
Carleman estimate for a 1D linear elastic problem involving
interfaces. Application to an inverse problem.

Bochra Méjri
Bochra.MEJRI@univ-cotedazur.fr

University of Côte d’Azur, CNRS, LJAD,
Parc Valrose, 28 Avenue Valrose, 06108 Nice Cedex 02, France

Abstract

The aim of this work is to study the stability of the reconstruction of some mechanical
parameters that characterize interfaces within linear elastic bodies. The model considered
consists of two bonded elastic solids. The adhesive elastic layer between them is a thin
interphase that is approximated, by asymptotic analysis, as an interface. The resulting
interface model is in turn characterized by a typical spring-type linear elastic behavior.
In this context and on a 1D configuration, we investigate a Carleman-type estimate that
relates to a unique continuation principle. The proof is based on the construction of suitable
weight functions: their gradients are non-zero, the jumps of the derivatives are positive across
the interface and the averages of the derivatives vanish. The design of such weight functions
enables the control of the interface terms in the estimates. With this at hand, we establish
a Lipschitz stability estimate for the inverse problem of identifying an interface stiffness
parameter from measurements that are available on both sides of the external boundary.

Keywords: interface stiffness parameter, 1D elasticity, Carleman’s estimate, Lipschitz stability

1 Introduction
The study of solid interfaces in structural problems has garnered much scientific attention due to its
meaningful role in several engineering fields (e.g. civil engineering, mechanical engineering, biomechanics,
geomechanics,...). There are basically two types of solid interfaces in composite materials. A perfect
interface describes the perfect (welded) contact between two solids, i.e. the displacement and the stresses
are both continuous across the interface. An imperfect interface delineates the situation when there is an
adhesive elastic layer of a different material (e.g. glue, lubricant,...) between the solids [14, 12, 15, 6, 17].

Aim of this study is the identification of some mechanical parameters that characterize imperfect
elastic interfaces. More precisely, the studied model corresponds to the sample problem of two bonded
elastic solids. The adhesive elastic layer between them is a thin material interphase that is modeled as an
interface by asymptotic analysis. The resulting interface model is in turn characterized by a typical spring-
type linear behavior. Namely, the interface tractions are assumed to be continuous, but the displacement
can be discontinuous across the debonded region and, as the case may be, proportional to the interface
traction via a stiffness parameter. The later is a diagonal matrix with components in the tangential and
normal directions expressed in function of the thickness and the Lamé parameters of the thin elastic layer
modeling the bond [15]. It is important to determine the stiffness parameters for the predications of the
mechanical properties of complex systems. This parametric inverse problem is treated from two aspects:
a numerical one by developing an algorithm aiming at the quantification reconstruction of the interfaces
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elastic stiffnesses, which is developed in a previous work [13] and a theoretical one by quantifying the
stability of the parameters, which is presented in this paper.

Various forms of stability estimates for the Robin coefficients are developed in the literature: Both
local and monotone global Lipschitz stability for regular Robin coefficient are provided by Chaabane
et al. [7] under the assumption that the flux is non negative, Lipschitz stability estimate for piecewise
constant Robin coefficient is proved by Sincich [18], monotone global Lipschitz stability is developed by
Alessandrini et al. [1] using the three–spheres–inequalities as the main tool and also one can find global
logarithmic type [3, 8] based on the general Carleman inequality proven by Phung [16]. We refer to the
review [19] for more details about this kind of inequalities. Although, Belhachmi et al. [2] considered
a Laplace equation with a Robin transmission condition, i.e. the potential is continuous and the flux
is discontinuous, a dual problem for the one considered here. The proof of their directional Lipschitz
stability has the same lines as the one developed in [7]. Jaoua et al. [11] proved Local Lipschitz stability
for an impedance defined on a crack. Up to our knowledge, there are no studies in the literature concerning
the stability issue of the interfaces elastic stiffnesses.

In this framework, we focus on the toy problem of the imperfect interface problem as a first step,
avoiding the difficulties encountered with the complexity of the mathematical resolution. Therefore, we
are interested in the parametric inverse problem in the case of one-dimensional elasticity equation with a
spring-type linear law. More precisely, we study the stability issue of an interface elastic stiffness defined
on a known point under the assumption that the data are available on both sides of the external bound-
aries. Roughly speaking, we seek some information on the stiffness parameters from the measurements.
The reason for asking this question is that the experiment’s measurements are naturally subjected to
errors, so that, we are looking for a deviation of the measurements from the variations of the param-
eters. Thus, we concentrate on establishing a Lipschitz stability estimate, under a priori assumption
on the measurements, based on Carleman’s inequalities. To do so, we prove a Carleman estimate for
the problem under consideration by reconstructing an appropriate weight function. Carleman estimates
for parabolic equations with standard transmission conditions were proven by Doubova et al. [9] with a
monotonicity assumption (i.e. the observation takes place in the region where the diffusion coefficient
is the lowest) and later improved by Benabdallah et al. [4, 5] where the monotonicity assumption was
relaxed. The proof is based on the construction of suitable weight functions, whose gradient is non-zero
in the observation region and the jump of the derivative is positive across the interface. Here, we impose
to these constraints that the average of the derivative of the weight function vanishes as a new parameter
which enables to control the interface terms in the derivation of the Carleman-type estimate. Carleman’s
estimates in the 2D case is still an open question.

This article is outlined as follows. In the forthcoming, the forward and inverse problems of interest are
reviewed and the main results are stated. Carleman inequality is established in section 3. Subsection 3.3
details the choice of the weight function by writing the quadratic form in terms of the jump and the
average of the weight function gradient. The fourth section presents the stability result, based on the
established Carleman inequality, for the interface stiffness parameter. The closing section is devoted to
some comment.

2 Problem setting and main results

2.1 The forward problem
Consider Ω = (0, 1) ⊂ R be a bounded open set and a be a point in (0, 1). The point a split the reference
domain Ω into two sub-domains Ω± being defined as Ω− = (0, a), Ω+ = (a, 1). These sub-domains are
characterized by the corresponding Young’s moduli E± which are elements of{

E± ∈ C1(Ω±); 0 < e1 ≤ E±(x) ≤ e2,∀x ∈ Ω±
}
.

Also, we denote Ω′ = Ω+ ∪ Ω−, S = {a} and Γ = {0, 1}.
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The one-dimensional elasticity problem considered is represented by the following elliptic boundary
value problem that involves a spring-type linear interface law. More precisely, the field q satisfies

−∂x(E∂xq)(x) = f(x), x ∈ Ω′. (1)

Moreover, the interface flux is assumed to be continuous, but the field can be discontinuous across
the singular point a and, as the case may be, proportional to the interface flux. These conditions are
represented as follows

JE∂xqK = 0, JqK = k〈E∂xq〉, (2)

where the jump of a quantity q across a point a being defined as JqK = q(a+) − q(a−), also the average
of q is defined by 〈q〉 = 1

2 (q(a+) + q(a−)) and k is a positive real-valued parameter. Besides, we impose
Neumann boundary conditions on the boundary Γ.

2.2 The inverse problem
We are interested in the inverse problem of recovering a stiffness parameter k defined on the singular
point a from available data on the boundary Γ in the one-dimensional elasticity problem. Supposing qi
as a solution satisfying (1,2) associated to k = ki, for i = 1, 2 and also f(x) = 0 for all x ∈ Ω′. Here
to achieve a stability result, we have to derive a Carleman-type estimate for the difference between two
solutions, q1 and q2, (i.e. q = q1 − q2). This difference is the solution of a non-homogeneous elliptic
equation, because of the difference of the stiffness constant it does not satisfy the appropriate spring-type
linear interface law, on the singular point a, defined above.

For this reason, we derive a peculiar Carleman-type estimate which includes additional interface
terms, as follows

JE∂xqK = 0, JqK = k2〈E∂xq〉+ g, (3)

where g = (k1 − k2)〈E∂xq1〉.

2.3 Statement of the main results
Here, we state our main results developed in this work. In first time, we present the following lemma
specifying the suitable weight function which enables to control the interface terms in the derivation of
Carleman’s estimate.

Lemma 1. There exists a weight function β ∈ C2(Ω′) satisfying

Jβ′K > 0, 〈β′〉 = 0,

for which the matrixM of the quadratic form is definite and positive, more precisely

detM∼sλ�
−43c21c

4e2r3

(er − 1)2
,

where Jβ′K = c(r − 1), 〈β′〉 = c
2 (r + 1), c = β′(a−), r = β′(a+)

β′(a−) , c1 = E− and e = E+

E− .

For example, β has the following shape (see Figure 1)

A Carleman-type estimate for linear elastic interfaces is established. This Carleman estimate would
be used later for the uniqueness and stability of the inverse solution of the parameter identification
problem under consideration.

Theorem 1. There exist λ0 > 0, s0 > 0, ϕ(x) = eλβ(x) and a weight function β satisfying the following
assumptions

Jβ′K > 0, 〈β′〉 = 0,
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Figure 1: Typical shape’s sketch for β.

so that the following estimate holds

sλ2

∫
Ω′
ϕe2sϕ |∂xq|2 dx+ s3λ4

∫
Ω′
ϕ3 e2sϕ|q|2 dx ≤ C‖esϕf‖2L2(Ω′) +

sλϕ(a)

k2
e2sϕ(a)|g|2

+ sλϕ(1) e2sϕ(1)|E∂xq|2(1) + sλϕ(0) e2sϕ(0)|E∂xq|2(0)

+ s3λ3 ϕ3(1) e2sϕ(1)|q|2(1) + s3λ3 ϕ3(0) e2sϕ(0)|q|2(0),

for all λ ≥ λ0, s ≥ s0, q piece-wise smooth field satisfying (1,3) and g = (k1 − k2)〈E∂xq1〉.

The stability estimate is a fundamental result in the inverse problem which immediately yields the
uniqueness result. Stability estimates are so meaningful from the theoretical aspects and also form the
numerical one, more precisely this type of estimates specifies the property of the numerical algorithms.
The stability estimate obtained here is based on the main global Carleman inequality which is valid only
in one-dimensional.

Theorem 2. Denoting by Ω′ = (0, a)∪ (a, 1) as a union of two open subsets of R. Moreover, one express
qi as the solution of (1,2) associated with k = ki and qi ∈ H1(Ω′), for i = 1, 2. Let m > 0 be a constant
where 〈E∂xq1〉 ≥ m on the point a. Then, there exists a positive constant C such that

|k1 − k2|2 ≤ C
(
|q1 − q2|2(1) + |q1 − q2|2(0)

)
.

This result is a very important step to numerically solve the parameters identification problem in
elastic interfaces because it provides the condition in which this problem is stable numerically.

3 Carleman inequality
For simplicity, we divide the proof into five steps.

3.1 Change of variables and outlines
In this step, we set the differential equation satisfied by a new function ψ, which will be q up to a weight
function. Thus, we introduce

ψ(x) = esϕ(x)q(x), Pψ(x) = −esϕ(x)∂x(E∂x(e−sϕ(x)ψ)),

where s is a positive constant and ϕ is a positive function defined as a weight function as follows

ϕ(x) = eλβ(x).

Let us assume that we already find a weight function β(x). So that, we have the following relations in
Ω′ holds

∂xϕ = λβ′ϕ.
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We can rewrite the right-hand side of (1) by∫
Ω′
f2e2sϕ dx =

∫
Ω′
|Pψ(x)|2 dx.

Therefore, our task is a lower estimate of ‖Pψ‖2L2(Ω′). Direct calculations yield

Pψ = −∂x(E∂xψ) + 2sλϕEβ′ ∂xψ − s2λ2ϕ2 (β′)2Eψ + sλϕ (Eβ′)′ ψ + sλ2ϕE(β′)2 ψ.

For obtaining a lower estimate for ‖Pψ‖2L2(Ω′), we decompose the operator P into the symmetric part
P+ and the anti-symmetric part P− such that P = P+ + P−.

We define the adjoint operator P∗ as follows

P∗ψ = −∂x(E∂xψ)− 2sλϕEβ′ ∂xψ − s2λ2ϕ2 (β′)2Eψ − sλϕ (Eβ′)′ ψ − sλ2ϕE(β′)2 ψ.

We define the symmetric part P+ and the anti-symmetric part P− of P by

P+ =
1

2
(P + P∗), P− =

1

2
(P − P∗).

Then, we have Pψ = P+ψ + P−ψ and

P+ψ = −∂x(E∂xψ)− s2λ2ϕ2 (β′)2Eψ

and
P−ψ = 2sλϕEβ′ ∂xψ + sλϕ (Eβ′)′ ψ + sλ2ϕE(β′)2 ψ.

To get the desired estimate, we take into consideration other changes in the above decomposition as
follows

P1ψ = P+ψ = −∂x(E∂xψ)− s2λ2ϕ2 (β′)2Eψ,

P2ψ = 2sλϕEβ′ ∂xψ + 2sλ2ϕE(β′)2 ψ,

fs = esϕf − sλϕ (Eβ′)′ ψ + sλ2ϕE(β′)2 ψ.

Hence
‖fs‖2L2(Ω′) = ‖P1ψ + P2ψ‖2L2(Ω′) = ‖P1ψ‖2L2(Ω′) + ‖P2ψ‖2L2(Ω′) + 2 (P1ψ, P2ψ)L2(Ω′)

≥ 2 (P1ψ, P2ψ)L2(Ω′) .

In the following steps, we see that the definition we have made of ϕ makes (P1ψ, P2ψ)L2(Ω′) positive up
to several terms that can be controlled whenever we make an appropriate choice of the parameters s and
λ.

More precisely, in the next step, we make the computations of the double products (P1ψ, P2ψ)L2(Ω′).
This will give an inequality with two global terms of |ψ|2 and |∂xψ|2 and also an interfacial term on the
left-hand side, while the observations terms will appear on the right-hand side. Finally, we will turn back
to the original function q and deduce the Carleman inequality.

3.2 First estimates
In this step, we estimate the right-hand side of the desired estimate from below by means of (P+ψ, P−ψ)L2(Ω′).
For this, we develop the four terms appearing in (P1ψ, P2ψ)L2(Ω′) and we have

2 (P1ψ, P2ψ)L2(Ω′) = 2
(
−∂x(E∂xψ)− s2λ2ϕ2 (β′)2Eψ, 2sλϕEβ′ ∂xψ + 2sλ2ϕE(β′)2 ψ

)
L2(Ω′)

= 2 (−∂x(E∂xψ), 2sλϕEβ′ ∂xψ)L2(Ω′) + 2
(
−∂x(E∂xψ), 2sλ2ϕE(β′)2 ψ

)
L2(Ω′)

+ 2
(
−s2λ2ϕ2 (β′)2Eψ, 2sλϕEβ′ ∂xψ

)
L2(Ω′)

+ 2
(
−s2λ2ϕ2 (β′)2Eψ, 2sλ2ϕE(β′)2 ψ

)
L2(Ω′)

= 2

2∑
i,j=1

Iij .
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We reduce the orders of derivatives of ψ by the integration by parts, so that we have the term I11, with
the consideration ∂x(E∂xψ)E∂xψ = 1

2∂x(|E∂xψ|2), as follows

I11 = −2sλ

∫
Ω′
ϕβ′ ∂x(E∂xψ)E ∂xψ dx

= −sλ
∫

Ω′
ϕβ′ ∂x(|E∂xψ|2) dx

= −sλ
[
ϕβ′ |E∂xψ|2

]
S∪Γ

+ sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx+ sλ

∫
Ω′
ϕβ′′ |E∂xψ|2 dx,

where, for a quantity p,
[p]S∪Γ = p(1)− p(0)− JpK.

The term I11 is given by

I11 = −sλ
[
ϕβ′ |E∂xψ|2

]
S∪Γ

+ sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx+ X11,

where
X11 = sλ

∫
Ω′
ϕβ′′ |E∂xψ|2 dx.

Using the fact that ∂xϕ = λβ′ϕ, the term I12 is given by

I12 = −2sλ2

∫
Ω′
ϕE(β′)2 ψ ∂x(E∂xψ)dx

= −2sλ2
[
ϕE(β′)2 ψE∂xψ

]
S∪Γ

+ 2sλ3

∫
Ω′
ϕE2(β′)3 ψ ∂xψ dx+ 2sλ2

∫
Ω′
ϕ (E(β′)2)′ ψE∂xψ dx

+ 2sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx

= 2sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx+ X12,

where

X12 = −2sλ2
[
ϕE(β′)2 ψE∂xψ

]
S∪Γ

+ 2sλ3

∫
Ω′
ϕE2(β′)3 ψ ∂xψ dx+ 2sλ2

∫
Ω′
ϕ (E(β′)2)′ ψE∂xψ dx.

Next, noting that 2ψ ∂xψ = ∂x(|ψ|2) and by an integration by parts, the term I21 is given by

I21 = −2s3λ3

∫
Ω′
ϕ3E2(β′)3 ψ ∂xψ dx

= −s3λ3

∫
Ω′
ϕ3E2(β′)3 ∂x(|ψ|2) dx

= −s3λ3
[
ϕ3E2(β′)3 |ψ|2

]
S∪Γ

+ 3s3λ4

∫
Ω′
ϕ3E2(β′)4 |ψ|2 dx+ s3λ3

∫
Ω′
ϕ3 (E2(β′)3)′ |ψ|2 dx

= −s3λ3
[
ϕ3E2(β′)3 |ψ|2

]
S∪Γ

+ 3s3λ4

∫
Ω′
ϕ3E2(β′)4 |ψ|2 dx+ X21,

where
X21 = s3λ3

∫
Ω′
ϕ3 (E2(β′)3)′ |ψ|2 dx.

The term I22 is given by

I22 = −2s3λ4

∫
Ω′
ϕ3E2(β′)4 |ψ|2 dx.
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Therefore, noting that s3 and s are the maximum orders respectively among all the terms ψ2 and |∂xψ|2
and estimating any lower order terms as non-principal terms, we have

(P1ψ, P2ψ)L2(Ω′) = −sλ
[
ϕβ′ |E∂xψ|2

]
S∪Γ

+ sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx+ X11

+ 2sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx+ X12

− s3λ3
[
ϕ3E2(β′)3 |ψ|2

]
S∪Γ

+ 3s3λ4

∫
Ω′
ϕ3E2(β′)4 |ψ|2 dx+ X21

− 2s3λ4

∫
Ω′
ϕ3E2(β′)4 |ψ|2 dx.

Adding all the terms together to the form (P1ψ, P2ψ)L2(Ω′) in ‖fs‖2L2(Ω′) = ‖P1ψ‖2L2(Ω′) +‖P2ψ‖2L2(Ω′) +

2 (P1ψ, P2ψ)L2(Ω′), we have

‖P1ψ‖2L2(Ω′) + ‖P2ψ‖2L2(Ω′) + 6sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx+ 2s3λ4

∫
Ω′
ϕ3E2(β′)4 |ψ|2 dx

− 2sλ
[
ϕβ′ |E∂xψ|2

]
S∪Γ
− 2s3λ3

[
ϕ3E2(β′)3 |ψ|2

]
S∪Γ

= ‖fs‖2L2(Ω′) − 2 {X11 + X12 + X21} .

3.3 Choice of a weight function
In this step, we focus our attention on the jump term at the singular point a on the left-hand side of the
above equality to find the appropriate weight function β for µ as a positive definite quadratic form

µ := sλJϕβ′ |E∂xψ|2K + s3λ3Jϕ3E2(β′)3 |ψ|2K.

Remark 1. The perfect interface was treated in the work by Benabdallah et al [5]. They controlled the
interface terms only from one side a− due to the continuity of the interface conditions. Theirs approach
fails in our case. For that reason, we propose to write the interface terms in function of the average (i.e.
information from both sides). This consideration is more general and even proved by finding the same
choice of the weight function for the perfect case as in the work of Benabdallah et al [5]. So, we adopt
our proposed idea for the standard transmission conditions as [5] and we get the following forms

JψK = 0, JE∂xψK = sλϕJEβ′K〈ψ〉

and

µ := sλϕJβ′K〈E∂xψ〉2 + 2s2λ2ϕ2〈β′〉JEβ′K〈ψ〉〈E∂xψ〉+ s3λ3ϕ3

{
JE2(β′)3K +

1

4
Jβ′KJEβ′K2

}
〈ψ〉2,

which gives the same choice of weight’s function as [5] for the perfect interface.

Remark 2. We did the calculations for β continuous and even discontinuous and we remark the same
behaviour for both cases. To simplify the calculations, we consider β as a continuous weight function at
the point a.

Now, we adopt this idea for our case and for that we develop these formulas below

k〈E∂xq〉 = −sλ kϕ(a) e−sϕ(a)〈Eβ′ ψ〉+ e−sϕ(a)k 〈E∂xψ〉,

JE∂xqK = −sλϕ(a) e−sϕ(a)JEβ′ ψK + e−sϕ(a)JE∂xψK.

So that, we write the spring-type linear interface law verified by ψ at the point a using (3) under the
condition JEβ′K 6= 0 and denoting Q(a) =

(
1 + 1

4sλ kϕ(a)JEβ′K
)−1

JψK = −sλ kϕ(a)Q(a)〈Eβ′〉〈ψ〉+ kQ(a)〈E∂xψ〉+Q(a)gs(a)
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and

JE∂xψK =
(
sλϕ(a)JEβ′K− s2λ2 kϕ2(a)Q(a)〈Eβ′〉2

)
〈ψ〉+sλ kϕ(a)Q(a)〈Eβ′〉〈E∂xψ〉+sλϕ(a)Q(a)〈Eβ′〉gs(a),

where gs(a) = esϕ(a)g(a) and we use the fact that

Jq pK = JqK〈p〉+ 〈q〉JpK, 〈q p〉 =
1

4
JqKJpK + 〈q〉〈p〉.

After, we need the following formula in the calculation of the form µ

JψK2 = s2λ2 k2ϕ2(a)Q2(a)〈Eβ′〉2〈ψ〉2 + k2Q2(a)〈E∂xψ〉2 − 2sλ k2ϕ(a)Q2(a)〈Eβ′〉〈ψ〉〈E∂xψ〉
+Q2|gs(a)|2 − 2sλ kϕ(a)Q2(a)〈Eβ′〉〈ψ〉gs(a) + 2kQ2(a)〈E∂xψ〉gs(a)

and
JE∂xψK2 =

(
s2λ2ϕ2(a)JEβ′K2 + s4λ4 k2ϕ4(a)Q2(a)〈Eβ′〉4 − 2s3λ3 kϕ3(a)Q(a)JEβ′K〈Eβ′〉2

)
〈ψ〉2

+ s2λ2 k2ϕ2(a)Q2(a)〈Eβ′〉2〈E∂xψ〉2

+ 2
(
s2λ2 kϕ2(a)Q(a)JEβ′K〈Eβ′〉 − s3λ3 k2ϕ3(a)Q2(a)〈Eβ′〉3

)
〈ψ〉〈E∂xψ〉

+ s2λ2ϕ2(a)Q2(a)〈Eβ′〉2|gs(a)|2

+ 2
(
s2λ2ϕ2(a)Q(a)JEβ′K〈Eβ′〉 − s3λ3 kϕ3(a)Q2(a)〈Eβ′〉3

)
〈ψ〉gs(a)

+ 2s2λ2 kϕ2(a)Q2(a)〈Eβ′〉2〈E∂xψ〉gs(a).

Below, we write the form µ as a quadratic form with the fact that

Jp2K = 2JpK〈p〉, 〈p2〉 =
1

4
JpK2 + 〈p〉2.

So, the form µ is as following

µ = sλϕ(a)Jβ′ |E∂xψ|2K + s3λ3ϕ3(a)JE2(β′)3 |ψ|2K
= sλϕ(a)Jβ′K〈|E∂xψ|2〉+ sλϕ(a)〈β′〉J|E∂xψ|2K + s3λ3ϕ3(a)JE2(β′)3K〈|ψ|2〉+ s3λ3ϕ3(a)〈E2(β′)3〉J|ψ|2K

=
1

4
sλϕ(a)Jβ′KJE∂xψK2 + sλϕ(a)Jβ′K〈E∂xψ〉2 + 2sλϕ(a)〈β′〉JE∂xψK〈E∂xψ〉

+
1

4
s3λ3ϕ3(a)JE2(β′)3KJψK2 + s3λ3ϕ3(a)JE2(β′)3K〈ψ〉2 + 2s3λ3ϕ3(a)〈E2(β′)3〉JψK〈ψ〉.

Using the conditions verified by ψ at the singular point a, we get the quadratic form µ1 in function of
the average of ψ and E∂xψ as follows and the form µ2 in function of gs(a)

µ = µ1 + µ2,

where

µ1 = sλϕ(a){1

4
s2λ2 k2ϕ2(a)Q2(a)Jβ′K〈Eβ′〉2 + Jβ′K + 2sλ kϕ(a)Q(a)〈β′〉〈Eβ′〉

+
1

4
s2λ2 k2ϕ2(a)Q2(a)JE2(β′)3K}〈E∂xψ〉2

+ s3λ3ϕ3(a)

{
1

4
Jβ′KJEβ′K2 +

1

4
s2λ2 k2ϕ2(a)Q2(a)Jβ′K〈Eβ′〉4 − 1

2
sλ kϕ(a)Jβ′KJEβ′K〈Eβ′〉2

}
〈ψ〉2

+ s3λ3ϕ3(a)

{
1

4
s2λ2 k2ϕ2(a)Q2(a)JE2(β′)3K〈Eβ′〉2 + JE2(β′)3K +−2sλ kϕ(a)Q(a)〈E2(β′)3〉〈Eβ′〉

}
〈ψ〉2

+ 2s2λ2ϕ2(a)

{
1

4
sλ kϕ(a)Q(a)Jβ′KJEβ′K〈Eβ′〉 − 1

4
s2λ2 k2ϕ2(a)Q2(a)Jβ′K〈Eβ′〉3

}
〈ψ〉〈E∂xψ〉

+ 2s2λ2ϕ2(a)
{
〈β′〉JEβ′K− sλ kϕ(a)Q(a)〈β′〉〈Eβ′〉2 − 1

4
s2λ2 k2ϕ2(a)Q2(a)JE2(β′)3K〈Eβ′〉

+ sλ kϕ(a)Q(a)〈E2(β′)3〉
}
〈ψ〉〈E∂xψ〉
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and

µ2 =
1

4
s3λ3ϕ3(a)Q2(a)

(
Jβ′K〈Eβ′〉2 + JE2(β′)3K

)
|gs(a)|2 + 2s2λ2ϕ2(a)Q(a)〈β′〉〈Eβ′〉〈E∂xψ〉gs(a)

+
1

2
s3λ3 kϕ3(a)Q2(a)

(
Jβ′K〈Eβ′〉2 + JE2(β′)3K

)
〈E∂xψ〉gs(a)

+ s3λ3ϕ3(a)Q(a)

(
1

2
Jβ′KJEβ′K〈Eβ′〉+ 2〈E2(β′)3〉

)
〈ψ〉gs(a)

− 1

2
s4λ4 kϕ4(a)Q2(a)

(
Jβ′K〈Eβ′〉3 + JE2(β′)3K〈Eβ′〉

)
〈ψ〉gs(a).

We note that we can write the quadratic form µ1 in a matrix form as follows

µ1 = sλϕ(a)
(
ΨT · M ·Ψ

)
,

where Ψ is the following vector
Ψ = (〈E∂xψ〉, sλϕ(a)〈ψ〉)T

and the coefficient of the symmetric matrixM are given by

M11 =
1

4
s2λ2 k2ϕ2(a)Q2(a)Jβ′K〈Eβ′〉2 +Jβ′K+2sλ kϕ(a)Q(a)〈β′〉〈Eβ′〉+ 1

4
s2λ2 k2ϕ2(a)Q2(a)JE2(β′)3K,

M22 =
1

4
Jβ′KJEβ′K2 +

1

4
s2λ2 k2ϕ2(a)Q2(a)Jβ′K〈Eβ′〉4 − 1

2
sλ kϕ(a)Q(a)Jβ′KJEβ′K〈Eβ′〉2

+
1

4
s2λ2 k2ϕ2(a)Q2(a)JE2(β′)3K〈Eβ′〉2 + JE2(β′)3K− 2sλ kϕ(a)Q(a)〈E2(β′)3〉〈Eβ′〉,

M12 =M21 =
1

4
sλ kϕ(a)Q(a)Jβ′KJEβ′K〈Eβ′〉 − 1

4
s2λ2 k2ϕ2(a)Q2(a)Jβ′K〈Eβ′〉3 + 〈β′〉JEβ′K

− sλ kϕ(a)Q(a)〈β′〉〈Eβ′〉2 − 1

4
s2λ2 k2ϕ2(a)Q2(a)JE2(β′)3K〈Eβ′〉+ sλ kϕ(a)Q(a)〈E2(β′)3〉.

The determinant of the matrixM is calculated by considering A = sλ kϕ(a)Q(a)

detM =M11M22 −M2
12

=
1

2
A2Jβ′K〈Eβ′〉2JE2(β′)3K +

1

4
Jβ′K2JEβ′K2 +

1

4
A2Jβ′K2〈Eβ′〉4 − 1

2
AJβ′K2JEβ′K〈Eβ′〉2 + Jβ′KJE2(β′)3K

− 2AJβ′K〈Eβ′〉〈E2(β′)3〉+ 2AJE2(β′)3K〈β′〉〈Eβ′〉 − 2A2〈β′〉〈Eβ′〉2〈E2(β′)3〉+
1

16
A2Jβ′KJ Eβ′K2JE2(β′)3K

+
1

4
A2JE2(β′)3K2 − JEβ′K2〈β′〉2 −A2〈β′〉2〈Eβ′〉4 −A2〈E2(β′)3〉2 − 1

2
A2Jβ′KJEβ′K〈Eβ′〉〈E2(β′)3〉

+ 2AJEβ′K〈β′〉2〈Eβ′〉2 +
1

2
A2JEβ′KJE2(β′)3K〈β′〉〈Eβ′〉 − 2AJEβ′K〈β′〉〈E2(β′)3〉.

Developing all the terms of JE2(β′)3K and 〈E2(β′)3〉 as follows

JE2(β′)3K =
1

4
Jβ′KJEβ′K2 + Jβ′K〈Eβ′〉2 + 2JEβ′K〈β′〉〈Eβ′〉,

〈E2(β′)3〉 =
1

2
Jβ′KJEβ′K〈Eβ′〉+

1

4
JEβ′K2〈β′〉+ 〈β′〉〈Eβ′〉2,

the determinant of the matrixM is then given by

detM =− 3

16
A2Jβ′K2JEβ′K2〈Eβ′〉2 +A2Jβ′K2〈Eβ′〉4 +

1

2
Jβ′K2JEβ′K2 − 3

2
AJβ′K2JEβ′K〈Eβ′〉2 + Jβ′K2〈Eβ′〉2

+ 2Jβ′KJEβ′K〈β′〉〈Eβ′〉 − AJβ′KJEβ′K2〈β′〉〈Eβ′〉+ 4AJEβ′K〈β′〉2〈Eβ′〉2 +A2JEβ′K2〈β′〉2〈Eβ′〉2

− 4A2〈β′〉2〈Eβ′〉4 − 1

16
A2JEβ′K4〈β′〉2 +

1

32
A2Jβ′K2JEβ′K4 +

1

8
A2Jβ′KJEβ′K3〈β′〉〈Eβ′〉 − JEβ′K2〈β′〉2

− 1

2
AJEβ′K3〈β′〉2.
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The determinant detM is given as follows

detM∼sλ� Jβ′K2JEβ′K2−4JEβ′K2〈β′〉2−8Jβ′K2〈Eβ′〉2 +32〈β′〉2〈Eβ′〉2 +16
Jβ′K2〈Eβ′〉4

JEβ′K2
−64
〈β′〉2〈Eβ′〉4

JEβ′K2
,

with the fact that A ∼ 4
JEβ′K for sλ� (i.e. large enough).

We remark that the determinant of the matrixM is a polynomial of fourth order with the consider-
ation of the following changes

Jβ′K = c(r − 1), 〈β′〉 =
c

2
(r + 1), c = β′(a−), r =

β′(a+)

β′(a−)
, c1 = E−, e =

E+

E−
.

Finally, the determinant is as follows

detM∼sλ� c21c
4

(
−4r(er − 1)2 + 8r(er + 1)2 − 4r

(er + 1)4

(er − 1)2

)
=
−43c21c

4e2r3

(er − 1)2
.

The determinant of the matrixM is given in function of its variable r. Here, one needs to seek the
properties of the weight function (i.e. the values of the variable r) for which the determinant is positive.
In this case, we can choose r = −1 which gives β′(a+) = −β′(a−). This choice explains that one needs
to observe from both sides of the exterior boundary to control the interface terms. Finally, one chooses
the derivative of the weight function as follows

Jβ′K = α > 0, 〈β′〉 = 0.

It is easy to verify thatM11 is a positive term with these properties of the chosen weight function. So,
the form µ1 is a definite positive form as follows

µ1 ≥ Csλϕ(a)〈E∂xψ〉2 + Cs3λ3ϕ3(a)〈ψ〉2.

3.4 Final estimates
The final step will be to estimate the terms on the right-hand side of the following equation. So, we
obtain after the consideration of the weight function choice

‖P1ψ‖2L2(Ω′) + ‖P2ψ‖2L2(Ω′) + 6sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx+ 2s3λ4

∫
Ω′
ϕ3E2(β′)4 |ψ|2 dx

+ Csλϕ(a)〈E∂xψ〉2 + Cs3λ3ϕ3(a)〈ψ〉2 +
1

2
s3λ3ϕ3(a)Q2(a)

(
2Jβ′K〈Eβ′〉2 +

1

4
Jβ′KJEβ′K2

)
|gs(a)|2

≤ ‖fs‖2L2(Ω′) − 2 {X11 + X12 + X21 + Y1 + Y2}+ 2sλϕ(1)β′(1) |E∂xψ|2(1)− 2sλϕ(0)β′(0) |E∂xψ|2(0)

+ 2s3λ3 ϕ3(1) (E2(β′)3)(1) |ψ|2(1)− 2s3λ3 ϕ3(0) (E2(β′)3)(0) |ψ|2(0),

(4)

where
Y1 =

1

2
s3λ3 kϕ3(a)Q2(a)

(
2Jβ′K〈Eβ′〉2 +

1

4
Jβ′KJEβ′K2

)
〈E∂xψ〉gs(a)

and

Y2 =
3

2
s3λ3ϕ3(a)Q(a)Jβ′KJEβ′K〈Eβ′〉〈ψ〉gs(a)−1

2
s4λ4 kϕ4(a)Q2(a)〈Eβ′〉

(
2Jβ′K〈Eβ′〉2 +

1

4
Jβ′KJEβ′K2

)
〈ψ〉gs(a).
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Remark 3. Observe that the coefficients in front of the trace terms at 0 and 1 on the r.h.s. in the
inequality (4) are positive because of the properties of the function β.

Now, we estimate the right-hand side terms in the above inequality (4) using the properties of the
derivative of β and of the Young moduli E as follows

|X11| =
∣∣∣∣sλ∫

Ω′
ϕβ′′|E∂xψ|2dx

∣∣∣∣ ≤ C(α1, e2)sλ

∫
Ω′
ϕ|∂xψ|2dx, C(α1, e2) = α1e

2
2,

|X21| = s3λ3

∣∣∣∣∫
Ω′
ϕ3 (E2(β′)3)′ |ψ|2 dx

∣∣∣∣ ≤ C(α1, e2)s3λ3

∫
Ω′
ϕ3 |ψ|2 dx, C(α1, e2) = 3e2

2α1α
2 α1 = sup

x∈Ω′
|β′′|

We remark that the second term of the following equation absorb the third one

|X12| =
∣∣∣∣−2sλ2

[
ϕE(β′)2 ψE∂xψ

]
S∪Γ

+ 2sλ3

∫
Ω′
ϕE2(β′)3 ψ ∂xψ dx+ 2sλ2

∫
Ω′
ϕ (E(β′)2)′ ψE∂xψ dx

∣∣∣∣
and we estimate it by the Young inequality mn ≤ m2

2ε + εn2

2 as follows

2sλ3

∫
Ω′
ϕ
∣∣E2(β′)3 ψ ∂xψ

∣∣ dx ≤ Cε(α, e2, ε)sλ
4

∫
Ω′
ϕ|ψ|2dx+ εsλ2

∫
Ω′
ϕ|∂xψ|2dx,

where

Cε(α, e2, ε) =
e2

2α
3

ε
.

We develop the first term in X12 using the formula for the jump of function’s product

− 2sλ2
[
ϕE(β′)2 ψE∂xψ

]
S∪Γ

= −2sλ2ϕ(1)(E(β′)2)(1)ψ(1) (E∂xψ)(1) + 2sλ2ϕ(0) (E(β′)2)(0)ψ(0) (E∂xψ)(0) + 2sλ2ϕ(a)JE(β′)2 ψE∂xψK

= −2sλ2ϕ(1)(E(β′)2)(1)ψ(1) (E∂xψ)(1) + 2sλ2ϕ(0) (E(β′)2)(0)ψ(0) (E∂xψ)(0) +
1

2
sλ2ϕ(a)JE(β′)2KJψKJE∂xψK

+ 2sλ2ϕ(a)JE(β′)2K〈ψ〉〈E∂xψ〉+ 2sλ2ϕ(a)〈E(β′)2〉JψK〈E∂xψ〉+ 2sλ2ϕ(a)〈E(β′)2〉〈ψ〉JE∂xψK.

We use the conditions verified by ψ and E∂xψ to obtain the following expression

2sλ2ϕ(a)JE(β′)2 ψE∂xψK

=
(1

2
− s3λ4kϕ3(a)Q(a)JE(β′)2K〈Eβ′〉JEβ′K +

1

2
s4λ5k2ϕ4(a)Q2(a)JE(β′)2K〈Eβ′〉3

+ 2s2λ3ϕ2(a)〈E(β′)2〉JEβ′K− 2s3λ4kϕ3(a)Q(a)〈E(β′)2〉〈Eβ′〉2
)
〈ψ〉2

+

(
1

2
s2λ3k2ϕ2(a)Q2(a)JE(β′)2K〈Eβ′〉+ 2sλ2kϕ(a)Q(a)〈E(β′)2〉

)
〈E∂xψ〉2

+

(
1

2
s2λ3kϕ2(a)Q(a)JE(β′)2KJEβ′K− s3λ4k2ϕ3(a)Q2(a)JE(β′)2K〈Eβ′〉2 + 2sλ2ϕ(a)JE(β′)2K

)
〈ψ〉〈E∂xψ〉

+
1

2
s2λ3ϕ2(a)Q2(a)〈Eβ′〉JE(β′)2K|gs(a)|2 − s3λ4 kϕ3(a)Q2(a)JE(β′)2K〈Eβ′〉2〈ψ〉gs(a)

+
1

2
s2λ3ϕ2(a)Q(a)JE(β′)2KJEβ′K〈ψ〉gs(a) + 2s2λ3ϕ2(a)Q(a)〈E(β′)2〉〈Eβ′〉〈ψ〉gs(a)

+ s2λ3kϕ2(a)Q2(a)〈Eβ′〉JE(β′)2K〈E∂xψ〉gs(a) + 2sλ2ϕ(a)Q(a)〈E(β′)2〉〈E∂xψ〉gs(a).
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We estimate the above term with the consideration that 1
1+ 1

4 sλkϕ(a)JEβ′K ≤
4

sλkϕ(a)JEβ′K for sλ sufficiently
large

2sλ2ϕ(a)JE(β′)2 ψE∂xψK

≤
(
2s2λ3ϕ2(a)JE(β′)2K〈Eβ′〉+ 8s2λ3ϕ2(a)

JE(β′)3K〈Eβ′〉3

JEβ′K2
+ 2s2λ3ϕ2(a)〈E(β′)2〉JEβ′K

+ 8s2λ3ϕ2(a)
〈E(β′)2〉〈Eβ′〉2

JEβ′K
)
〈ψ〉2 +

(
8λ

JE(β′)2K〈Eβ′〉
JEβ′K2

+ 8λ
〈E(β′)2〉
JEβ′K

)
〈E∂xψ〉2

+

(
4sλ2ϕ(a)JE(β′)2K + 16sλ2ϕ(a)

JE(β′)2K〈Eβ′〉2

JEβ′K2

)
〈ψ〉〈E∂xψ〉

+
8λ〈Eβ′〉JE(β′)2K

k2JEβ′K2
|gs(a)|2 +

sλ2ϕ(a)

k

(
16JE(β′)2K〈Eβ′〉2

JEβ′K2
+ 2JE(β′)2K +

8〈E(β′)2〉〈Eβ′〉
JEβ′K

)
〈ψ〉gs(a)

+

(
16λ〈Eβ′〉JE(β′)2K

kJEβ′K2
+

8λ〈E(β′)2〉
kJEβ′K

)
〈E∂xψ〉gs(a).

Using ϕ(a) ≤ ϕ3(a), we obtain

|X12| ≤ Cε(α, e2, ε)sλ
4

∫
Ω′
ϕ3|ψ|2dx+ εsλ2

∫
Ω′
ϕ|∂xψ|2dx+ (Cs2λ3 + Cεsλ

3 + εsλ3)ϕ3(a)〈ψ〉2

+ (Cλ+ Cεsλ+ ελ)ϕ(a)〈E∂xψ〉2 + (Cλ+ Cεsλϕ(a) + Cελ)
1

k2
|gs(a)|2

+ s2λ3ϕ2(1)|ψ|2(1) + s2λ3ϕ2(0)|ψ|2(0) + λ|E∂xψ|2(1) + λ|E∂xψ|2(0),

where C is a constant depending only on the Young moduli and the weight function β.
The terms Yj=1,2 are estimated as follows

|Y1| ≤ Cε
sλϕ(a)

k2
|gs(a)|2 + εsλϕ(a)〈E∂xψ〉2

and
|Y2| ≤

Cεsλϕ(a)

k2
|gs(a)|2 + εs3λ3ϕ3(a)〈ψ〉2.

Similarly, we have

‖fs‖2L2(Ω′) ≤ C‖e
sϕf‖2L2(Ω′) + Cs2λ4

∫
Ω′
ϕ3 |ψ|2 dx.

By gathering all the estimates, we get the following inequality

‖P1ψ‖2L2(Ω′) + ‖P2ψ‖2L2(Ω′) + sλ2

∫
Ω′
ϕ (β′)2 |E∂xψ|2 dx+ s3λ4

∫
Ω′
ϕ3E2(β′)4 |ψ|2 dx

+ Csλϕ(a)〈E∂xψ〉2 + Cs3λ3ϕ3(a)〈ψ〉2 +
1

2
s3λ3ϕ3(a)Q2(a)

(
2Jβ′K〈Eβ′〉2 +

1

4
Jβ′KJEβ′K2

)
|gs(a)|2

≤ C‖esϕf‖2L2(Ω′) + (s2λ4 + s3λ3 + Cεsλ
4)

∫
Ω′
ϕ3 |ψ|2 dx+ (sλ+ εsλ2)

∫
Ω′
ϕ|∂xψ|2dx

(Cs2λ3 + Cεsλ
3 + εsλ3 + εsλ3 + εs3λ3)ϕ3(a)〈ψ〉2 + (Cλ+ Cεsλ+ ελ+ ελ+ εsλ)ϕ(a)〈E∂xψ〉2

+ (Cλ+ Cεsλ+ Cελ+ Cλ+ Cεsλ+ Cελ+ Cεsλ)
1

k2
ϕ(a)|gs(a)|2

+ (sλ+ λ)ϕ(1) |E∂xψ|2(1) + (sλ+ λ)ϕ(0) |E∂xψ|2(0)

+ (s3λ3 + s2λ3)ϕ3(1) |ψ|2(1) + (s3λ3 + s2λ3)ϕ3(0) |ψ|2(0).
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By choosing ε sufficiently small and taking λ ≥ λ0, s ≥ s0, we obtain

‖P1ψ‖2L2(Ω′) + ‖P2ψ‖2L2(Ω′) + sλ2

∫
Ω′
ϕ |∂xψ|2 dx+ s3λ4

∫
Ω′
ϕ3 |ψ|2 dx+ s3λ3ϕ3(a)〈ψ〉2

+ sλϕ(a)〈E∂xψ〉2 +
1

2
s3λ3ϕ3(a)Q2(a)

(
Jβ′K〈Eβ′〉2 + JE2(β′)3K

)
|gs(a)|2

≤ C‖esϕf‖2L2(Ω′) +
sλϕ(a)

k2
|gs(a)|2 + sλϕ(1) |E∂xψ|2(1) + sλϕ(0) |E∂xψ|2(0)

+ s3λ3 ϕ3(1) |ψ|2(1) + s3λ3 ϕ3(0) |ψ|2(0).

(5)

3.5 Carleman’s inequality
Recalling that ψ = esϕq, we have

esϕ∂xq = ∂xψ − sλϕβ′ψ in Ω′,

which yields
sλ2ϕe2sϕ|∂xq|2 ≤ Csλ2ϕ|∂xψ|2 + Cs3λ4ϕ3|ψ|2 in Ω′,

to be used on the left-hand side of (5). Consequently, we obtain

‖P1ψ‖2L2(Ω′) + ‖P2ψ‖2L2(Ω′) + sλ2

∫
Ω′
ϕe2sϕ |∂xq|2 dx+ s3λ4

∫
Ω′
ϕ3 e2sϕ|q|2 dx+ s3λ3ϕ3(a)e2sϕ〈q〉2

+ sλϕ(a)e2sϕ〈E∂xq〉2 +
1

4
sλϕ(a)e2sϕJqK2 +

1

2
s3λ3ϕ3(a)Q2(a)

(
Jβ′K〈Eβ′〉2 + JE2(β′)3K

)
e2sϕ|g|2

≤ C‖esϕf‖2L2(Ω′) +
sλϕ(a)

k2
e2sϕ(a)|g|2 + sλϕ(1) e2sϕ(1)|E∂xq|2(1) + sλϕ(0) e2sϕ(0)|E∂xq|2(0)

+ s3λ3 ϕ3(1) e2sϕ(1)|q|2(1) + s3λ3 ϕ3(0) e2sϕ(0)|q|2(0).

Remark 4. The Carleman estimate, established here, gives the unique continuation for the 1D elasticity
equation with an imperfect interface from the knowledge of the boundary data on both sides.

4 Stability of the inverse problem
Supposing qi as a solution satisfying (1,2) associated to k = ki, for i = 1, 2 and also f(x) = 0 for all
x ∈ Ω′. Let q be the difference between both solutions q1 and q2 which satisfies the following boundary
condition at the point a

JE∂xqK = 0, JqK = k2〈E∂xq〉+ (k1 − k2)〈E∂xq1〉.

We apply the Carleman inequality, Theorem (1), to the inverse problem presented above with the interface
term g = (k1 − k2)〈E∂xq1〉 and we get

‖P1ψ‖2L2(Ω′) + s3λ4

∫
Ω′
e2sϕϕ2 |q|2 dx

≤ ‖P1ψ‖2L2(Ω′) + ‖P2ψ‖2L2(Ω′) + sλ2

∫
Ω′
e2sϕϕ |E∂xq|2 dx+ s3λ4

∫
Ω′
e2sϕϕ3 |q|2 dx

≤ obser + C
sλϕ(a)

k2
2

e2sϕ(a)|g|2(a),

(6)

where

obser = sλϕ(1) e2sϕ(1)|E∂xq|2(1)+sλϕ(0) e2sϕ(0)|E∂xq|2(0)+s3λ3 ϕ3(1) e2sϕ(1)|q|2(1)+s3λ3 ϕ3(0) e2sϕ(0)|q|2(0).
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Using the fact that ψ = esϕq, one develops the first term of the above inequality as follows

P1ψ = −∂x(E∂xψ)− s2λ2ϕ2 (β′)2Eψ

= −∂x(E∂x(esϕq))− s2λ2ϕ2 (β′)2E esϕq

= −
(
sλ(Eβ′)′ϕ+ sλ2E(β′)2ϕ2 + 2s2λ2E(β′)2ϕ2

)
esϕq − 2sλβ′ϕesϕE∂xq,

(7)

with the fact that ∂x(E∂xq) = 0.
From (7), we get the following estimate

−
(
sλ2E(β′)2ϕ2 + 2s2λ2E(β′)2ϕ2

)
esϕq − 2sλβ′ϕesϕE∂xq = P1ψ + sλ(Eβ′)′ϕesϕq. (8)

Now, we estimate the last equality (8) using Cauchy’s inequality as follows∥∥(sλ2E(β′)2ϕ2 + 2s2λ2E(β′)2ϕ2
)
esϕq + 2sλβ′ϕesϕE∂xq

∥∥2

L2(Ω′)
+ s3λ4

∫
Ω′
e2sϕϕ2 |q|2 dx

≤ ‖P1ψ + sλ(Eβ′)′ϕesϕq‖2L2(Ω′) + s3λ4

∫
Ω′
e2sϕϕ2 |q|2 dx

≤ ‖P1ψ‖2L2(Ω′) + Cs2λ2

∫
Ω′
e2sϕϕ2 |q|2 dx+ s3λ4

∫
Ω′
e2sϕϕ2 |q|2 dx.

(9)

Then, we remark that the third term in the last inequality (9) absorbs the second one and we get by
Carleman’s estimate (6) the following estimate∥∥(sλ2E(β′)2ϕ2 + 2s2λ2E(β′)2ϕ2

)
esϕq − 2sλβ′ϕesϕE∂xq

∥∥2

L2(Ω′)
+ s3λ4

∫
Ω′
e2sϕϕ2 |q|2 dx

≤ ‖P1ψ‖2L2(Ω′) + s3λ4

∫
Ω′
e2sϕϕ2 |q|2 dx

≤ obser + C
sλϕ(a)

k2
2

e2sϕ(a)|g|2(a).

(10)

Next, we need to estimate the boundary integral in terms of the domain integral and for that we present
the following theorem.

Theorem 3. (for more details see [10], Theorem 1.5.1.10) Let Ω be a bounded open subset of Rn with
a Lipschitz boundary Γ. Then, there exists a constant C such that∫

Γ

|u|pds ≤ C
(
ε1−

1
p

∫
Ω

|∇u|pdx+ ε−
1
p

∫
Ω

|u|p
)
dx,

for all u ∈ W 1
p (Ω) and ε ∈]0, 1[. In addition, C is a constant independent of u and ε (defined in Lemma

1.5.1.9 [10]).

We present the above estimation in the following form

ε
1
p−1

∫
Γ

|u|pds ≤ C
(∫

Ω

|∇u|pdx+ ε−1

∫
Ω

|u|p
)
dx

and to apply it in our case, we make the following choices

u = sλϕ esϕq,

∇u = sλ2β′ϕesϕq + s2λ2β′ϕ2 esϕq + sλϕ esϕ∂xq,

ε = (sλ2)−1.
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By Theorem 3, we get then the trace inequality

s5/2λ3 e2sϕ
(
|q(a+)|2 + |q(a−)|2

)
≤ s5/2λ3 e2sϕ

(
|q(1)|2 + |q(0)|2 + |q(a+)|2 + |q(a−)|2

)
≤ obser + C

sλϕ(a)

k2
e2sϕ(a)|g|2(a).

(11)

We use the expression JqK = k2〈E∂xq〉+ g to get the following inequality

|g|2 = |JqK− k2〈E∂xq〉|2

≤ 2
(
|JqK|2 + |k2〈E∂xq〉|2

)
≤ 2

∣∣q(a+)− q(a−)
∣∣2 + 2 |k2〈E∂xq〉|2

≤ 4
(∣∣q(a+)

∣∣2 +
∣∣q(a−)

∣∣2)+ 2 |k2〈E∂xq〉|2 .

Then, inserting the above inequality in (11), it yields

s5/2λ3e2sϕ(a)|g|2 ≤ sλϕ(1) e2sϕ(1)|E∂xq|2(1) + sλϕ(0) e2sϕ(0)|E∂xq|2(0) + s3λ3 ϕ3(1) e2sϕ(1)|q|2(1)

+ s3λ3 ϕ3(0) e2sϕ(0)|q|2(0) + C
sλϕ

k2
e2sϕ(a)|k1 − k2|2〈∂xq1〉2 + s5/2λ3e2sϕ(a) |k2〈E∂xq〉|2 .

We divide all the terms by the factor s5/2λ3

e2sϕ(a)|k1 − k2|2〈E∂xq1〉2

≤ 1√
s
ϕ(1) e2sϕ(1)|E∂xq|2(1) +

1√
s
ϕ(0) e2sϕ(0)|E∂xq|2(0) +

√
sϕ3(1) e2sϕ(1)|q|2(1)

+
√
sϕ3(0) e2sϕ(0)|q|2(0) + C

1√
s

ϕ(a)

k2
e2sϕ(a)|k1 − k2|2〈∂xq1〉2 + e2sϕ(a) |k2〈E∂xq〉|2 .

(12)

For s large enough, the left-hand side in (12) can absorb the last term of the right-hand side and the first
terms of the right-hand side are sufficiently small. Therefore, since ϕ is a bounded function, we obtain

|k1 − k2|2〈E∂xq1〉2 ≤ C
(
|q|2(1) + |q|2(0)

)
+ e2sϕ(a) |k2〈E∂xq〉|2 .

For 〈E∂xq1〉 ≥ m > 0, we have the stability estimate

|k1 − k2|2 ≤ C
(
|q1 − q2|2(1) + |q1 − q2|2(0)

)
+ e2sϕ(a) |k2〈E∂xq〉|2 .

Now, we estimate the second term by using a trace inequality, q as a harmonic function and the properties
of the function ϕ

‖v‖2L2(∂Ω) ≤ C
′‖v‖2H1(Ω) ≤ C

′‖v‖2L2(Ω).

Here, we choose
v = ϕ1/2esϕ∂x q.

So, one gets
s5/2λ3ϕ(a)e2sϕ(a) |k2〈E∂xq〉|2 ≤ C ′s5/2λ3‖ϕ1/2esϕ∂x q‖2L2(Ω)

and we estimate the right-hand side of the above inequality by Carleman’s inequality (1) as following

s5/2λ3‖ϕ1/2esϕ∂x q‖2L2(Ω)

= s3/2λ
{
sλ2‖ϕ1/2esϕ∂x q‖2L2(Ω)

}
≤ s3/2λ

{
sλϕ(1) e2sϕ(1)|E∂xq|2(1) + sλϕ(0) e2sϕ(0)|E∂xq|2(0) + s3λ3 ϕ3(1) e2sϕ(1)|q|2(1)

}
+ s3/2λ

{
s3λ3 ϕ3(0) e2sϕ(0)|q|2(0) + C

sλϕ

k2
e2sϕ(a)|k1 − k2|2〈∂xq1〉2

}
.
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We divide all the terms by s5/2λ3

ϕ(a)e2sϕ(a) |k2〈E∂xq〉|2

≤ 1

λ
ϕ(1) e2sϕ(1)|E∂xq|2(1) +

1

λ
ϕ(0) e2sϕ(0)|E∂xq|2(0) + s2λϕ3(1) e2sϕ(1)|q|2(1)

+ s2λϕ3(0) e2sϕ(0)|q|2(0) + C
1

λ
ϕ(a)e2sϕ(a)|k1 − k2|2〈∂xq1〉2.

For λ large enough, the left-hand side can absorb the last term of the right-hand side and the first terms
of the right-hand side are sufficiently small.
Therefore, since ϕ is a bounded function, we obtain

|k2〈E∂xq〉|2 ≤ C
{
|q|2(1) + |q|2(0)

}
.

Remark 5. The main idea for the above proof is presented by two step, the first one by estimating the
interfacial term 〈E∂xq〉 by the parameter s and the second one by estimating the interface additional
term 〈E∂xq1〉 by the parameter λ. It is indispensable to write the Carleman estimate in terms of the two
parameters s and λ.

5 Conclusion
By borrowing the approach developed by Benabdallah et al. [5], we prove a Carleman-type estimate
that quantifies the unique continuation result for the case of one-dimensional elasticity equation with a
spring-type linear law. The proof is based on the construction of suitable weight functions, whose gradient
is non-zero, the jump of the derivative is positive across the interface and the average of the derivative
vanishes which is a new parameter imposed to enable the control of the interface terms. We have proved a
stability estimate for the inverse problem of identifying a stiffness parameter from measurements available
on both sides of the external boundary. The extendibility of this stability estimate to the case of the
non-stationary problem will be pursued in the future. An extension to higher dimensions will be a
continuation of this work such that the challenge will be in the reconstruction of the weight function to
get a higher dimensional Carleman-type estimate but the stability proof will have the same lines as the
one presented in this work.
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