S. Bhat, A. Agarwal, R. W. Vuduc, and A. G. Gray, A type theory for probability density functions, Principles of Programming Languages (POPL, pp.545-556, 2012.

S. Bhat, J. Borgström, A. D. Gordon, and C. V. Russo, Deriving Probability Density Functions from Probabilistic Functional Programs, Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp.508-522, 2013.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan et al., Pyro: Deep Universal Probabilistic Programming, Journal of Machine Learning Research, vol.20, pp.1-6, 2019.

J. Borgström, U. D. Lago, A. D. Gordon, and M. Szymczak, A lambda-calculus foundation for universal probabilistic programming, International Conference on Functional Programming (ICFP), pp.33-46, 2016.

Y. Burda, R. B. Grosse, and R. Salakhutdinov, Importance Weighted Autoencoders, International Conference on Learning Representations (ICLR), 2016.

B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich et al., Stan: A Probabilistic Programming Language, Journal of Statistical Software, vol.76, pp.1-32, 2017.

A. V. Arun-tejasvi-chaganty, S. K. Nori, and . Rajamani, Efficiently Sampling Probabilistic Programs via Program Analysis, Artificial Intelligence and Statistics (AISTATS), pp.153-160, 2013.

A. Chakarov and S. Sankaranarayanan, Probabilistic Program Analysis with Martingales, Computer Aided Verification (CAV), pp.511-526, 2013.

S. Chaudhuri, S. Gulwani, and R. Lublinerman, Continuity analysis of programs, Principles of Programming Languages (POPL, pp.57-70, 2010.

P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints, Principles of Programming Languages (POPL, pp.238-252, 1977.

P. Cousot and R. Cousot, Systematic design of program analysis frameworks, Principles of Programming Languages (POPL, pp.269-282, 1979.

P. Cousot and R. Cousot, Abstract Interpretation Frameworks, Journal of Logic and Computation, vol.2, issue.4, pp.511-547, 1992.

P. Cousot and M. Monerau, Probabilistic Abstract Interpretation, European Symposium on Programming (ESOP), pp.169-193, 2012.

T. Ehrhard, C. Tasson, and M. Pagani, Probabilistic coherence spaces are fully abstract for probabilistic PCF, Principles of Programming Languages (POPL, pp.309-320, 2014.

M. , A. Eslami, N. Heess, T. Weber, Y. Tassa et al., Attend, Infer, Repeat: Fast Scene Understanding with Generative Models, Neural Information Processing Systems (NIPS), pp.3233-3241, 2016.

T. Gehr, S. Misailovic, and M. T. Vechev, PSI: Exact Symbolic Inference for Probabilistic Programs, Computer Aided Verification (CAV, pp.62-83, 2016.

C. J. Geyer, Introduction to Markov Chain Monte Carlo, pp.3-48, 2011.

H. Ghourchian, A. Gohari, and A. Amini, Existence and Continuity of Differential Entropy for a Class of Distributions, IEEE Communications Letters, vol.21, pp.1469-1472, 2017.

N. Goodman, V. Mansinghka, M. Daniel, K. Roy, J. B. Bonawitz et al., Church: a language for generative models, Uncertainty in Artificial Intelligence (UAI), pp.220-229, 2008.

A. D. Gordon, T. Graepel, N. Rolland, C. Russo, J. Borgstrom et al., Tabular: A Schema-driven Probabilistic Programming Language, Principles of Programming Languages (POPL, pp.321-334, 2014.

J. Peter and . Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, pp.711-732, 1995.

W. K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, vol.57, pp.97-109, 1970.

C. Heunen, O. Kammar, S. Staton, and H. Yang, A convenient category for higher-order probability theory, Logic in Computer Science (LICS, pp.1-12, 2017.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, Stochastic Variational Inference, Journal of Machine Learning Research, vol.14, pp.1303-1347, 2013.

C. Hur, A. V. Nori, K. Sriram, S. Rajamani, and . Samuel, A Provably Correct Sampler for Probabilistic Programs, Foundation of Software Technology and Theoretical Computer Science (FSTTCS, pp.475-488, 2015.

C. Jones and G. D. Plotkin, A Probabilistic Powerdomain of Evaluations, Logic in Computer Science (LICS), pp.186-195, 1989.

P. Diederik, D. J. Kingma, S. Rezende, M. Mohamed, and . Welling, Semi-supervised Learning with Deep Generative Models, Neural Information Processing Systems (NIPS), pp.3581-3589, 2014.

P. Diederik, M. Kingma, and . Welling, Auto-Encoding Variational Bayes, International Conference on Learning Representations (ICLR), 2014.

O. Kiselyov, Probabilistic Programming Language and its Incremental Evaluation, Asian Symposium on Programming Languages and Systems (APLAS), pp.357-376, 2016.

A. Klenke, Probability Theory: A Comprehensive Course, 2014.

. Dexter-kozen, Semantics of Probabilistic Programs, J. Comput. System Sci, vol.22, pp.328-350, 1981.

G. Rahul, U. Krishnan, D. Shalit, and . Sontag, Structured Inference Networks for Nonlinear State Space Models, AAAI Conference on Artificial Intelligence (AAAI, pp.2101-2109, 2017.

A. Kucukelbir, R. Ranganath, A. Gelman, and D. M. Blei, Automatic Variational Inference in Stan, Neural Information Processing Systems (NIPS), pp.568-576, 2015.

A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei, Automatic Differentiation Variational Inference, Journal of Machine Learning Research, vol.18, p.45, 2017.

A. Tuan-anh-le, F. Gunes-baydin, and . Wood, Inference Compilation and Universal Probabilistic Programming, In Artificial Intelligence and Statistics, pp.1338-1348, 2017.

W. Lee, X. Yu, H. Rival, and . Yang, Towards Verified Stochastic Variational Inference for Probabilistic Programs, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02399922

K. Vikash, D. Mansinghka, Y. N. Selsam, and . Perov, Venture: a higher-order probabilistic programming platform with programmable inference, 2014.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, pp.1087-1092, 1953.

T. Minka, J. M. Winn, J. P. Guiver, S. Webster, Y. Zaykov et al., Infer.NET 2.6. Microsoft Research Cambridge, 2014.

M. Mirman, T. Gehr, and M. T. Vechev, Differentiable Abstract Interpretation for Provably Robust Neural Networks, International Conference on Machine Learning (ICML), pp.3575-3583, 2018.

D. Monniaux, Abstract Interpretation of Probabilistic Semantics, Static Analysis Symposium (SAS), pp.322-339, 2000.

D. Monniaux, Backwards Abstract Interpretation of Probabilistic Programs, European Symposium on Programming (ESOP), pp.367-382, 2001.

C. Nair, B. Prabhakar, and D. Shah, On Entropy for Mixtures of Discrete and Continuous Variables, 2006.

P. Narayanan, J. Carette, W. Romano, C. Shan, and R. Zinkov, Probabilistic inference by program transformation in Hakaru (system description), Functional and Logic Programming (FLOPS), pp.62-79, 2016.

M. Radford, G. E. Neal, and . Hinton, A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants, Learning in Graphical Models, pp.355-368, 1998.

A. V. Nori, C. Hur, S. K. Rajamani, and S. Samuel, R2: An Efficient MCMC Sampler for Probabilistic Programs, AAAI Conference on Artificial Intelligence (AAAI, pp.2476-2482, 2014.

J. W. Paisley, D. M. Blei, and M. I. Jordan, Variational Bayesian Inference with Stochastic Search, International Conference on Machine Learning (ICML), pp.1363-1370, 2012.

R. Ranganath, S. Gerrish, and D. M. Blei, Black Box Variational Inference, Artificial Intelligence and Statistics (AISTATS), pp.814-822, 2014.

R. Ranganath, L. Tang, L. Charlin, and D. Blei, Deep Exponential Families, Artificial Intelligence and Statistics (AISTATS), pp.762-771, 2015.

A. Scibior, O. Kammar, M. Vákár, S. Staton, H. Yang et al., Denotational validation of higher-order Bayesian inference, POPL, vol.2, p.29, 2018.

N. Siddharth, B. Paige, J. Van-de-meent, A. Desmaison, N. D. Goodman et al., Learning Disentangled Representations with Semi-Supervised Deep Generative Models, Neural Information Processing Systems (NIPS), pp.5927-5937, 2017.

S. Smolka, P. Kumar, N. Foster, D. Kozen, and A. Silva, Cantor meets scott: semantic foundations for probabilistic networks, Principles of Programming Languages (POPL, pp.557-571, 2017.

A. Srivastava and C. A. Sutton, Autoencoding Variational Inference For Topic Models, International Conference on Learning Representations (ICLR), 2017.

S. Staton, Commutative Semantics for Probabilistic Programming, European Symposium on Programming (ESOP), pp.855-879, 2017.

S. Staton, H. Yang, F. D. Wood, C. Heunen, and O. Kammar, Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints, Logic in Computer Science (LICS, pp.525-534, 2016.

N. Toronto, J. Mccarthy, and D. Van-horn, Running Probabilistic Programs Backwards, European Symposium on Programming (ESOP), pp.53-79, 2015.

D. Tran, M. D. Hoffman, D. Moore, C. Suter, S. Vasudevan et al., Simple, Distributed, and Accelerated Probabilistic Programming, Neural Information Processing Systems (NeurIPS), pp.7609-7620, 2018.

D. Tran, A. Kucukelbir, A. B. Dieng, M. R. Rudolph, D. Liang et al., A library for probabilistic modeling, inference, and criticism, 2016.

A. I. Uber and . Labs, Pyro examples, 2019.

A. I. Uber and . Labs, Pyro regression test suite, 2019.

M. Vákár, O. Kammar, and S. Staton, A domain theory for statistical probabilistic programming, PACMPL, vol.3, p.29, 2019.

J. Van-de-meent, B. Paige, D. Tolpin, and F. D. Wood, Black-Box Policy Search with Probabilistic Programs, In Artificial Intelligence and Statistics, pp.1195-1204, 2016.

D. Wang, J. Hoffmann, and T. W. Reps, PMAF: an algebraic framework for static analysis of probabilistic programs, Programming Language Design and Implementation (PLDI, pp.513-528, 2018.

R. J. Williams, Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning, Machine Learning, vol.8, pp.229-256, 1992.

D. Wingate and T. Weber, Automated Variational Inference in Probabilistic Programming, 2013.

F. Wood, J. Willem-van-de-meent, and V. Mansinghka, A New Approach to Probabilistic Programming Inference, Artificial Intelligence and Statistics (AISTATS), pp.1024-1032, 2014.

Y. Wu, S. Srivastava, N. Hay, S. Du, and S. J. Russell, Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms, International Conference on Machine Learning (ICML), pp.5339-5348, 2018.

H. Yang, Implementing Inference Algorithms for Probabilistic Programs, 2019.