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Abstract

We study the problem of unsupervised segmentation and clustering of handwritten
lines with applications to character discovery. We propose a constrained variant
of Vector Quantized Variational Autoencoder (VQ-VAE) which produces a dis-
crete and piecewise-constant encoding of the data. We show that the constrained
quantization task is dual to a Markovian dynamics prior placed on the latent codes.
Such view facilitates a probabilistic interpretation of the constraints and allows
efficient inference. We demonstrate the effectiveness of the proposed method in the
context of unsupervised handwriting character discovery in 17th-century scanned
manuscripts.

1 Introduction

Aligning a fixed-rate stream of observations to a variable-rate series of categories is a problem that
often arises with sequential data. In speech processing, equal-sized chunks of audio are mapped to
phones of different duration. Similarly, in scanned handwritten documents, contiguous ranges of pixel
columns in an image are assigned to characters. The problem arises even in non language-related
signals like segmenting and categorizing mouse behavior from video recordings [1]. The problem
becomes harder in an unsupervised setting, where learning of the alignment has to take place jointly
with learning of the underlying latent representations.

In this study we show how to enforce the prior knowledge about average character duration in a way
that is easy to implement and behaves well during training. Using deep learning approaches such as
discrete bottleneck variational autoencoders [2, 3], we demonstrate how to apply a Markovian prior
over discrete latent codes by enforcing segmentation in a VQ-VAE with a PixelCNN decoder. The
proposed solution is tested on manuscript data. The experimental results show that it improves the
agreement of learned representations with ground truth alignments, measured by training a week
classifier on the discovered, latent representation.

In addition, we show that the HMM prior can be applied using an equivalent dual constraint based
approach. The two formulations bring complementary benefits. The former facilitates efficient
application during inference. The latter is advantageous during training because it requires a single
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Figure 1: Model architecture. The encoder combines con-
volutional and recurrent layers and extracts a sequence of
embeddings, which are quantized and used as conditioning
of an autoregressive PixelCNN decoder. The decoder pro-
duces consistent samples, by filling in the details missing
in the low-bandwith encoding with information form the
autoregressive path.
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Figure 2: The Lagrange multiplier
α of a constraint corresponds to in-
crease of the objective function for an
infinitesimal change in the constraint.

intuitive hyperparameter and does not tend to under-segment the data, thus mitigating the problem of
latent variable collapse [4].

2 Model Description

Our model contains an encoder, followed by a VQ-VAE quantizer [3] and PixelCNN [5] decoder,
which reconstructs its input in an unsupervised fashion (Figure 1). It processes lines of handwritten
text as grayscale images x ∈ [0, 1]H×L of fixed height H and variable length L. The encoder,
inspired from temporal architectures for ASR [6], is a stack of convolutional and recurrent layers
which reduce the length of the input sequence by a constant factor k to L′ = dL/ke, producing a
sequence of prequantized encodings e(x) ∈ RD×L′

.

Encodings are then quantized by replacing each vector in e by one of N learned prototypes: qt =
quantize(et) = Ezt , where E ∈ RD×N is a matrix of prototypes and z ∈ {0, 1, . . . N − 1}L′

is the
sequence of the respective prototype IDs. Finally, the sequence q is upsampled k times and used
as conditioning of a PixelCNN decoder that regenerates the input pixel-by-pixel in a left-to-right
and top-to-bottom order. The model is trained to minimize a sum of 3 terms, consisting of the
reconstruction log-likelihood, the distance of the prequantized encoding to the prototype, which is
backpropagated only to prototypes, and the commitment loss, which forces the encoder to produce
representations which are close to the quantized values:

L = − log p(x|q(x)) + ||sg(e(x))− q(x)||2 + γ||e(x)− sg(q(x))||2 (1)

where sg denotes the stop-gradient operation. The straight-through estimator [3, 7] is used to
backpropagate the loss derivative through the quantization operation.

2.1 Enforcing Segmentation

The original VQ-VAE [3] quantizes all encodings separately, disregarding their order. However,
desired latent categories (i.e. characters) span contiguous, variable width segments of encoding
vectors. Thus, the quantizer should assign all vectors in a segment to the same prototype. Therefore
all L′ vectors e(x) need to be quantized jointly in a way which assigns neighboring vectors to the
same prototype.

To this end we introduce a constrained optimization problem which is forced to create S segments:

min
z1,z2,...,zL′

L′∑
l=1

||e(x)l − Ezl ||2 s.t.
L′∑
t=2

[zt 6= zt−1] = S − 1, (2)
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where [·] is the indicator function. While it can be solved exactly using a dynamic algorithm with a
runtime O(NLS), we approximately solve it in O(NL logL) using greedy merging of neighboring
codes until obtaining the desired number of segments.

The number of characters in a line varies considerably with scribe, and even in-and-between lines of
the same scribe, typically being more narrow towards ends of lines and pages. The data also contains
long empty spaces at paragraph ends which are not automatically truncated. The constraint in (2) thus
cannot be enforced with the same value of parameter S to each line. Instead, we enforce it during
training across whole minibatches, on which the actual number of characters tends to be closer to the
expected number computed based on mean character density.

During testing we must be able to apply the model independently to each scanned line. To this end,
in Appendix A we obtain an equivalent dual form of (2):

min
z1,z2,...,zL′

L′∑
l=1

||e(x)l − Ezl ||2 +
L′∑
t=2

α′ log pρ(zl|zl−1), (3)

where α′ is an appropriate constant, and pρ defines a prior transition probability of the latent codes:

pρ(zl|zl−1) =
{
ρ if zl = zl−1,
1−ρ
N otherwise.

(4)

The prior states that with probability ρ latents zl and zl−1 are part of the same segment, and with
probability 1− ρ there is a segment boundary between columns l − 1 and l. The model is equally
likely to assign each of N characters to the new segment.

The unconstrained problem (3) corresponds to finding a quantization under a simple Markovian
prior placed on the latent codes z. It can be efficiently solved in O(NL) using the Viterbi algorithm.
Moreover, the batch-wise enforced constraint is removed allowing independent test line processing.

We can see that the two formulations (2) and (3) have their own advantages. During training, the
constrained form uses an easy to set and intepret hyperparamter S that corresponds to the desired
number of segments in a minibatch. Furthermore, it decouples the HMM cost, related to the segment
duration, from the quantization error, dependent among others on the magnitude of e(x). Many
factors of the encoder design will affect these values, such as initial weight scaling and presence of
normalization layers [8]. In fact, using (2) was crucial for using recurrent layers in the encoder – we
have observed that during training the magnitude of their outputs changes considerably. Moreover,
the constraint forces the network to find a given number of segments avoiding the trivial solution in
which a single segment is created, all latent codes became equal, and the decoder learns to ignore
the latent variables [4]. On the other hand, the HMM formulation (3) has a direct probabilistic
interpretation and enables an efficient and correct application of the model to new data.

Finally, we observe that segmental quantization provides additional training signal to the encoder.
Minimization of the commitment term ||e(x) − sg(q(x))||2 in (1) forces the encoder to produce a
representation close to the quantized prototype. The encoder is therefore trained to produce the same
output for all columns inside segments and sharp output changes between them.

3 Experimental Results

We perform the experiments on a historical corpus of 17th century Early Modern Dutch concerning
ship journals of the Dutch East India Company1. The encoder is a stack of 7 convolutions, followed
by 2-layer BiLSTM network with hidden size 32. The VQ-VAE bottleneck has 256 tokens of size
64. The decoder is composed of 2 dilated convolutions, followed by 2 regular convolutions, and
two 7-layer PixelCNNs, one reconstructing the image left-to-right and one working in the opposite
direction. We train the model using Adam with learning rate 2×10−3, multiplying it by 0.8 whenever
validation loss plateaus twice in a row.

We show the segmentation learned by the model in Figure 3. The discovered segment boundaries
(shown in the bottom half of the picture) approximately match the ground truth ones (shown in
the top half of the picture) which were extracted out of a CTC system trained in a supervised way.

1The corpus is in preparation for publishing
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Figure 3: Unsupervised segmentations obtained with the proposed criterion.
The top half shows ground truth segmentation (vertical bars) and character codes. The bottom half
shows model segmentation and prototype indices (out of 256). Green-shaded columns are properly
classified by a many-to-one mapping of prototype to characters. For instance, we can see the model
learned to properly delineate and recognize the character “o”, consistently assigning it to cluster 107.

Table 1: Evaluation of the learned representation on downstream tasks and clustering quality metrics.

Model Downstream CER Prototype to Char Acc. ARI AMI
Baseline VQ-VAE 48% 34% 0.15 0.15
Segmental VQ-VAE 29% 58% 0.24 0.36

When discovered units are matched to characters, the system correctly classifies more than half of
columns (marked in green), for example all visible occurrences of letter “o” are correctly identified
as belonging to a single category. In Table 1 we show that enforcing segments improves the quality
of the representation for downstream supervised tasks. We also show that the segmentation predicted
using the proposed method is in higher agreement with the ground truth alignment via clustering
metrics Adjusted Rand Index (ARI) [9] and Adjusted Mutual Information (AMI) [10].

4 Related Work

Design of flexible priors for variational autoencoders is an active research area. In [1] probabilistic
graphical models are used to specify the prior. This approach has been applied to unit discovery
in speech using an HMM-VAE model [11, 12]. We also apply a Markovian prior, albeit specified
implicitly through a dual constraint optimization problem.

Classical unsupervised unit discovery methods rely on priors that specify unit-dependent HMM
models [13, 14] with simple GMM emission models. Instead, we use a simple character structure,
and rely on deep learning models for image generation.

Slow feature analysis [15] has been employed to find slowly changing latent representations. However,
straightforward application of a penalty on the magnitude of latent encoding changes results in
posterior collapse of a VAE[16]. Instead, our segmental criterion prevents the collapse and trains the
encoder to produce a piece-wise constant representation with infrequent, yet abrupt changes.

5 Conclusion

We have demonstrated an alternative, constraint-based way to enforce an HMM prior over latent
variables of a variational autoencoder. An important benefit of the constraint-based formulation is
its ease of use. It is based on an intuitive, easy to set hyperparameter which controls the average
segment length. Moreover, it does not extend the training cost with a term which leads training
to poor solutions producing constant latent representations. The benefit of the approach is shown
with improvements in unsupervised detection of characters in historical handwriting. We believe,
however, that the highlighted duality between probabilistic priors and constraints has a broader set of
applications and will ease specifying prior assumptions about the latent space.
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A Derivation of the dual loss

During training the model chooses a quantized representation that creates exactly S segments and
minimizes

min
z1,z2,...,zL′

L′∑
l=1

||e(x)l − Ezl ||2 s.t.
L′∑
t=2

[zt 6= zt−1] = S − 1, (5)

To obtain the dual, unconstrained form we first transform the constrained quantization criterion (5)
into an unconstrained one by taking its Lagrangian function:

L′∑
l=1

||e(x)l − Ezl ||2 + α

 L′∑
t=2

[zt 6= zt−1]− S − 1

 , (6)

where α is a Lagrange multiplier. At optimum, α equals the objective increase for an infinitesimal
change of the constraint (Figure 2). We approximate α during model training by tracking the mean
increase of the objective (5) over the last 20 segment merges performed by the greedy algorithm.

Finally, we can gain further insights into the structure of the problem by introducing a constant

α′ = α/ log
1− ρ
Nρ

,

where N is the number of symbols and ρ is an assumed a-priori probability of continuing the previous
segment. Observe that

α

 L′∑
t=2

[zt 6= zt−1]− S − 1

 = (7)

=α

L′∑
t=2

[zt 6= zt−1] + C1 = (8)

=α′
L′∑
t=2

[zt 6= zt−1] log
1− ρ
Nρ

+ C1 = (9)

=α′
L′∑
t=2

[zt 6= zt−1] log
1− ρ
Nρ

+ α′
L′∑
t=2

([zt 6= zt−1] + [zt = zt−1]) log ρ+ C2 = (10)

=α′
L′∑
t=2

[zt 6= zt−1] log
1− ρ
N

+ α′
L′∑
t=2

[zt = zt−1] log ρ+ C2 = (11)

=α′
L′∑
t=2

log pρ(zl|zl−1) + C2, (12)

where we use the fact that [zt 6= zt−1] + [zt = zt−1] = 1 and pρ is defined to be:

pρ(zl|zl−1) =
{
ρ if zl = zl−1,
1−ρ
N otherwise.

(13)
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Since adding a constant to an optimization target doesn’t change the location of the optimum, finding
the minimizer of (6) is equivalent to minimizing

min
z1,z2,...,zL′

L′∑
l=1

||e(x)l − Ezl ||2 +
L′∑
t=2

α′ log pρ(zl|zl−1) (14)

The prior Pρ(·) states that with probability ρ latents zl and zl−1 are part of the same segment, and
with probability 1−ρ there is a segment boundary between columns l−1 and l. The model is equally
likely to assign each of N characters to the new segment.
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