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Abstract

Concepts from multiple testing can improve tests of single hypotheses. The proposed defini-

tion of the calibrated p value is an estimate of the local false sign rate, the posterior probability

that the direction of the estimated effect is incorrect. Interpreting one-sided p values as esti-

mates of conditional posterior probabilities, that calibrated p value is (1 - LFDR) p/2 + LFDR,

where p is a two-sided p value and LFDR is an estimate of the local false discovery rate, the

posterior probability that a point null hypothesis is true given p. A simple option for LFDR is

the posterior probability derived from estimating the Bayes factor to be its e p ln(1/p) lower

bound.

The calibration provides a continuum between significance testing and traditional Bayesian

testing. The former effectively assumes the prior probability of the null hypothesis is 0, as some

statisticians argue is the case. Then the calibrated p value is equal to p/2, a one-sided p value,

since LFDR = 0. In traditional Bayesian testing, the prior probability of the null hypothesis

is at least 50%, which usually results in LFDR >> p. At that end of the continuum, the

calibrated p value is close to LFDR.

Keywords: calibrated effect size estimation; p value; directional error; dividing null hypothesis;

replication crisis; reproducibility crisis; sign error; Type III error



1 Introduction

Meta-analyses of large numbers of previous studies from biomedicine and neuroscience have raised

concerns that many published results cannot be replicated (Ioannidis, 2005; Nieuwenhuis et al.,

2011; Button et al., 2013), contributing to the perceived replication crisis in many scientific fields

(Begley and Ioannidis, 2015), especially psychology (Open Science Collaboration, 2015; Hughes,

2018). The statistics community has responded with guidelines on hypothesis testing and rec-

ommendations to emphasize effect sizes (e.g., Wasserstein and Lazar, 2016). However, conflicting

proposals among statisticians on how to improve statistical data analysis (e.g., Wasserstein et al.,

2019, and references) cause confusion among non-statisticians (Schachtman, 2019; Mayo, 2019),

leaving statistical consultants with the responsibility of sifting through the arguments to provide

their collaborators practical solutions.

For example, many Bayesians propose to address criticisms of null hypothesis significance testing

by transforming the p value to a lower bound on the posterior probability that the null hypothesis

is true: see Held and Ott (2018) and its references.

Example 1. Assuming the two-sided p value is not large (p ≤ 1/e) when testing the null hypothesis

H 0 : θ = θH 0
, Sellke et al. (2001) and Benjamin and Berger (2019) recommend

B = −e p ln p (1)

as a lower bound on the Bayes factor B = Pr (P = p |θ = θH0
) /Pr (P = p |θ 6= θH 0

), where θ is the

unknown value of the parameter of interest, θH 0
is the fixed parameter value of the null hypothesis,

P is the random variable representing the p value before it is observed to be equal to the number

p. Since the posterior probability is

Pr (θ = θH0
|P = p) =

Pr (θ = θH 0
) Pr (P = p |θ = θH 0

)

Pr (P = p)
=

(
1 +

(
Pr (θ = θH 0

)

1− Pr (θ = θH 0
)
B

)
−1
)

−1

(2)

according to Bayes’s theorem, it has a lower bound of

v =

(
1 +

(
Pr (θ = θH0

)

1− Pr (θ = θH 0
)
B

)
−1
)

−1

, (3)

called the v value because a quantity approximated by B appears in Vovk (1993, §9). N

Since Pr (θ = θH 0
|P = p) is typically much larger than p when Pr (θ = θH 0

) ≥ 1/2, it is often
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claimed that p “overstates” the strength of the evidence against the null hypothesis (e.g., Goodman,

1999). That conclusion is disputed by Hurlbert and Lombardi (2009), who argue that since prudent

scientists tend to believe the null hypotheses they test are false, Pr (θ = θH 0
) should be much smaller

than 1/2, perhaps 1/10 or 1/100.

In fact, Bernardo (2011), McShane et al. (2019), and others argue that since systematic errors

prevent θ = θH 0
from ever being exactly true, it follows that 0 is the only reasonable value for

Pr (θ = θH 0
); cf. van den Bergh et al. (2019). In that case, Pr (θ = θH 0

|P = p) = 0, which would

make traditional Bayesian hypothesis testing useless. Frequentist hypothesis testing, on the other

hand, could still serve to determine whether the sample is large enough to warrant concluding that

θ > θH 0
or that θ < θH 0

. In that context, θ = θH 0
is called a dividing null hypothesis (Cox, 1977;

Bickel, 2011). The idea is that if the p value is low enough, then ŝ = sign
(
θ̂ − θH 0

)
is a reasonable

estimate of s = sign (θ − θH 0
), where θ̂ is an observed point estimate of θ and the function sign (•)

has a value of 1 if its argument is positive, −1 if its argument is negative, and 0 otherwise. In that

way, testing the null hypothesis that θ = θH 0
is used as an indirect method of deciding whether to

claim that s = ŝ.

A more direct way to make that decision would be to claim that s = ŝ only if it is sufficiently

probable or, equivalently, if the sign error s 6= ŝ is sufficiently improbable. The sign error (Stephens,

2016) is also called a “Type III error” (Butler and Jones, 2018) and a “directional error” (Grandhi

et al., 2019). The posterior probability of making a sign error given a two-sided p is

Pr (s 6= ŝ |P = p) =





Pr (θ > θH 0
|P = p) + Pr (θ = θH 0

|P = p) if θ̂ < θH 0

Pr (θ < θH 0
|P = p) + Pr (θ = θH 0

|P = p) if θ̂ > θH 0

. (4)

Under broadly applicable conditions, that is reasonably estimated by

P̂r (s 6= ŝ|P = p) = (1− v)
p

2
+ v , (5)

whenever v , the v value of equation (3), is a reasonable estimate of the Pr (θ = θH 0
|P = p) in

equation (2). The result is proved for all reasonable estimates of Pr (θ = θH 0
|P = p) in Section 2.

The form of equation (5) represents a continuum between null hypothesis significance testing

and conventional Bayesian testing. The frequentist practice of considering θ = θH0
to be a dividing

null hypothesis (Cox, 1977; Bickel, 2011) is recovered by setting Pr (θ = θH 0
) = 0, for in that case

v = 0 and P̂r (s 6= ŝ|P = p) = p /2, which is a one-sided p value. At the opposite extreme, the
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traditional Bayesian practice of setting Pr (θ = θH 0
) ≥ 1/2 often results in a v value that is much

greater than the p value, in which case P̂r (s 6= ŝ |P = p) ≈ v . Choices of Pr (θ = θH 0
) between those

frequentist and Bayesian extremes place P̂r (s 6= ŝ |P = p) within a continuum of values between

p /2 and 1. For that reason, the easily interpreted estimate P̂r (s 6= ŝ |P = p) is a natural choice of

a calibrated p value, as illustrated by example in Section 3. There, Figure 1 vividly portrays the

Bayes-frequentist continuum.

The American Statistical Association’s call to emphasize effect size estimation (Wasserstein

and Lazar, 2016) does not necessarily warrant reporting conventional effect size estimates without

modification (van den Bergh et al., 2019). In particular, a large effect size estimate can be misleading

when a direction of the effect is too uncertain. To address that problem, Section 4 derives a simple

calibration of the effect size estimate. The calibrated p value P̂r (s 6= ŝ |P = p) emerges as the

degree of shrinkage.

Finally, implications for the debate and practice of testing null hypotheses are discussed in

Section 5.

2 Estimating the local false sign rate of a single null hypoth-

esis

For making connections to the literature and for succinctly deriving equation (5) regarding a test

of the null hypothesis θ = θH0
, some terminology originally developed for testing multiple null

hypotheses will prove useful. Since Efron et al. (2001) calls the Pr (θ = θH 0
|P = p) of equation (2)

the local false discovery rate, let LFDR = Pr (θ = θH 0
|P = p); see Efron (2010) and Bickel (2019a)

for expositions. Similarly, since Stephens (2016) calls the Pr (s 6= ŝ |P = p) of equation (4) the local

false sign rate, let LFSR = Pr (s 6= ŝ |P = p).

As equation (4) suggests, to estimate LFSR of a single null hypothesis, we need not only L̂FDR,

an estimate of LFDR, but also estimates of Pr (θ ≷ θH 0
|P = p). Seeing that

Pr (θ ≷ θH0
|P = p) = Pr (θ ≷ θH 0

, θ 6= θH 0
|P = p)

= Pr (θ 6= θH 0
|P = p) Pr (θ ≷ θH0

|P = p, θ 6= θH 0
)

= (1− LFDR)Pr (θ ≷ θH 0
|P = p, θ 6= θH 0

) ,

let P̂r (θ ≷ θH 0
|P = p) =

(
1− L̂FDR

)
p≶, where p≶ is the estimate of Pr (θ ≷ θH 0

|P = p, θ 6= θH0
)
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that is defined as a one-sided p value testing the null hypothesis that θ = θH 0
with θ ≶ θH0

as the

alternative hypothesis. From here on, the two-sided p value is p = 2min (p<, p>).

Estimating Pr (θ ≷ θH 0
|P = p, θ 6= θH0

) by p≶ has both a Bayesian justification and a Fish-

erian justification. The Bayesian justification is that p≶ is in many cases an approximation of a

Pr (θ ≷ θH 0
|P = p, θ 6= θH 0

) based on any member of a wide class of prior distributions that do not

concentrate prior probability at θH 0
or at any other point (Pratt, 1965; Casella and Berger, 1987).

Setting Pr (θ = θH 0
) > 0 need not conflict with those priors since Pr (θ ≷ θH 0

|P = p, θ 6= θH 0
),

unlike Pr (θ ≷ θH0
|P = p), is conditional on θ 6= θH 0

(cf. Bickel, 2012b, 2018).

The Fisherian justification is that p≶, as a fiducial probability or observed confidence level

(Polansky, 2007) that θ ≷ θH 0
(Bickel, 2011), can serve as an estimate of a posterior probability

that θ ≷ θH0
even though, as many have noted (e.g., Grundy, 1956; Lindley, 1958; Evans, 2015,

§3.6), it does not necessarily satisfy the properties of a Bayesian posterior probability. In the same

way, many optimal point estimates can have values that are not possible for the parameters they

estimate (Bickel, 2019b). That is why Wilkinson (1977, §6.2) considered fiducial probability as an

estimate of a level of belief rather than as a level of belief. Similarly, confidence distributions, a

modern development of fiducial distributions (Nadarajah et al., 2015), have been interpreted in

terms of estimating θ (Singh et al., 2007; Xie and Singh, 2013) or an indicator of hypothesis truth

(Bickel, 2012a).

Plugging the above estimates into equation (4) yields

L̂FSR =





(
1− L̂FDR

)
p< +L̂FDR if θ̂ < θH 0

(
1− L̂FDR

)
p> +L̂FDR if θ̂ > θH 0

. (6)

Theorem 1. If sign
(
θ̂ − θH 0

)
= sign (p< − p>), then

L̂FSR =
(
1− L̂FDR

) p

2
+ L̂FDR.

Proof. By equation (6), it is sufficient to prove that

p =





2 p< if θ̂ < θH 0

2 p> if θ̂ > θH 0

.

Since the sign
(
θ̂ − θH0

)
= sign (p< − p>) condition implies that θ̂ < θH 0

⇐⇒ p< < p> and
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θ̂ > θH 0
⇐⇒ p> < p<, it is enough to prove that

p =





2 p< if p< < p>

2 p> if p> < p<

,

which follows immediately from p = 2min (p<, p>).

The sign
(
θ̂ − θH 0

)
= sign (p< − p>) condition for the theorem says the sign estimated by the

parameter estimate agrees with the sign indicated by the one-sided p values. It holds in nearly all

real situations.

3 Estimates of local false sign rates as calibrated p values

The estimate of the local false sign rate approaches a local false discovery rate or a one-sided p

value, depending on the limiting conditions.

Corollary 1. If sign
(
θ̂ − θH 0

)
= sign (p< − p>), then limp→0 L̂FSR = L̂FDR and lim

P̂r(θ=θH0
)→0

L̂FSR =

p /2, where P̂r (θ = θH 0
) is the prior probability that yields L̂FDR as the posterior probability.

Proof. By Bayes’s theorem, L̂FDR → 0 as P̂r (θ = θH 0
) → 0. Both claims then follow from Theorem

1.

Since p /2 = min (p<, p>), that result justifies calling L̂FSR the L̂FDR-calibrated p value and

accordingly denoting it by p
(
L̂FDR

)
to stress its dependence on the choice of an estimate of LFDR.

Example 2. A simple option for L̂FDR is v , the lower bound given in equation (3), with P̂r (θ = θH 0
)

in place of Pr (θ = θH0
). Then we write the v -calibrated p value as p (v).

The resulting Bayes-frequentist continuum is displayed as Figure 1, with traditional frequentism

at the left end of each plot and traditional Bayesianism at the right. Figure 2 zooms in on three

points in the continuum. N

Many other lower bounds on LFDR are available (e.g., Held and Ott, 2018, and references).

But why estimate the LFDR with an estimate of a lower bound such as the v value (Example 2)?

There are multiple reasons to accept the v value as an adequate estimate of the LFDR. First, as

the Bayes factor can be lower than B (Held and Ott, 2018), which is the Bayes factor bound behind

the v value, the v value is not necessarily a lower bound on LFDR. Second, B is close to estimated

Bayes factors for many studies in epidemiology, genetics, and ecology (Bayarri et al., 2016, Fig. 3),
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Figure 1: The three curves are p (v), v , and p /2 as functions of Pr (θ = θH 0
). For both p = 0.05

and p = 0.005, the v -calibrated p value p (v ) approaches the one-sided p value p /2 as Pr (θ = θH 0
)

decreases and approaches the estimated posterior probability v as Pr (θ = θH 0
) increases.
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Figure 2: The three curves are p (v ), v , and p /2 as functions of p, the two-sided p value, for
each of three prior probabilities: Pr (θ = θH 0

) = 0.01, 0.1, 0.5. In the plot corresponding most to
traditional frequentism (Pr (θ = θH 0

) = 0.01), the v -calibrated p value p (v) is close to p /2, a one-
sided p value. In the plot corresponding most to traditional Bayesianism (Pr (θ = θH0

) = 0.5), the
v -calibrated p value p (v) is close to v , the estimated posterior probability. The remaining plot
(Pr (θ = θH 0

) = 0.1) shows a more interesting relationship between the v -calibrated p value, the
estimated posterior probability, and the one-sided p value.
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and the v value would be close in those cases to LFDR. Third, the v value is quantitatively similar

to the following estimate of LFDR.

Example 3. Let z denote the probit transform of p /2; the probit function is implemented in R as

rnorm and in Microsoft Excel as norm.s.inv. For |z | ≥ 1, the L value is

L =
1

1 + 1/B̂
,

where B̂ = 1.86 |z | e−
z
2

2 is the median-unbiased estimate of the Bayes factor assuming the probit

transform of a one-sided p value is normal with mean 0 under θ 6= 0 (Bickel, 2019a,d). (See Held

and Ott (2016) for the maximum likelihood estimate under the same model and Pace and Salvan

(1997) on the 0% confidence interval as a median-unbiased estimate.) Then p (L) is the L-calibrated

p value. It could be approximated by p (v) since p (L) ≈ p (v), and the simplicity of p (v) may

make it more practical for general use (cf. Benjamin and Berger, 2019) than p (L), which requires

the probit transform. N

While the local false sign rate and local false discovery rate are posterior probabilities conditional

on P = p, other posterior probabilities might serve as approximations.

Example 4. The positive predictive value Pr (θ 6= θH 0
|P ≤ α) plays a key role in multiple papers

related to the reproducibility crisis (e.g., Ioannidis, 2005; Button et al., 2013; Dreber et al., 2015;

Wilson and Wixted, 2018). It is isomorphic to

Pr (θ = θH 0
|P ≤ α) = 1− Pr (θ 6= θH0

|P ≤ α) ,

which is known as the false positive report probability (Wacholder et al., 2004) and, in the multiple

testing literature, as the Bayesian false discovery rate (Efron and Tibshirani, 2002) and the nonlocal

false discovery rate (Bickel, 2013). An estimate of Pr (θ = θH 0
|P ≤ α), such as the upper bound

proposed by Bickel (2019c), is denoted by w and called a w value after Wacholder et al. (2004).

Using it as an estimate of LFDR results in p (w), the w -calibrated p value. However, w is highly

biased as an estimate of LFDR when α = p (Colquhoun, 2017, 2019; Bickel and Rahal, 2019). N
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4 Effect size estimation informed by local false sign rate esti-

mation

If all relevant prior distributions were known, the Bayes-optimal estimate of the effect size θ under

squared error loss would be its posterior mean,

E (θ|P = p) = Pr (s = ŝ |P = p) E (θ|P = p, s = ŝ)

+ Pr (s 6= ŝ , θ = θH 0
|P = p) E (θ|P = p, s 6= ŝ , θ = θH 0

)

+ Pr (s 6= ŝ , θ 6= θH 0
|P = p) E (θ|P = p, s 6= ŝ , θ 6= θH 0

)

= (1− LFSR)E (θ|P = p, s = ŝ) + (LFDR) θH 0

+ (LFSR−LFDR)E (θ|P = p, s 6= ŝ , θ 6= θH 0
) .

Without that knowledge, θ may instead be estimated by estimating E (θ|P = p).

In agreement with the L̂FSR = p
(
L̂FDR

)
framework of Sections 2-3, E (θ|P = p) is estimated

by the L̂FDR-calibrated effect size estimate,

θ̂
(
L̂FDR

)
=
(
1− p

(
L̂FDR

))
θ̂ +

(
L̂FDR

)
θH 0

+
(
p
(
L̂FDR

)
− L̂FDR

)
θH 0

,

which uses θ̂ to estimate E (θ|P = p, s = ŝ) and θH 0
to estimate E (θ|P = p, s 6= ŝ , θ 6= θH 0

). The

latter estimate works best when θ would probably be close to θH 0
conditional on a sign error. The

calibrated effect size estimate simplifies to

θ̂
(
L̂FDR

)
=
(
1− p

(
L̂FDR

))
θ̂ + p

(
L̂FDR

)
θH0

, (7)

which reveals p
(
L̂FDR

)
as the degree to which θ̂ is shrunk toward θH 0

. The next result follows

immediately from that and Corollary 1.

Corollary 2. If sign
(
θ̂ − θH 0

)
= sign (p< − p>), then

lim
p→0

θ̂
(
L̂FDR

)
=
(
1− L̂FDR

)
θ̂ + L̂FDR θH 0

; (8)

lim
P̂r(θ=θH0

)→0

θ̂
(
L̂FDR

)
=
(
1−

p

2

)
θ̂ +

p

2
θH 0

. (9)
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Figure 3: θ̂ (v) /θ̂ as a function of P̂r (θ = 0) for θH 0
= 0 and p = 0.05, 0.15, 0.25, 0.35. The

v -calibrated effect size estimate θ̂ (v) is seen to shrink θ̂ toward 0 as p or P̂r (θ = 0) increases.

The right-hand side of equation (8) has been used in multiple testing situations (e.g., Montazeri

et al., 2010; Yanofsky and Bickel, 2010). Equation (9) records the effect of considering the local

false sign rate even at the frequentist end of the Bayes-frequentist continuum.

An advantage of θ̂
(
L̂FDR

)
is that it shrinks θ̂ toward θH 0

more for higher p values without

ever shrinking it all the way to θH 0
, as seen in Figure 3. As a result, reporting calibrated effect

size estimates could help prevent researchers from concluding that θ = θH 0
on the basic of a high

p value.

5 Discussion

Imagine a world in which abstracts have v -calibrated effect size estimates and “p(v)=0.04,” “p(v)=0.01,”

etc. in place of our world’s uncalibrated estimates and “p<0.05.” Adopting the local false sign rate

estimate as a calibrated p value may focus current discussions about estimation and testing. The

traditional Bayesian and frequentist positions would no longer be incommensurate paradigms or

matters of upbringing and taste but rather opposite directions on the continuum determined by the

prior probability of the null hypothesis (Figures 1-2). Going forward, debates would then concen-

trate on ways to estimate the prior probability for each field, data type, or other reference class (cf.

Lakens et al., 2018; de Ruiter, 2019). Progress is already being made in measuring how the prior is
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influenced by a field’s risk tolerance (Wilson and Wixted, 2018), echoing the report that a demand

for novelty leads to less reproducible results (Open Science Collaboration, 2015).

Even before a consensus is reached, statisticians can inform their collaborators of the impact

of the prior probability on the local false sign rate estimate and help them determine adequate

estimates of the prior for the data at hand. Estimates may be available in some cases from meta-

analyses. For example, Benjamin et al. (2017) derived their infamous 0.005 significance threshold

in part from meta-analyses suggesting P̂r (θ = θH 0
) = 10/11 in psychology (Dreber et al., 2015;

Johnson et al., 2017). The high value of that estimate reflects modeling assumptions that would in

effect include values of θ that are close to θH 0
with the null hypothesis rather than the alternative

hypothesis. How close is close enough for inferential purposes may be a fruitful subject of future

study and argument since it determines the calibrated p value through P̂r (θ = θH 0
).

The difficulties involved in estimating prior probabilities may at times force us to retreat back

to null hypothesis significance testing without any prior or to traditional Bayesian testing with

the default 50% prior probability. The calibrated p value would then tell us what the estimated

probability of making a sign error would be if the prior probability of the null hypothesis were

actually 0% or 50%, respectively.
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