 Asymptotic of the energy statistic

Let X and Y be arbitrary elements of Xn and Ym, respectively. That is X and Y arise
from DGPs that can be characterized by PDFs f (x;θ0) and f (y;θ), respectively. Under
the assumption E ‖X‖2 + E ‖Y ‖2 <∞, Proposition 1 of Szekely & Rizzo (2013) states that
we can write the ES as

E (X,Y ) =
Γ
(
d+1
2

)
π(d+1)/2

∫
Rd

|ϕ (t;θ0)− ϕ (t;θ)|2

‖t‖d+1
2

dt, (13)

where ϕ (t;θ) is the characteristic function corresponding to the PDF f (y;θ).
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We write log+ x = log (max {1, x}). From Szekely & Rizzo (2004) we have the fact that
for arbitrary δ,

Vδ (Xn,Ym) =
1

n2m2

n∑
i1=1

n∑
i2=1

m∑
j1=1

m∑
j2=1

κδ (Xi1,Xi2 ;Yj1 ,Yj2) ,

where

κδ (xi1 ,xi2 ;yj1 ,yj2) = δ (xi1 ,yj1) + δ (xi2 ,yj2)− δ (xi1 ,xi2)− δ (yj1 ,yj2)

is the kernel of the V-statistic that is based on the function δ. The following result is a
direct consequence of Theorem 1 of Sen (1977), when applied to V-statistics constructed
from functionals δ that satisfy the hypothesis of Szekely & Rizzo (2013, Prop. 3).

Lemma 1. Make the same assumptions regarding Xn and Ym as in Theorem 2. Let δ (x,y) =

δ (x− y) be a continuous and strictly negative definite function. If

E
(
|κδ (X1,X2;Y1,Y2)| log+ |κδ (X1,X2;Y1,Y2)|

)
<∞, (14)

then Vδ (Xn,Ym) converges almost surely to Eδ (X1,Y1) ≥ 0, as min {n,m} → ∞, where
X1,X2 ∈ X and Y1,Y2 ∈ X are arbitrary elements of Xn and Ym, respectively. Furthermore,
Eδ (X1,Y1) = 0 if and only if X1 and Y1 are identically distributed.

We may apply the result of Lemma 1 directly to the case of δ = δ2 in order to provide an
almost sure convergence result regarding the V-statistic Vδ2 (Xn,Ym).

Corollary 1. Make the same assumptions regarding Xn and Ym as in Theorem 2. IfX1 ∈ X
and Y1 ∈ X are arbitrary elements of Xn and Ym, respectively, and

E
(
‖X1‖22

)
+ E

(
‖Y1‖22

)
<∞, (15)

and if min {n,m} → ∞, then Vδ2 (Xn,Ym) converges almost surely to E (X1,Y1), of form
(13).

Proof. By the law of total expectation, we apply Lemma 1 by considering the two cases of
(14): when |κδ2| ≤ 1 and when |κδ2| > 1, separately, to write

E
(
|κδ2| log+ |κδ2|

)
= p0E

(
|κδ2| log+ |κδ2| | |κδ2| ≤ 1

)
+ p1E

(
|κδ2| log+ |κδ2| | |κδ2| > 1

)
, (16)
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where p0 = P (|κδ2| ≤ 1) and p1 = P (|κδ2 | > 1). The first term on the right-hand side of (16)
is equal to zero, since log+ |κδ2| = log (1) = 0, whenever |κδ2| ≤ 1. Thus, we need only be
concerned with bounding the second term.

For |κδ2| > 1, |κδ2| log |κδ2 | ≤ |κδ2|
2, thus

E
(
|κδ2| log+ |κδ2 | | |κδ2| > 1

)
≤ E

(
|κδ2|

2 | |κδ2 | > 1
)

The condition that E
(
|κδ2| log+ |κδ2|

)
<∞ is thus fulfilled if E

(
|κδ2|

2 | |κδ2| > 1
)
<∞, which

is equivalent to

E
(
|κδ2|

2) = p0E
(
|κδ2|

2 | |κδ2| ≤ 1
)

+ p1E
(
|κδ2|

2 | |κδ2| > 1
)
<∞,

by virtue of the integrability of
{
|κδ2 |

2 | |κδ2| ≤ 1
}
implying the existence of

E
(
|κδ2|

2 | |κδ2| ≤ 1
)
,

since it is defined on a bounded support.
Next, by the triangle inequality, |κδ2 | ≤ 2 (‖X1‖2 + ‖X2‖2 + ‖Y1‖2 + ‖Y2‖2), and hence

|κδ2|
2 ≤ 4

(
‖X1‖22 + ‖X2‖22 + ‖Y1‖22 + ‖Y2‖22

)
+ 8(‖X1‖2 ‖X2‖2 + ‖X1‖2 ‖Y1‖2 + ‖X1‖2 ‖Y2‖2
+ ‖X2‖2 ‖Y1‖2 + ‖X2‖2 ‖Y2‖2 + ‖Y1‖2 ‖Y2‖2).

Since X1,X2,Y1,Y2 are all pairwise independent, and X1 and Y1 are identically distributed
to X2 and Y2, respectively, we have

E
(
|κδ2|

2) ≤ 8
[
E
(
‖X1‖22

)
+ E

(
‖Y1‖22

)]
+ 8

[
(E ‖X1‖2)

2 + (E ‖Y1‖2)
2]

+ 32 [E ‖X1‖2 E ‖Y1‖2] ,

which concludes the proof since E ‖X1‖22 + E ‖Y1‖22 < ∞ is satisfied by the hypothesis and
implies E ‖X1‖2 + E ‖Y1‖2 <∞.

We note that condition (15) is stronger than a direct application of condition (14), which
may be preferable in some situations. However, condition (15) is somewhat more intuitive
and verifiable since it is concerned with the polynomial moments of norms and does not
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involve the piecewise function log+ x. It is also suggested in Zygmund (1951) that one may
replace log+ x by log (2 + x) if it is more convenient to do so.

Combining the result of Theorem 2 with Corollary 1 and the conclusion from Proposition
1 of Szekely & Rizzo (2013) provided in Equation (13) yields the key result below. This result
justifies the use of the V-statistic estimator Vδ2 (Xn,Ym) for the energy distance E (X,Y )

within the IS-ABC framework.

Corollary 2. Under the assumptions of Corollary 1. If D (Xn,Ym) = Vδ2 (Xn,Ym), then
the conclusion of Theorem 2 follows with

D (Xn,Ym)→
Γ
(
d+1
2

)
π(d+1)/2

∫
Rd

|ϕ (t;θ0)− ϕ (t;θ)|2

‖t‖d+1
2

dt = D∞ (θ0,θ) ,

almost surely, as n→∞, where D∞ (θ0,θ) ≥ 0 and D∞ (θ0,θ) = 0, if and only if θ0 = θ.

5 Illustrations

We illustrate the use of the ES on some standard models. The standard rejection ABC
algorithm is employed (that is, we use Algorithm 1 with weight function w of form (8)) for
constructing estimators (5). The proposed ES is compared to the Kullback–Leibler divergence
(KL), the Wasserstein distance (WA), and the maximum mean discrepancy (MMD). Here, the
ES is applied using the Euclidean metric δ2, the Wasserstein distance using the exponent p = 2

(cf. Bernton et al., 2019) and the MMD using a Gaussian kernel χ(x,y) = exp [−(x− y)2].
The Gaussian kernel is commonly used in the MMD literature, and was also considered for
ABC in Park et al. (2016) and Jiang et al. (2018). Details regarding the use of the Kullback–
Leibler divergence as a discrepancy function for ABC algorithms can be found in Jiang et al.
(2018, Sec. 2).

We useX ∼ L to denote that the random variableX has probability law L. Furthermore,
we denote the normal law by N (µ,Σ), where X ∼ N (µ,Σ) states that the DGP of X is
multivariate normal distribution with mean vector µ and covariance matrix Σ. We further
denote the uniform law, in the interval (a, b), for a < b, by Unif(a, b).

We consider examples explored in Jiang et al. (2018, Sec. 4.1). For each illustration
below, we sample synthetic data of the same size m as the observed data size, n, whose value
is specified for each model below. We consider only the rejection weight function, and the
number of ABC iterations in Algorithm 1 is set to N = 105. The tuning parameter ε is set

14



so that only the 0.05% smallest discrepancies are kept to form ABC posterior sample. We
postpone the discussion of the results of our simulation experiments to Section 5.5

The experiments were implemented in R, using in particular the winference package (Bern-
ton et al., 2019) and the FNN package (Beygelzimer et al., 2013). The Kullback–Leibler diver-
gence between two PDFs is computed within the 1-nearest neighbor framework (Boltz et al.,
2009). Moreover, the k-d trees is adopted for implementing the nearest neighbor search, which
is the same as the method of Jiang et al. (2018). For estimating the 2-Wasserstein distance
between two multivariate empirical measures, we propose to employ the swapping algorithm
(Puccetti, 2017), which is simple to implement, and is more accurate and less computationally
expensive than other algorithms commonly used in the literature (Bernton et al., 2019). Re-
garding the MMD, the same unbiased U-statistic estimator is adopted as given in Jiang et al.
(2018) and Park et al. (2016). For reproduction of the the experimental results, the original
source code can be accessed at https://github.com/hiendn/Energy_Statistics_ABC.

5.1 Bivariate Gaussian mixture model

Let Xn be a sequence of IID random variables, such that each Xi has mixture of Gaussian
probability law

Xi ∼ pN (µ0,Σ0) + (1− p)N (µ1,Σ1), (17)

with known covariance matrices

Σ0 =

[
0.5 −0.3

−0.3 0.5

]
and Σ1 =

[
0.25 0

0 0.25

]
.

We aim to estimate the generative parameters θ> = (p,µ>0 ,µ
>
1 ) consisting of the mixing

probability p and the population means µ0 and µ1. To this end, we perform ABC using
n = 500 observations, sampled from model (17) with p = 0.3, µ>0 = (0.7, 0.7) and µ>1 =

(−0.7,−0.7). A kernel density estimate (KDE) of the ABC posterior distribution is presented
in Figure 1.
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Figure 1: Marginal KDEs of the ABC posterior for the mean parameters µ0 and µ1 of the
bivariate Gaussian mixture model (17). The intersections of black dashed lines indicate the
positions of the population means.

5.2 Moving-average model of order 2

The moving-average model of order q, MA(q), is a stochastic process {Yt}t∈N∗ defined as

Yt = Zt +

q∑
i=1

θiZt−i,

with {Zt}t∈Z being a sequence of unobserved noise error terms. Jiang et al. (2018) used a
MA(2) model for their benchmarking; namely Yt = Zt + θ1Zt−1 + θ2Zt−2, t ∈ [d]. Each
observation Y corresponds to a time series of length d. Here, we use the same model as that
proposed in Jiang et al. (2018), where Zt follows the Student-t distribution with 5 degrees of
freedom, and d = 10. The priors on the model parameters θ1 and θ2 are taken to be uniform,
that is, θ1 ∼ Unif(−2, 2) and θ2 ∼ Unif(−1, 1). We performed ABC using n = 200 samples
generated from a model with the true parameter values (θ1, θ2) = (0.6, 0.2). A KDE of the
ABC posterior distribution is displayed in Figure 2.
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Figure 2: KDE of the ABC posterior for the parameters θ1 and θ2 of the MA(2) model
experiment. The intersections of black dashed lines indicate the true parameter values.

5.3 Bivariate beta model

The bivariate beta model proposed by Crackel & Flegal (2017) is defined with five positive
parameters θ1, . . . , θ5 by letting

V1 =
U1 + U3

U5 + U4

, and V2 =
U2 + U4

U5 + U3

, (18)

where Ui ∼ Gamma(θi, 1), for i ∈ [5], and setting Z1 = V1/(1 + V1) and Z2 = V2/(1 + V2).
The bivariate random variable Z> = (Z1, Z2) has marginal laws Z1 ∼ Beta(θ1 + θ3, θ5 + θ4)

and Z2 ∼ Beta(θ2 + θ4, θ5 + θ3). We performed ABC using samples of size n = 500, which
are generated from a DGP with true parameter values (θ1, θ2, θ3, θ4, θ5) = (1, 1, 1, 1, 1). The
prior on each of the model parameters is taken to be independent Unif(0, 5). A KDE of the
ABC posterior distribution is displayed in Figure 3.
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Figure 3: Marginal KDEs of the ABC posterior for the parameters θ1, . . . , θ5 for the bivariate
beta model. The black dashed lines indicate the true parameter values.

5.4 Multivariate g-and-k distribution

A univariate g-and-k distribution can be defined via its quantile function (Drovandi & Pettitt,
2011):

F−1(x) = A+B

[
1 + 0.8

1− exp(−g × zx)
1 + exp(−g × zx)

] (
1 + z2x

)k
zx, (19)

where parameters (A,B, g, k) respectively relate to location, scale, skewness, and kurtosis.
Here, zx is the xth quantile of the standard normal distribution. Given a set of parameters
(A,B, g, k), it is easy to simulate d observations of a DGP with quantile function (19), by
generating a sequence of IID sample {Zi}di=1, where Zi ∼ N (0, 1), for i ∈ [d].

A so-called d-dimensional g-and-k DGP can instead be defined by applying the quantile
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function (19) to each of the d elements of a multivariate normal vector Z> = (Z1, ..., Zd) ∼
N (0,Σ), where Σ is a covariance matrix. In our experiment, we use a 5-dimensional g-
and-k model with the same covariance matrix and parameter values for (A,B, g, k) as that
considered by Jiang et al. (2018). That is, we generate samples of size n = 200 from a g-and-k
DGP with the true parameter values (A,B, g, k) = (3, 1, 2, 0.5) and the covariance matrix

Σ =


1 ρ 0 0 0

ρ 1 ρ 0 0

0 ρ 1 ρ 0

0 0 ρ 1 ρ

0 0 0 ρ 1

 ,

where ρ = −0.3. Marginal KDEs of the ABC posterior distributions is presented in Figure 4.
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Figure 4: Marginal KDEs of the ABC posterior for the parameters A,B, g, k and ρ of the
g-and-k model. The black dashed lines indicate the true parameter values.
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5.5 Discussion of the results and performance

For each of the four experiments and each parameter, we computed the posterior mean θ̂mean,
posterior median θ̂med, mean absolute error and mean squared error defined by

MAE =
1

M

M∑
k=1

|θk − θ0|, and MSE =
1

M

M∑
k=1

|θk − θ0|2,

where {θk}Mk=1 denotes the pseudo-posterior sample and θ0 denotes the true parameter. Here
M = 50 since N = 105 and ε is chosen as to retain 0.05% of the samples. Each experiment
was replicated ten times by keeping the same fixed (true) values for the parameters and by
sampling new observed data each of the ten times. The estimated quantities θ̂mean, θ̂med,
and errors MAE and RMSE = MSE1/2 were then averaged over the ten replications, and are
reported along with standard deviations σ(·) in columns associated with each estimator and
true values θ0 for each parameter in Tables 1, 2, 3 and 4.

Upon inspection, Tables 1, 2, 3 and 4 showed some advantage in performance from WA
on the bivariate Gaussian mixtures, some advantage from the MMD on the bivariate beta
model, and some advantage from the ES on the g-and-k model, while multiple methods are
required to make the best inference in the case of the MA(2) experiment. When we further
take into account the standard deviations of the estimators, we observe that all four data
discrepancy measures essentially perform comparatively well across the four experimental
models. Thus, we may conclude that there is no universally best performing discrepancy
measure, and one must choose the right method for each problem of interest. Alternatively,
one may also consider some kind of averaging over the results of the different discrepancy
measures. We have not committed to an investigation of such methodologies and leave it as
a future research direction.
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Table 1: Estimation performance for bivariate Gaussian mixtures (Section 5.1). The best
results in each column is highlighted in boldface.

θ̂mean σ(θ̂mean) θ̂med σ(θ̂med) MAE σ(MAE) RMSE σ(RMSE)

µ00 = 0.7

ES 0.594 0.045 0.607 0.063 0.215 0.030 0.283 0.055
KL 0.648 0.039 0.666 0.048 0.165 0.016 0.205 0.026
WA 0.675 0.035 0.682 0.043 0.152 0.020 0.181 0.021
MMD 0.564 0.079 0.582 0.076 0.234 0.054 0.311 0.101

µ01 = 0.7

ES 0.587 0.063 0.613 0.059 0.215 0.038 0.282 0.069
KL 0.651 0.042 0.667 0.061 0.169 0.022 0.210 0.027
WA 0.655 0.050 0.669 0.047 0.152 0.015 0.187 0.019
MMD 0.559 0.076 0.598 0.075 0.235 0.049 0.313 0.092

µ10 = −0.7

ES -0.699 0.046 -0.716 0.040 1.401 0.043 1.412 0.039
KL -0.709 0.029 -0.712 0.035 1.409 0.029 1.415 0.029
WA -0.699 0.030 -0.704 0.037 1.399 0.030 1.404 0.030
MMD -0.709 0.054 -0.731 0.036 1.411 0.051 1.422 0.038

µ11 = −0.7

ES -0.696 0.058 -0.712 0.043 1.396 0.058 1.407 0.049
KL -0.711 0.047 -0.704 0.057 1.411 0.047 1.416 0.047
WA -0.695 0.043 -0.695 0.053 1.395 0.043 1.401 0.043
MMD -0.711 0.066 -0.726 0.046 1.411 0.066 1.424 0.052

Table 2: Estimation performance for the MA(2) model (Section 5.2). The best results in
each column is highlighted in boldface.

θ̂mean σ(θ̂mean) θ̂med σ(θ̂med) MAE σ(MAE) RMSE σ(RMSE)

θ1 = 0.6

ES 0.569 0.042 0.570 0.045 0.083 0.015 0.100 0.017
KL 0.664 0.028 0.658 0.031 0.106 0.017 0.132 0.019
WA 0.509 0.033 0.505 0.038 0.112 0.022 0.133 0.026

MMD 0.583 0.044 0.586 0.048 0.079 0.013 0.096 0.015

θ2 = 0.2

ES 0.215 0.035 0.219 0.035 0.111 0.015 0.135 0.019
KL 0.274 0.023 0.280 0.027 0.110 0.014 0.134 0.014
WA 0.205 0.025 0.207 0.030 0.090 0.029 0.112 0.034
MMD 0.220 0.037 0.220 0.036 0.108 0.010 0.132 0.012
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Table 3: Estimation performance for the bivariate beta model (Section 5.3). The best results
in each column is highlighted in boldface.

θ̂mean σ(θ̂mean) θ̂med σ(θ̂med) MAE σ(MAE) RMSE σ(RMSE)

θ1 = 1.0

ES 1.299 0.223 1.189 0.264 0.713 0.130 0.885 0.165
KL 1.389 0.190 1.333 0.165 0.696 0.151 0.877 0.205
WA 1.286 0.220 1.193 0.265 0.672 0.128 0.828 0.153

MMD 1.229 0.188 1.143 0.241 0.676 0.092 0.836 0.121

θ2 = 1.0

ES 1.362 0.185 1.290 0.237 0.716 0.118 0.904 0.131
KL 1.235 0.152 1.153 0.170 0.588 0.070 0.745 0.097
WA 1.292 0.196 1.240 0.241 0.657 0.114 0.817 0.139
MMD 1.268 0.173 1.170 0.171 0.669 0.103 0.841 0.131

θ3 = 1.0

ES 1.170 0.132 1.183 0.157 0.459 0.045 0.552 0.049
KL 1.083 0.100 1.077 0.088 0.394 0.034 0.496 0.045
WA 1.229 0.118 1.216 0.132 0.426 0.054 0.521 0.059
MMD 1.181 0.116 1.182 0.143 0.456 0.051 0.548 0.061

θ4 = 1.0

ES 1.128 0.112 1.113 0.138 0.435 0.032 0.534 0.045
KL 1.133 0.111 1.086 0.135 0.390 0.038 0.498 0.051
WA 1.218 0.110 1.196 0.108 0.409 0.049 0.514 0.066
MMD 1.150 0.098 1.133 0.130 0.423 0.041 0.518 0.049

θ5 = 1.0

ES 1.343 0.096 1.360 0.104 0.428 0.052 0.514 0.059
KL 1.300 0.087 1.250 0.065 0.384 0.040 0.491 0.061
WA 1.300 0.101 1.298 0.105 0.370 0.058 0.446 0.066

MMD 1.258 0.115 1.232 0.120 0.375 0.055 0.454 0.063
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Table 4: Estimation performance for the g-and-k distribution (Section 5.4). The best results
in each column is highlighted in boldface.

θ̂mean σ(θ̂mean) θ̂med σ(θ̂med) MAE σ(MAE) RMSE σ(RMSE)

A = 3.0

ES 3.024 0.044 3.009 0.047 0.133 0.016 0.170 0.018
KL 2.955 0.030 2.948 0.033 0.105 0.013 0.128 0.013
WA 3.043 0.045 3.052 0.067 0.232 0.020 0.277 0.020
MMD 3.081 0.061 3.062 0.065 0.177 0.029 0.221 0.036

B = 1.0

ES 1.046 0.062 1.027 0.079 0.268 0.024 0.322 0.029
KL 0.918 0.071 0.885 0.068 0.313 0.026 0.375 0.029
WA 0.894 0.127 0.869 0.136 0.277 0.044 0.334 0.045
MMD 0.899 0.069 0.855 0.079 0.374 0.029 0.440 0.030

g = 2.0

ES 2.289 0.101 2.264 0.210 0.872 0.098 1.026 0.091
KL 2.993 0.080 3.046 0.121 1.043 0.070 1.193 0.066
WA 2.581 0.101 2.599 0.147 0.858 0.078 1.025 0.075

MMD 2.184 0.128 2.227 0.190 0.904 0.103 1.052 0.100

k = 0.5

ES 0.476 0.046 0.444 0.067 0.225 0.014 0.270 0.015
KL 0.550 0.059 0.498 0.064 0.252 0.029 0.317 0.045
WA 0.544 0.095 0.526 0.094 0.189 0.035 0.238 0.046
MMD 0.691 0.056 0.621 0.072 0.380 0.041 0.502 0.070

ρ = −0.3

ES -0.163 0.047 -0.178 0.069 0.197 0.032 0.246 0.034
KL -0.291 0.034 -0.324 0.037 0.117 0.014 0.144 0.020
WA -0.288 0.026 -0.314 0.035 0.125 0.016 0.152 0.020
MMD -0.194 0.047 -0.210 0.063 0.174 0.030 0.218 0.035
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6 Conclusion

We have introduced a novel importance-sampling ABC algorithm that is based on the so-
called two-sample energy statistic. Along with other data discrepancy measures that view
data sets as empirical measures, such as the Kullback–Leibler divergence, the Wasserstein
distance and maximum mean discrepancies, our proposed approach bypasses the cumbersome
use of summary statistics.

We have shown that the V-statistic estimator of the ES is consistent under mild moment
conditions. Furthermore, we have established a new asymptotic result for cases when the
observed sample and simulated sample sizes increasing to infinity, that shows a kind of
consistency of the pseudo-posterior in the infinite data scenario. This is in concordance with
previous results in such cases (see for instance Jiang et al., 2018; Bernton et al., 2019) and
extends upon existing theory for the application in the general IS-ABC framework.

Illustrations of the proposed ES-ABC algorithm on four experimental models have shown
that it performs comparatively well to alternative discrepancy measures. Considering com-
puting costs, KL should be preferred over the other three discrepancy measures, with a
linearithmic computational time of O((n + m) log(n + m)). This can be contrasted against
the quadratic time O((n + m)2) for a single computation of D (Xn,Ym) when we consider
the Wasserstein distance, instead. Both the ES and MMD estimators require quadratic com-
putational time, like the Wasserstein distance. We note that linear time estimators are also
available for the MMD and the ES, although these are unbiased and cannot be guaranteed
to be positive (see Lemma 14 in Gretton et al., 2012).

In the rejection ABC setting, Proposition 2 of Bernton et al. (2019) shows that under
some regularity assumptions on the DGP and if the data discrepancy measure satisfies the
condition:

D (Xn,Yn) = 0 if and only if Xn = Yn, (20)

then the ABC pseudo-posterior contracts to the posterior distribution as the rejection thresh-
old ε converges to zero. It can be shown that the V-statistic estimator of the ES only satisfies
the only if direction of (20) and thus does not necessarily enjoy the conclusions of Proposi-
tion 2 of Bernton et al. (2019). The condition is not known to be necessary and thus we do
not know if the conclusion can be satisfied in another way. We observe, from our simulation
experiments, that ES did not perform differently to the Wasserstein distance, which can be
shown to satisfy Proposition 2 of Bernton et al. (2019).
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