
HAL Id: hal-02399717
https://hal.science/hal-02399717

Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Systems Engineering to Model the Interaction of
the Pilot, the Aircraft, and the Procedures

Vatsal Pant, Jean-Charles Chaudemar, Hamid Demmou

To cite this version:
Vatsal Pant, Jean-Charles Chaudemar, Hamid Demmou. Using Systems Engineering to Model the
Interaction of the Pilot, the Aircraft, and the Procedures. 5th International Symposium on Systems
Engineering (ISSE 2019), Oct 2019, Edinburgh, United Kingdom. pp.1-6. �hal-02399717�

https://hal.science/hal-02399717
https://hal.archives-ouvertes.fr


�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� 
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/25178

Pant, Vatsal and Chaudemar, Jean-Charles and Demmou, Hamid Using Systems Engineering to Model the

Interaction of the Pilot, the Aircraft, and the Procedures. (2019) In: 5th International Symposium on Systems

Engineering (ISSE 2019), 1 October 2019 - 3 October 2019 (Edinburgh, United Kingdom).



Using Systems Engineering to Model the Interaction
of the Pilot, the Aircraft, and the Procedures

1st Vatsal Pant
DISC (Dept of Complex Systems Engineering)

ISAE-SUPAERO
Toulouse, France
vatsal.pant@isae.fr

2nd Jean-Charles Chaudemar
DISC

ISAE-SUPAERO
Toulouse, France

jean-charles.chaudemar@isae-supaero.fr

3rd Hamid Demmou
ISI (dept of Systems Engineering)

LAAS-CNRS
Toulouse, France

hamid@laas.fr

Abstract—This paper presents an ongoing work on how
systems engineering relates pilot, procedures, and the aircraft.
This is done by modelling these three using an example case
of landing procedure (general aviation). The model also helps
in performing safety analysis of the procedures laid out by
the aircraft operators/ manufacturers, or the aviation regulating
authorities (EASA, FAA, etc.).

Index Terms—MBSE, MBSA, SysML, Modeling, Procedures,
Safety Analysis, Cockpit

I. INTRODUCTION

In aviation the three most important entities are, the human
(be it the engineer who designs it or the pilot who flies it),
the machine (the aircraft, more specifically the cockpit, where
the pilot interacts with the aircraft), and perhaps the most
important of all procedures. Procedures have played the role
of making sure that everything is indeed done as it is meant to
be. It is like the holy book of aviation; everyone believes in it
and follows it with utmost faith. Almost always the outcome is
perfect and smooth operation of the entire system (aircraft and
personnel), for example, a pilot is trained to follow a procedure
to land an aircraft at an airport. The pilot has a certain number
of tasks to perform, that he/she verifies by going through a
checklist. However, there have been cases when pilots had to
actually deviate from the procedures to avoid a catastrophe
(the best example can be the case of US Airways flight 1549
where captain Chesley Sullenberger skipped directly to the
18th step in order to safely ditch the A320 on the Hudson. [1]
There have also been cases where the procedures were simply
missing or not at place (for example, the recent crashes of
Lion Air Flight 610 [2] and Ethiopian Airlines Flight 302 [3])
and the pilot had to rely on their experience or in some case
inexperience (both examples of the 737 missing procedures for
a certain Maneuvering Characteristics Augmentation System
that compensated for higher and forward position of the
engine on the wing). Given these situations, it becomes very
interesting to carry out the safety assessment of how the pilots
carry out these procedures. The first step in that direction is to
model the pilot and the cockpit together with the procedures.

The next section shows why we use Systems Engineering to
model this interaction. Subsequently moving on to the section
that models the three parts separately and the fourth section

shows how this integration is carried out. Finally discussing
the Conclusion with some future works.

II. MBSE

Model-based systems engineering (MBSE) relies on the
leverage of the graphical representation and the abstraction
of modelling in the design and development phases. Thus,
models bear powerful means for the systems analysis and the
early validation, e.g., through model simulations or theorem
proof techniques.

Why Use UML?

UML, or Unified Modelling Language, was developed to
better visualize and model programs (especially for Object
Oriented Programming). It has an interesting perspective to
visualize relationship between classes and entities of a com-
puter program. It has the advantage that it doesn’t require
a programmer to read the complete code, instead he can go
through the model diagram and understand what the program
is about. It is very readable for any level of computer pro-
grammer. Inspired by this, we wanted to develop a model that
can be used by people from different domains. Our objective
was that different users/experts can work on a common block
diagram and understand the working from everyone’s point
of view. As will be seen later in the coming sections that it
becomes very easy to understand what goes in the cockpit
and how the pilot carries out tasks just by looking at these
diagrams.

Also, we wanted to have a tool based on this modelling
that enables, for instance, the pilot to try different operational
scenarios and see how they affect the working of the whole
system. The basic objective of this model is to have a common,
”ready for all” starting model that everyone can play with and
provide their inputs.

Before starting the modelling here is a brief introduction to
the class diagram and what each representation (arrows, boxes,
etc stand for). figure 1 shows a generic class diagram.

Class diagram represents a class as a block that has the
following partitions:
- Name: the name of the class
- Attributes: the properties of the class that describe the object
being modelled.



Fig. 1. UML class with type of connectors

- Operations: the operations that are associated with the
mentioned class

There exists various kinds of relationship between classes
in a class diagram, we would like to mention the type and
role of each relationship so that it becomes easy to follow the
coming sections.
- Inheritance: here, the classes inherit the same functionalities
as that of the parent class. (solid black line with an arrow)
- Association (solid black line without arrow): it shows any
logical relationship between classes.
- Composition: it shows the dependence of the one class to the
existence of the other class. That is, the dependent class will
cease to exist when the main class is destroyed. (solid black
line with a diamond)
- Multiplicity: it is the association used when the cardinality
of a class with relation to another class is shown. For example,
an aircraft may have zero to many passengers. The notation
0..* in the diagram means zero to many.

The next section shows how each of the components is
modelled separately and the explanation of each class diagram.

III. MODELLING

In this section we show how we used the above mentioned
UML class diagram representation to model the pilot, proce-
dures, and the cockpit. The overall idea of this interaction can
be seen in figure 2.

Pilot takes visual inputs and information from the display
screens and perform some actions on the aircraft by applying
input to the control columns like yoke, thrust, flaps, rudder,
and landing gear. These actions are given by Procedures that

Fig. 2. Process Diagram.

Fig. 3. Approach.

contain all the tasks needed to perform the landing and allows
the pilot to execute the required task in a sequential order. To
perform a task, the pilot provides a control action (landing
gear lever down), this control action gives an input to the
aircraft (electrical input). The aircraft processes it and gives
corresponding control output (like, lowering of the landing
gear by hydraulic actuation). The sensors check if the landing
gear is down and locked, if yes, it is indicated to the pilot in the
cockpit by three green lights and the approach is continued.
If anything is in an incorrect position, the pilot receives a
warning and he/she selects a non nominal procedure from the
Quick Reference Handbook and switches to a different set
of tasks (for example, they may perform a missed approach
procedure by going around, in this case the task would be to
increase throttle, pitch up, inform Air Traffic Controller, etc).

A. Landing Procedure

The landing procedures are published by regulatory au-
thorities, airlines, and aircraft manufacturer based on their
requirement like type of runway, special operating scenarios,
etc. We use the generic landing procedure published by FAA
in pilot handbook [4] mentioned in the following steps. This
can also be seen in 3

• Turn Base (aviation term for aligning with the runway)
• Reduce Power to appropriate required level
• Extend the Flaps to position 1
• Lower the Landing Gear
• Flaps at position FULL
• Flare the aircraft to break the descent and maintain a

smooth touchdown
• Touchdown
• Brake (Reverse thrust if required/available)

To model this we define a class called ”procedures” see
figure 4

The attributes are:

• speed: it corresponds to the speed of the aircraft with
respect to the wind, it is of type integer.



Fig. 4. Procedures UML

• position: it uses navigational aids and computes the
distance from touch down point on the runway (it is in
nautical miles, of type integer)

• altitude: during the approach phase pilots usually switch
from altitude with respect to the mean sea level to radio
altitude, i.e., the altitude with respect to the ground just
below the aircraft. (it is in feet, so type integer is used)

• heading: It is defined as the direction of the flight with
respect to the true north. It is measured in degrees (from
1 to 360, integer)

• delay:delay in performing a task might lead to an abnor-
mal scenario hence it is also used as an attribute to define
the class. (it is measured in seconds, hence type integer)

After the attributes we define the operations of this class:
• select task(): it selects the next task based on the position

of the aircraft, for example when the aircraft is aligned
to the runway, it will select lower landing gear.

• execute task(): Once the input is received from the pilot
it will perform the desired task

• compare(): this operation will compare the task per-
formed by the pilot and the task that must have been
performed. Also the delay that was present while per-
forming the task.

There are two sub-classes that depend on the parent class
”Procedures” they are ”Checklists” and ”Tasks”

The attributes of checklists are:
• tasklist: It is of type boolean and basically takes status

of 1 (meaning task done) and 0 (missing task).
The operations are:
• selectnormal(): based on the state of the aircraft, if

everything is normal this will be selected.
• selectnonnormal(): If there is a fault or failure, this will

be selected.
Here we notice that the relationship has ”1 to many”

cardinality this shows that there exists various checklists that

Fig. 5. Pilot UML

are performed when coming to land, and at the appropriate
phase corresponding checklist is selected.

The attributes of class ”Tasks” are:
• speed: same as ”procedures”
• position: same as ”procedures”
• altitude: same as ”procedures”
• heading: same as ”procedures”
• delay: same as ”procedures”
• type: this is of type string that selects the type of tasks

to be performed based on the condition of the flight
(nominal, non nominal)

After the attributes we define the operations of this class:
• select task(): it selects the next task to be performed.

B. Pilot Modeling
The pilot has in his/her memory the list of task to be

done for a procedure, he starts with the first task, gives an
input to the aircraft (yoke, thrust, etc) and then sees the
output, if the output is correct, he moves to the next task,
and subsequently finishes the entire procedure successfully.
However, if the output is not the expected one, he selects a
new procedure to compensate for the incorrect state of the
aircraft. For example, lets say the pilot is approaching the
runway and gives the command to extend the flaps. The flaps
have a faulty actuator and they dont extend. In that case the
pilot uses a different procedure by increasing the speed of the
aircraft to compensate for loss of high lift device (flaps) so that
the aircraft doesn’t stall. The pilot then subsequently plans for
a high speed approach and informs his intentions to the Air
Traffic Controller. The thing that ensures that the procedures
have been carried out is the checklist, it was purely verbal in
the past but now we have electronic checklist that is partially
verified/filled in by the aircraft systems. To better model this
behavior of pilot in the cockpit we use UML model shown in
5

The attributes of class ”pilot” are:
• visual: it is of type string. It describes everything that the

pilot is looking outside of the cockpit, for example, the
runway, approach lights, etc.



• screen: also of type string that shows the information
available on the display screens inside the cockpit.

The operations performed by class ”pilot” are:
• lower LG(): the pilot lowers the landing gear
• yoke input(): provides input on the control stick
• rudder input(): provides input on the rudder
The attributes of class Control Actions are
• decision: it is of type Boolean that shows if the decision

of performing a control action was taken or not.
Following are the operations performed by this class:
• advance task(): based on the decision move to the next

task
• assign checklist(): assign ”done” to the checklist.

C. Aircraft

Aircraft class is the only physical component of our model.
It represents two sub classes: cockpit and Control surfaces as
seen in figure 6. The idea behind this block is to show how
the pilot interacts with the aircraft. The attributes are

• callsign: it is the identifier of the aircraft, every flight has
a unique identifier and is used by ATC to differentiate
between various flights on ground and in sky. It is of
the type string as it usually contains a string of letter or
numbers, for example, British Airways flight 213 from
London to Boston can have a callsign ”BAW13G” note
that it is different from actual flight number. This is done
in order to avoid confusion with flights that have similar
number/pronunciation but belong to different airlines.

• phase: it tells us about the current phase of the flight,
in our example case this is approach. It is also of type
”string”.

• state: it tells about the state of the components, ie,
if everything is working well or if there’s any failure
present. It is of type ”string”.

After the attributes we define the operations of this class:
• PCAinout(): this provides signal to Primary Control Sur-

faces like the Aileron, Elevators, Rudder, etc. It does so
by converting pilot’s action on the control stick to an
electric signal and then processing that electrical signal to
the desired value and sends it to the actuator that controls
the surface.

• cockpitdisp(): it shows the status of all the flight param-
eters on the display in cockpit.

As can be seen in the figure 6 we have the two sub classes,
”Cockpit” and ”Control Surfaces” that are linked to the class
”Aircraft” by the relation of association.

Cockpit class describes the interior process in the cockpit
and control surfaces class explains what is happening on the
exterior of the aircraft.

The attributes of cockpit are:
• mode: it informs about the corresponding mode, for

example G/S (glide scope is active), LOC (on localizer),
FLARE (aircraft performing flare just before touchdown),
etc. It is of type ”string”.

Fig. 6. Aircraft UML

• disp: it is of type ”string” that shows the information on
the display

• inst ident: it is also of ”string” type that shows what is
to be displayed on the screen

The operations are:
• update disp(): display the current status and keep updat-

ing
• give warning(): it shows the status of all the flight

parameters on the display in cockpit.
The attributes of Control Surfaces are:
• ident: it informs about the corresponding mode, for

example G/S (glide scope is active), LOC (on localizer),
FLARE (aircraft performing flare just before touchdown),
etc. It is of type string.

• sensor read: it reads the value from the sensor to check
for the correct position and deflection of the control
surface. (type integer)

The operations are:
• devip(): provide deviation to the control surface.

D. Safety Analysis

To perform safety analysis of this process we add another
class called ”STPA” (System Theoretic Process Analysis)
is based on STAMP (System Theoretic Accident Model -
Process) developed at MIT [5]. It translates any process to a
controller-process model that has a controller which provides
control actions to control the process. We use this method to
assess the hazards that might be caused by improper control
actions. In our case the pilot becomes the controller and the
aircraft becomes the process. Based on the procedures, the
pilot gives control actions to the aircraft. We try to analyze
all the possible control actions and obtain their corresponding
unsafe control action. This class uses inputs that check when
and if a control action was provided and correspondingly gives
a list of unsafe control actions. That enables the pilot to know



Fig. 7. Safety Analysis UML

what are the hazards corresponding to each unsafe control
action that he might provide. This is seen in figure 8

The attributes of STPA are:
• time: It is of type ”string”.
• quality: it is of type ”string” and tells us if and when

was a control action proveded (for example, landing gear
lowered too late)

The only operation associated with this class is ”listUCA”
that populates a table that contains all the possible unsafe
control action.

Here the STPA block provides all the probable unsafe
control action to the pilot. This becomes a very labor-intensive
task if done manually by the pilot. In order to filter them and
have only the relevant unsafe control actions provided to the
pilot we add another block called tool.

The attributes of tool are:
• ADSB: It is of type ”string” and represents the data

packet received from the aircraft.(Automatic dependent
surveillancebroadcast (ADSB) is a surveillance technol-
ogy in which an aircraft determines its position via
satellite navigation and broadcasts it which is received
by ground stations and other aircraft. This provides
situational awareness to other aircraft and allow ATC
to maintain separation. It usually contains data packets
that has information about the flight like speed, heading,
position, etc)

• ac state: shows the state of the aircraft (all ok, failure,
atc)

The operations are:
• predictUCA(): based on the safety analysis method it

predicts some unsafe control actions
• delay(): it shows the status of all the flight parameters on

the display in cockpit.
To allow pilots to simulate the prediction of Unsafe Control

Actions, we have developed a tool in MATLAB that takes into
account the physical position of the aircraft and other flight
parameters like speed, heading, and altitude. It combines these
with the delay that might have been caused because of previous
tasks and predicts the unsafe control action by selecting from
the previously generated unsafe control actions. [6]

IV. INTEGRATION

Once we have specified the modelling for each of the
components individually we move to integrating all of them

TABLE I
TABLE TYPE STYLES

Pilot CAa Aircraft Tool Checklist
Pilot feedback feedback
CAa performs analyse

Aircraft controls analyse
Procedures applies selects
a CA = Control Actions.

in one model. Apart from the connectors already used, we
use association type of link as it can be used to show any
relationship or logical connection between two classes. Table
I summarizes the link between all the classes.

The names on top of the columns are the classes that
act on other classes given in the first column. To explain
in detail let’s start with the class pilot, as we can see Pilot
performs some contron actions (CA) by applying the available
procedures. The control action class provides a control output
to the aircraft that enables correction in trajectory or any other
desired action (like lowering the landing gear). Once the action
has been performed in the aircraft’s control surface the class
”aircraft” provides feedback to the pilot about the state of the
aircraft letting the pilot know if the action was done or not. The
subclass ”checklists” from the procedures model also provides
a feedback to the pilot about the checklists that they perform.
If something is missing they can correct/perform the action
and move to the next step. Next we move to the class ”tool”.
It performs safety analysis using the before mentioned STPA
process and takes into account the control actions, state of
the aircraft (position and other parameters), and finally the
procedures. If everything is ok after the analysis then the
normal procedures are selected and continued but if something
is not normal the pilot switched to non nominal procedures and
the tasks are updated.

V. CONCLUSION

The idea of this paper was to show that it would be
interesting to model various aspects of aircraft operations using
techniques from software development. The paper presents a
different approach to model the interaction of the pilot in
the cockpit. This approach enables different actors like engi-
neers, researchers to understand the integration in a common
framework. It has many advantages, for example, the one we
explored during the research which was to perform the safety
analyses of the pilot tasks in the cockpit. This will help not
only assessing the performance of the pilot in the cockpit but
will also help define the functionalities of the cockpit of the
future. We can have real time safety analysis that can be built
over this model that check for past pilot inputs and based
on the way he/she pilots the aircraft propose future actions
to optimize safety/economy or provide warnings in case of
potential mistakes. This also enables design engineers to define
better procedures that reduce the chances of error and improve
the overall piloting experience and safety of the aircraft.



Fig. 8. Process Diagram.

ACKNOWLEDGMENT

The ongoing research is being funded by Dassault Avia-
tion. The project is under the ISAE-SUPAERO and Dassault
Aviation chaire titled CASAC.

REFERENCES

[1] Loss of Thrust in Both Engines After Encountering a Flock of Birds
and Subsequent Ditching on the Hudson River US Airways Flight 1549
Airbus A320214, N106US Weehawken, New Jersey January 15, 2009.
Accident Report NTSB/AAR-10/03 PB2010-910403

[2] Aircraft Accident Investigation Report PT. Lion Mentari Airlines Boeing
737-8 (MAX); PK-LQP Tanjung Karawang, West Java Republic of
Indonesia 29 October 2018.

[3] Aircraft Accident Investigation Preliminary Report Ethiopian Airlines
Group B737-8 (MAX) Registered ET-AVJ 28 NM South East of Addis
Ababa, Bole International Airport March 10, 2019

[4] FAA Manual, Airplane Flying Handbook (FAA-H-8083-3B), Chapter8:
Approaches and Landings. 2016

[5] Leveson, N. G. (2011). Engineering a Safer World: Systems Thinking
Applied to Safety, The MIT Press.

[6] Vatsal Pant, Jean-Charles Chaudemar, Hamid Demmou. Safety Analysis
of Pilot-System Interaction. 12e Confrence Internationale de Modlisa-
tion, Optimisation et Simulation (MOSIM), Jun 2018, Toulouse, France.
6p. hal-01828560




