
HAL Id: hal-02397924
https://hal.science/hal-02397924

Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A spider timing model: accounting for quadrupole
deformations and relativity in close pulsar binaries

Guillaume Voisin, René P Breton, Charlotte Summers

To cite this version:
Guillaume Voisin, René P Breton, Charlotte Summers. A spider timing model: accounting for
quadrupole deformations and relativity in close pulsar binaries. Monthly Notices of the Royal As-
tronomical Society, 2019, 000, pp.1 - 16. �10.1093/mnras/stz3430�. �hal-02397924�

https://hal.science/hal-02397924
https://hal.archives-ouvertes.fr


MNRAS 000, 1–17 (2018) Preprint 6 December 2019 Compiled using MNRAS LATEX style file v3.0

A spider timing model: accounting for quadrupole
deformations and relativity in close pulsar binaries
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ABSTRACT
Spider millisecond pulsars are, along with some eclipsing post-common envelope sys-
tems and cataclysmic variables, part of an expanding category of compact binaries
with low-mass companions for which puzzling timing anomalies have been observed.
The most prominent type of irregularities seen in them are orbital period variations, a
phenomenon which has been proposed to originate from changes in the gravitational
quadrupole moment of the companion star. A physically sound modelling of the timing
of these systems is key to understanding their structure and evolution. In this paper
we argue that a complete timing model must account for relativistic corrections as well
as rotationally and tidally induced quadrupole distortions. We solve for the resulting
orbital dynamics using perturbation theory and derive the corresponding timing model
in the low eccentricity limit. We find that the expected strong quadrupole deformation
of the companion star results in an effective minimum orbital eccentricity. It is accom-
panied by a fast periastron precession which, if not taken into account, averages out
any measurement of the said eccentricity. We show that, with our model, detection of
both eccentricity and precession is likely to be made in many if not all spider pulsar
systems. Combined with optical light curves, this will allow us to measure the apsidal
motion constant, connecting the quadrupole deformation to the internal structure, and
thus opening a new window into probing the nature of their exotic stellar interiors.
Moreover, more accurate timing may eventually lead spider pulsars to be used for
high-precision timing experiments such as pulsar timing arrays.

Key words: celestial mechanics – binaries: close – pulsars: general – white dwarfs –
novae, cataclysmic variables

1 INTRODUCTION

Millisecond pulsars (MSPs) are thought to be the offspring
of low-mass X-ray binaries (LMXBs) in which mass transfer
from a low-mass star onto the neutron star carries angu-
lar momentum and spins it up to a very fast rotation (Alpar
et al. 1982). This ‘pulsar recycling’ process is evidenced from
the fact that a large fraction of the MSP population lies in
binary systems with evolved companions and that the mass
of these neutron stars tends to be larger that one of pulsars
found in binary system that have experienced reduced mass
transfer episodes (Özel & Freire 2016; Antoniadis et al. 2016;
Tauris et al. 2017). More recently, the link between LMXBs
and MSPs became clearer as some systems, now commonly
referred to as transitional MSPs (tMSPs) have been ob-
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served to transition from one class to the other (Archibald
et al. 2009; Papitto et al. 2013; Bassa et al. 2014).

An important growing class of binary MSPs is collec-
tively nicknamed as spiders due to the fact that the ener-
getic pulsar strongly irradiates (and partially destroys) their
companion. Contrary to most MSPs that have white dwarf
companions, spiders are found in tight, sub-day orbits, and
are believed to be linked to the evolutionary path of so-called
converging systems (Chen et al. 2013). The two primary sub-
types of spiders are identified as black widows and redbacks
according to the mass of the secondary (mc . 0.05M� and
mc & 0.2M�, respectively Roberts 2012), with the latter one
linked tMSPs. There is tantalising evidence that some spider
pulsars lie at the higher end of the neutron star mass range
(van Kerkwijk et al. 2011; Linares et al. 2018), which may
indicate that a key factor in their evolution is responsible
for it.

A disproportionately large fraction of the MSP popu-
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lation belongs to the spider category. Notable examples are
the two fastest known spinning pulsar, PSR J1748-2446ad
(Hessels et al. 2006) and PSR J0952-0607 (Bassa et al. 2017),
which are a redback and a black widow, respectively. While
in theory these spiders should contribute a large number of
sources to be used for pulsar timing arrays (see, e.g., Manch-
ester 2017), their timing displays undesirable behaviours
which greatly hinders their usefulness as reliable standard
clocks. A better modelling of these phenomena may there-
fore allow for a significant improvement of their timing so-
lution.

Perhaps the most common limitation to the timing
of spiders are the prominent, sometimes long lasting radio
eclipses caused by outflowing material driven off the surface
of the companion by the pulsar wind (see, e.g., Polzin et al.
2018, and references therein for recent work on the topic).
These eclipses not only cause a disappearance of the pul-
sar at radio frequencies but also chromatic effects affecting
the pulse such as dispersion delays and scattering (Stap-
pers et al. (2001), Polzin in prep.). As a consequence, radio
eclipses severely limit our ability to detect relativistic ef-
fects such as the Shapiro delay, and thus they deprive us
from additional constraints on system parameters such as
masses and orbital inclination (see, e.g., Edwards et al. 2006,
and references therein). However, the fact that the eclipsing
material is transparent to high-energy photons, makes their
timing in the gamma rays (with FERMI/LAT) an promising
venue to consider (Pletsch & Clark 2015).

Due to their evolution, the companion star in spider
systems should be tidally locked and their orbit circularised
(e.g. Hurley et al. 2002). There is some evidence for a
very small (potentially superficial) asynchronous rotation in
PSR J1723-2837 (van Staden & Antoniadis 2016), but apart
from this exceptional case, one might be tempted to think
that the timing model for spider pulsars should in princi-
ple be very simple. Surprisingly, some spider systems such
PSRs J2051-0827 and J1731-1847 display small, but tangible
eccentricity (Lazaridis et al. 2011; Ng et al. 2014). While this
puzzling characteristic should not prevent an accurate tim-
ing precision to be achieved, it appears that a large fraction
of the spiders also suffer from important orbital period varia-
tions. For instance, the original black widow PSR B1957+20
(Fruchter et al. 1988) shows orbital period variations having
an amplitude ∆P/P ∼ 10−7 over a time scale of 5 to 10 years
(Arzoumanian et al. 1994). Since then several other systems
have shown similar variations (see Section 5), and it seems
plausible that it is a common feature to all spider pulsars. In
current timing models (see, e.g., Pletsch & Clark 2015; Shai-
fullah et al. 2016), orbital period variations are empirically
fitted using a series of orbital period derivatives.

Around the time when PSR B1957+20 was discov-
ered, mechanisms were proposed in order to explain pseudo-
periodic variations of orbital periods in various types of
close-binary systems such as Algol and cataclysmic vari-
ables (Applegate 1992), and later extended to include
PSR B1957+20 (Applegate & Shaham 1994). The main idea
the Applegate mechanism is that magnetic cycles observed
in magnetically active stars may also produce quasi-periodic
variations of the gravitational quadrupole moment of the
star through the interplay of magnetic pressure and/or ten-
sion. This mechanism also predicts that luminosity and or-
bital variations should correlate which, to the best of our

knowledge, is yet to be proven in the case of spiders. Other
authors (Lanza et al. 1998) proposed that luminosity vari-
ations might be much lower than first estimated Applegate
(1992), as the luminosity response might not be instanta-
neous but rather spread over a much longer Kelvin-Helmoltz
time scale. While magnetic cycles may not be the underlying
driving force, it is generally agreed that quadrupole varia-
tions offer an interesting interpretation for period variations,
though it has failed so far to provide much predictive power.
One advantage of this type of mechanism is to naturally ex-
plain the time scale of orbital period variations and without
requiring orbital torques, as the induced force is purely ra-
dial.

It should also be noted that spider companions are con-
sidered exotic due to their irradiation, fast rotation and low
mass (especially in the case of black widows). As a result,
less is known about their internal structure than in the
case of other stars, and in particular main sequence stars
(Lanza et al. 1998). Several important questions therefore
remain unanswered about their nature. It is for instance un-
clear as to whether redbacks and black widows are a single
class of objects at different evolutionary stages or if they
evolved from two separate populations (Benvenuto et al.
2012; Chen et al. 2013). Thus, probing the internal structure
of the companion stars would greatly help in understanding
and constraining models of their past and future evolution.
Additionally spider pulsar companions lie at the most ex-
treme range of irradiated systems, beyond hot Jupiters and
donor stars in cataclysmic variables (Hernández Santisteban
et al. 2016). The process through which their day side gets
heated must considerably affect the structure and evolution
of the star such as bloating them to the point of filling their
Roche lobe Podsiadlowski (1991). It also appears that most
of spider companions reprocess a rather universal fraction
of the energy available from the pulsar spin-down (Breton
et al. 2013). Another potential important piece of informa-
tion that could be learn from a better understanding their
structure and the mechanism which triggers tMSPs to expe-
rience episodes of active mass transfer followed by quiescent
phases in which no disc is present.

In this work, we devise a timing model that encom-
passes and consistently extends the current state-of-art tim-
ing models for spiders and more generally any type of com-
pact low-mass binary in which one of the two stars suffers
from quadrupole distortion. In these systems, orbital period
variations are assumed to be caused by a variable deforma-
tion of the star, as in Applegate & Shaham (1994), however
we do not need to make any assumption about the physi-
cal mechanism causing these deformations, which will allow
to compare against different theories (see 2). This is possi-
ble thanks to the small magnitude of the observed orbital
variations, which enables us to assume that feedback from
orbital motion on internal structure is negligible. We there-
fore treat the effect of internal structure variations on or-
bital dynamics as given by an arbitrary function depending
only on time, and focus on its implications for the timing
of the system. Our model accounts for the relatively large
quadrupole moment which spider companions are expected
to bear due to their fast rotation and strong tidal interaction
with the neutron star, which results in a well-known orbital
precession. We demonstrate that the measurement of such
a precession via timing can provide a direct insight into the
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structure of the companion star, thus potentially offering a
way to answer some of the questions from above. Determin-
ing the precession rate of these systems relies on them having
a measurable eccentricity, though we demonstrate that the
perturbed orbits must necessarily have a minimum effective
eccentricity that we expect to be detectable.

We also discuss and consistently include in our model
relativistic corrections to first post-Newtonian order (1PN)
as they are significant for the dynamics even if they are
expected to be somewhat smaller in magnitude than the
quadrupole interactions. The only relevant relativistic effect
to be considered is also an orbital precession, which adds
up to the precession from quadrupole origin. Therefore, we
aim at providing a comprehensive timing model that can ac-
count simultaneously for relativistic and quadrupole effects
(tidal and centrifugal, both static and time variable) based
on first-order perturbation of Keplerian orbital dynamics of
a binary systems which includes both secular and short-term
contributions. To account for very low orbital eccentrici-
ties as observed in spider systems, we truncate our model
to first order in eccentricity and use the Laplace-Lagrange
parametrisation introduced in Lange et al. (2001). We take a
particular care in making explicit the dynamical meaning of
the model parameters. Although, the model is devised with
spider systems in mind, it is clear that our results also apply
to any low-mass, low-eccentricity binary pulsar.

In the remaining of this article, we first discuss the gen-
eral effects of tidal interactions of the companion star in
Section 2, solve the orbital dynamics to first order in rel-
ativistic and quadrupole perturbations in Section 3, which
we use to obtain a timing model for spiders to first order in
eccentricity derived in Section 4. In Section 5, we estimate
the orders of magnitude of the orbital variability and discuss
the different effects in known spider systems as well as other
systems. Finally, we give our conclusions in Section 6.

2 THE EFFECTS OF TIDAL INTERACTION

In this paper we consider spider evolution beyond the end
of the low-mass x-ray binary phase. We assume that mass
transfer is negligible and therefore that the main mechanism
that can change orbital eccentricity and spin of the compan-
ion is tidal interaction (e.g. Hurley et al. (2002)).

This assumption is not obvious, particularly in the case
of transitional redbacks (Kennedy et al. (2018) and refer-
ences therein). These systems alternate between X-ray bi-
nary and active radio pulsar phases on short time scales
(years or less). However it seems that the amount of mat-
ter then transferred is rather small, as can be judged from
their faint X-ray luminosity compared to other low-mass X-
ray binaries (e.g. Archibald et al. (2009)). Generally, spider
companions are known to evaporate. The fate of this mat-
ter is unclear, yet it seems unlikely that it be accreted by
the neutron star, as the pulsar wind would tend to repel
the material through the radio ejection mechanism (Burderi
et al. 2002). Besides, the rate of evaporation is uncertain,
but has been shown to be fairly small in some cases (Polzin
et al. 2018), where full evaporation is not expected within
a timescale comparable with the Universe’s age. In the fol-
lowing, we thus focus only on tidal interactions.

2.1 Phase locking and circularisation

The orbital separation is readily obtained from Kepler’s
third law,

a ' 3.5
(

M
1.7M�

)1/3 (
P
4h

)2/3
ls, (1)

where M is the total mass of the system (which can be ap-
proximated to the mass of the neutron star), and P is the
orbital period.

At small orbital separation such as is the case for spider
binaries (P ∼ 1.5−24 hrs; equation (1)), tidal forces from the
neutron star lead to tidal locking: the spin axis of the com-
panion is aligned with the orbital angular momentum, and
the spin period is equal to the orbital period and the orbital
eccentricity tends to zero. We stress that we consider here
the eccentricity of the osculating Keplerian orbit, as this will
become important later. Tidal locking results from viscous
dissipation of the tidal deformation of the companion star,
a process that is most efficient in stars possessing important
convective envelopes (Zahn 1977; Hurley et al. 2002; Ogilvie
2014). This is presumably more efficient in black widows
which are thought to be fully convective stars (e.g. Chen
et al. (2013)), but probably also at the lower end of the red-
backs mass range since stellar evolution sets the upper limit
for fully convective stars at 0.2−0.3M� (e.g. Rappaport et al.
(1983); Podsiadlowski et al. (2002); Chen et al. (2013)). In
the case of a fully convective star, the synchronization time
scale is given by (Hut 1981; Hurley et al. 2002)

τs =
21
7
τconv
fconv

Ic
mcR2

c

q−2
(

a
Rc

)6
, (2)

where τconv is the convection eddy turnover time scale, fconv
is a numerical factor that we will take equal to 1, Ic,mc, Rc

are the moment of inertia, the mass and the radius of the
companion star respectively (assumed spherically symmetric
here), and q = mc/mp is the ratio of the mass of the com-
panion to the mass of the pulsar. In a fully convective star
the convection time scale can be approximately expressed as
(Hurley et al. 2002)

τconv = 0.4311

(
mcR2

c

6Lc

)1/3

, (3)

where Lc is the luminosity of the star which we relate to the
effective temperature of the star by Lc = 4πR2

cσT4
eff . Defin-

ing the filling factor of the companion star as the ratio be-
tween its volume-averaged radius and the volume-averaged
radius of a Roche-lobe filling star Rf we have Rc = f Rf .
The volume-averaged Roche-lobe radius can be expressed in
units of the orbital separation using Eggleton’s approxima-
tion (Eggleton 1983), accurate to 1%,

ρ f (q) =
Rf

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(4)

The synchronization time scale (2) for fully convective stars
is then given by

τs = 1.5 · 106
(

mc

0.1M�

)1/3 (
Teff

5000K

)−4/3 (
I

mcR2
c

)
(5)

(
q
1
16

)−2

f −6 ©­­«
ρ f (q)

ρ f

(
1
16

) ª®®¬
−6

yr.
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The above formula shows the strong dependence of the syn-
chronization time scale on the mass ratio q. All else be-
ing equal, this time scale ranges from τs ∼ 5 · 103 yr for
q ∼ 0.3, mc ∼ 0.1M� (compatible with a redback system) to
τs ∼ 6 · 107 yr for q ∼ 0.02, mc ∼ 0.03M� (compatible with
a black widow system). In every case, this is significantly
less than the time spent in the low-mass X-ray binary state
according to the evolution model of Chen et al. (2013).

Similarly, the orbital circularisation time scale applied
to a fully convective star is given by (Rasio et al. 1996; Hur-
ley et al. 2002),

τc =
τconv
fconv

q(1 + q)
(

a
Rc

)8
(6)

τc ' 8 · 105
(

mc

0.1M�

)1/3 (
Teff

5000K

)−4/3
(7)

q(1 + q)
1

16

(
1 + 1

16

) f −8 ©­­«
ρ f (q)

ρ f

(
1
16

) ª®®¬
−8

yr,

with an even stronger dependence on q. The circularisation
time scale ranges from τc ∼ 6 · 103 yr for q ∼ 0.3, mc ∼ 0.1
(compatible with a redback system) to τc ∼ 3 · 107 yr for
q ∼ 0.02, mc ∼ 0.03 (compatible with a black widow system).
Additionally, we note that eccentricity is also suppressed as
a result of mass transfer during the low-mass X-ray binary
phase.

Therefore we conclude that tidal interactions alone are
sufficient to lock the companion in phase with the pulsar
and circularise the orbit before the system even enters the
spider state.

2.2 The phase-locked quadrupole potential

The frame of the principal axis of inertia (PAI)
(
®̂x, ®̂y, ®̂z

)
is the

frame such that the star has 3 non-zero moments of inertia
A ≤ B ≤ C giving the inertia tensor

Î = ©­«
A 0 0
0 B 0
0 0 C

ª®¬ , (8)

with

A =
∫

dV ρ(®̂r)(ŷ2 + ẑ2), (9)

B =
∫

dV ρ(®̂r)(x̂2 + ŷ2), (10)

C =
∫

dV ρ(®̂r)(ẑ2 + x̂2). (11)

The quadrupole moment is related to the inertia tensor by

Q̂ = Î −
1
3

Tr(Î), (12)

where Tr() takes the trace of a matrix.
The gravitational potential due to a companion star

bearing a quadrupole moment is a rotation-invariant quan-
tity and thus can directly be expressed using PAI frame
coordinates,

Φc = −
Gmc

r̂
−

3
2

G ®̂nT Q̂ ®̂n
r̂3 , (13)

where G is the gravitational constant, mc the mass the com-
panion star, ®̂n = ®̂r/r̂ is the unit vector in the PAI frame of
the direction going from the companion to the body under-
going the effect of the potential, here the pulsar, and ®̂nT is
the transposed vector. The first term of the above equation
is the usual Newtonian monopolar potential, and the second
term is the quadrupole potential.

In this paper, we assume that the companion star is
tidally locked to the pulsar, such that the PAI frame vector
®̂x is aligned with the radial vector connecting the pulsar to
the companion. This means that ®̂r ∝ ®̂x and therefore the
numerator of the quadrupole potential in (13) is merely the
®̂x ®̂x component of the quadrupole matrix (12),

®̂n⊥Q̂ ®̂n = Qx̂ x̂ =
2
3

A −
1
3
(B + C). (14)

In a two-body system with characteristic separation a be-
tween the two bodies, the ratio between the quadrupole
potential and the monopole potential is ∼ 3Qx̂ x̂/2mca2

which suggests a natural way of defining a dimensionless
quadrupole function,

J2 =
3
2

Qx̂ x̂

mca2 , (15)

where Qx̂ x̂ is defined in equation (12).
The quadrupole function contains contributions extrin-

sic and intrinsic to the star, the latter being independent
of orbital motion. In the present case of a circularised and
synchronized orbit, the spin-induced moment of the compan-
ion is an intrinsic contribution of constant magnitude Js. We
also consider a variable intrinsic contribution Jv(t). Although
the physical origin of the latter need not be specified, it has
been proposed that the stellar magnetic field applies a strain
that may significantly distort the star and vary following
magnetic cycles (Applegate 1992; Lanza et al. 1998; Lanza
& Rodonò 1999), resulting in observable orbital period varia-
tions, the so-called Applegate mechanism. In these simplified
models, the variation of quadrupole momentum is related to
variations of the angular momentum of a thin shell. Refine-
ments where later brought by Brinkworth et al. (2006) who
introduced a treatment based on a finite shell and a core,
followed by Völschow et al. (2016) who generalised that ap-
proach to more realistic density profiles of the companion
star. Alternatively, Lanza (2005, 2006) introduced a treat-
ment of the complete continuous redistribution of angular
momentum across the entire convective zone of the star,
later expanded by Völschow et al. (2018). In all these mod-
els, the underlying magnetic cycle are imposed as ad hoc as-
sumptions. Recently, the first 3D stellar simulation aimed at
demonstrating self-consistently the connection between the
magnetic dynamo and quadrupole moment variations has
been performed by Navarrete, Schleicher, Käpylä, Schober,
Völschow & Mennickent (Navarrete et al.). However quali-
tatively successful, this simulation is restricted in range and
cannot assess fully realistic cases due to the overwhelming
computing power needed. Most of the aforementioned mod-
els (in particular Lanza (2006); Völschow et al. (2016, 2018);
Navarrete, Schleicher, Käpylä, Schober, Völschow & Men-
nickent (Navarrete et al.)) conclude that it is impossible to
produce the observed magnitude of orbital period variations
with the Applegate mechanism only, except maybe for post-
common-envelope systems with companions slightly below
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the fully-convective mass limit mc ∼ 0.35M� (Lanza 2006;
Völschow et al. 2018). Interestingly, these might be akin to
redback companions. In any case, the difficulty in modelling
magnetic dynamo and its coupling to differential rotation,
particularly in fast-rotating stars, leaves the question open
to know if the Applegate mechanism is the cause of the ob-
served variations. In our treatment, the variable component
of the quadrupole, Jv(t), can be specified arbitrarily (for ex-
ample as a Taylor expansion, see (79)) allowing to test vir-
tually every model of quadrupole variations.

The extrinsic contribution to the quadrupole function
results from the tidal field of the neutron star which con-
tributes a term Jt a

3

r3 under our assumptions. The total
quadrupole function then reads

J2 = Js + Jv(t) + Jt
a3

r3 , (16)

and we can rewrite the potential of the companion, equation
(13), as

Φc = −
Gmc

r

(
1 + J2(r, t)

a2

r2

)
. (17)

2.2.1 Estimates of tidal-centrifugal deformations

The quadrupole components Js and Jt of the companion
are the leading order responses of its stellar structure to
two external fields: the effective centrifugal potential arising
from its spin, and the tidal field of the pulsar. The potential
described by equation (13) is then only valid outside the
star.

The coefficients Js and Jt can be related to the defor-
mation of the star through the apsidal motion constant k2,
such that (Sterne 1939; Kopal 1978)

Js = −k2
1
3

R2
cn2

Gmc/Rc

(
Rc

a

)2
, (18)

Jt = −k2
mp

mc

(
Rc

a

)5
. (19)

The apsidal motion constant embodies the reaction of the in-
ternal structure to the perturbing centrifugal and tidal fields.
It is defined as (Kopal 1978)

k2 =
3 − η2(Rc)

2(2 + η2(Rc))
, (20)

where the function η2(r) = r
f2(r)

d f2
dr is solution of Radau’s

equation and f2(r) is the surficial distortion by which the
perturbed equipotential surfaces of the star can be described
with the parametric equation

r ′(r, θ) = r (1 + f0 + f2(r)P2(cos θ)) , (21)

where r ′ is the perturbed radius, r the unperturbed radius,
f0 a constant, P2(x) = 3/2x2 − 1/2 is the second Legendre
polynomial, and θ the angle from the axis of the perturba-
tion (i.e. the spin axis and line connecting the two orbit-
ing bodies, for the centrifugal and the tidal deformations,
respectively). Thus f2 is a solution of Clairaut’s equation.
Note that some authors use the tidal Love number defined
as 2k2 (e.g. Kramm et al. 2011; Ogilvie 2014).

Expressing the above equations (18)-(19) as a function
of the mass ratio q and the dimensionless Roche-lobe radius

ρ f (equation (4)), the filling factor f , and using Kepler’s

third law a3n2 = G(mp + mc), we get,

Js = −
1
3

k2ρ
5
f f 5(1 + q−1) (22)

Jt = −k2ρ
5
f f 5q−1 (23)

Therefore, the relative importance of the quadrupole poten-
tial depends only on the mass ratio q, the filling factor f , and
apsidal motion constant k2. Noting that q � 1 in spiders,
we see that Jt ' 3Js.

The value of k2 is one of the major unknowns of the
problem. We note that due to their low mass and high level
of irradiation black widows are somewhat similar to so-called
hot Jupiters (Kramm et al. 2012) for which large apsidal
motion constants have been calculated – up to k2 ∼ 0.2
(Kramm et al. 2011, 2012) – while sun-like stars have much
lower k2 ∼ 0.015 (e.g. Ogilvie (2014)). The latter value is
comparable to what is expected in low-mass white dwarfs
where 0.01 . k2 . 0.1 (Valsecchi et al. 2012). A large frac-
tion of binary pulsars possess white dwarf companions and
some redback companions are possibly going to turn into
them (Bellm et al. 2016). On the other hand, spiders might
be similar to companions in cataclysmic-variable binaries,
where k2 as low as ∼ 10−4 and ∼ 10−3 have been estimated in
UX UMa and RW Tri respectively (Warner 1978). Such low
values have been shown to be compatible with the compan-
ion being the core of a red giant stripped of its envelope by
mass transfer (Cisneros-Parra 1970). Such mechanism could
well apply to spider systems. It is therefore impossible to es-
timate precisely in what range the apsidal motion constants
of redback and black-widow companions lies, and we can
only conjecture 10−4 . k2 . 0.2.

With these limitations in mind we can give an estimate
of the relative importance of the quadrupole potential using
equations (22)-(23),

Jt ' 3Js ' −4 · 10−4
(

k2
0.1

) (
q
1
16

)−1

f 5
(
ρ f (q)

ρ f (
1

16 )

)5

. (24)

3 ORBITAL MOTION WITH A
TIME-VARYING QUADRUPOLE MOMENT

In addition to the quadrupole field of the companion one
must consider that spider systems are relativistic binaries.
The relative importance of the first-order relativistic correc-
tions (also called 1PN, for post-Newtonian) to the binary
potential can be estimated with

ε =
GM
ac2 ∼

v2

c2 ' 2 · 10−6
(

M
1.7M�

)2/3 (
P
4h

)−2/3
, (25)

where c is the speed of light in vacuum and v ' 2πa/P is the
characteristic orbital velocity. This implies that relativistic
corrections are smaller or comparable to the quadrupole cor-
rection given by equation (24). As we shall see in the next
section any higher order relativistic effects are largely unde-
tectable.

It follows that the orbital motion is entirely described
by the Hamiltonian

H =
1
2

mp
Û®r2
p +

1
2

mc
Û®r2
c + mpΦc(®rp − ®rc) + Φ1PN(®rp − ®rc), (26)
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where Φc is the potential given by equation (17) and Φ1PN is
the first-order relativistic correction (e.g. Damour & Deru-
elle (1985)) given by general relativity.

Setting the (Newtonian) centre of mass of the system

to mp®rp +mc ®rc = ®0, and using this relation to transform the
kinetic terms in equation (26), one is left with an equivalent
one-body problem for ®r = ®rp − ®rc with reduced mass mr =

mpmc/M, where M = mp+mc is the total mass of the system.
The Hamiltonian of the reduced system is

H =
1
2

mr
Û®r2 + mpΦc(®r) + Φ1PN(®r). (27)

The above Hamiltonian contains the Keplerian two-body
motion, the perturbing quadrupole potential proportional
to the quadrupole function J2(r, t), equation (16), in Φc , and
the perturbing 1PN potential Φ1PN.

At linear order, perturbations can be worked out inde-
pendently and summed together. In the following we there-
fore split the problem into two. First, we solve the constant
perturbation problem in Section 3.1, corresponding to the
Hamiltonian

H̄ =
1
2

mr
Û®r2 −

GMmr

r

(
1 + Js

a2

r2 + Jt
a5

r5

)
+ Φ1PN(®r). (28)

Second, we solve the variable-perturbation problem in Sec-
tion 3.2, corresponding to the Hamiltonian

H̃ =
1
2

mr
Û®r2 −

GMmr

r

(
1 + Jv

a2

r2

)
. (29)

In both Hamiltonians, a represents the orbital separation
corresponding to the solution of the unperturbed problem.
Note that H , H̄ + H̃, as each Hamiltonian also contains
the unperturbed Keplerian two-body motion, but different
perturbations.

An additional point to consider is that spiders are char-
acterized by circular or quasi-circular orbits to the point
where the eccentricity e ∼ J2. It is therefore not necessary
– and arguably hazardous – to consider orders in eccentric-
ity larger than the quadrupole or the relativistic correction.
Throughout this paper we shall consider the orbital dynam-
ics only to first order in eccentricity e, post-Newtonian cor-
rections ε , and quadrupole corrections J2. Cross terms be-
tween these small quantities are included only for long-term
cumulative effects; i.e. precession (see Section 3.1).

3.1 Spin and tidal quadrupole with relativistic
effects

As pointed out by Wex (1998), the non-relativistic prob-
lem of a spin quadrupole moment with potential of the form
−Gmpmcq/2r3, where q ≡ 2Jsa2 is a constant representing
the quadrupole moment in Wex’s notations (as to being the
mass ratio in this paper), can be solved using the same ap-
proach that led Damour & Deruelle (1985) to a closed-form
solution of the relativistic 1PN two-body problem. We will
refer to the Damour & Deruelle (1985) form as DD solution.
In Section 3.1.1 we show how the principle of superposi-
tion can be used to incorporate both spin quadrupole effects
(Wex 1998) and 1PN effects Damour & Deruelle (1985) in a
single DD solution.

The tidal quadrupole, on the other hand, cannot be
solved using the DD approach as the 1/r6 dependence of

Figure 1. Representation of the relations between the frame of

the observer ( ®xo, ®yo, ®zo ), the intermediate frame ( ®xi, ®yi, ®zi ) and
the frame of the orbital plane ( ®x, ®y, ®z), formally given by equations

(30)-(33). The observer is looking in the direction ®zo , while ®z is

perpendicular to the orbital plane.

the tidally induced quadrupole potential prevents the use
of DD’s conchoidal coordinate transformation (Damour &
Deruelle 1985). However, it can be solved to first order us-
ing the method of variation of the elements (see appendix
B and Section 3.2 below), leading to a solution in a quite
unwieldy form. We show in appendix B that, to first order in
eccentricity, the solution obtained through the latter method
can be matched with the form of a DD solution through a
redefinition of the orbital elements. We will refer to such a
solution as an effective-DD solution.

We conclude that the entire problem of a synchronised
and quasi-circularised orbit, including the effects of spin and
tidal deformations as well as 1PN relativistic corrections, can
be cast into the simple form of an effective-DD solution.

Such a solution is described by the orbital elements (e.g
Beutler (2004)):
a, the semi-major axis,
e, the eccentricity,
i, the inclination of the orbital plane,
Ω, the longitude of ascending node,
ω, the longitude of periastron,
Tp, the time of passage at periastron,
as well as by what we shall call post-Keplerian elements
k, δ, δr, δv in reference to, but different from, post-Keplerian
parameters (Damour & Taylor 1992), and which we describe
in the following subsection.

These DD orbital elements are a convenient way of rep-
resenting the mathematical solution of the orbit in a quasi-
Keplerian way. However, they are not equal to the osculating
orbital elements describing the unperturbed Keplerian orbit
that is instantaneously tangent the actual trajectory. We
provide the relation between the two sets of parameters in
appendix A.

3.1.1 The DD and effective-DD solution

As pointed out above, the DD solution is not restricted to
relativistic effects but can be applied to a whole class of
perturbation problems. We use this approach here to per-
turbatively solve the problem described in equation (28).

As in the Keplerian problem, the perturbed motion is
planar and we work here in the frame given by the direct
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triad (®x, ®y, ®z) with origin at the centre-of-mass of the system
(as defined in Damour & Deruelle (1985)), where ®x points
towards the ascending node, and ®z in the direction of the
orbital angular momentum. In general, the motion can be
expressed in the frame of the observer (®xo, ®yo, ®zo), where ®zo
gives the direction from the observer to the centre-of-mass.
As shown in Figure 1, one performs a rotation of angle i to
the intermediate frame (®xi, ®yi, ®zi) followed by a rotation of
angle Ω,

®y = cos i®yi + sin i®zi, (30)

®z = − sin i®yi + cos i®zi, (31)

where ®x = ®xi , and

®xi = cosΩ®xo + sinΩ®yo, (32)

®yi = − sinΩ®xo + cosΩ®yo, (33)

where ®zi = ®zo.
The DD solution to the reduced one-body problem (28)

is formally very similar to the Keplerian two-body motion.
It is entirely contained in the following set of equations:

®r = r(cos v, sin v, )( ®x, ®y,®z) (34)

r = a(1 − er cos E), (35)

v = ω + (1 + k)2 arctan

(√
1 + ev
1 − ev

tan
E
2

)
, (36)

E − e sin E = n(t − Tp), (37)

a3n2 = GM (1 + δ) . (38)

The effect of the perturbation is to introduce the eccentric-
ity parameters ev = e(1 + δv), er = e(1 + δr ), the precession
constant k, and modify Kepler’s third law with δ such that
the post-Keplerian elements k ∼ δ ∼ δr ∼ δv scale with the
perturbation. For simplicity, in the following, we will write
that perturbations are generally of order ∼ k.

In the case where er = ev = e and k = δ = 0 one recog-
nises the equations of the Keplerian reduced problem with
total mass M, semi-major axis a, eccentricity e, angular posi-
tion v, eccentric anomaly E, mean motion n = 2π/P and time
of periastron passage Tp. Equation (34) gives the position of
the body with respect to the centre-of-mass of the system,
equation (37) is Kepler’s modified equation, and equation
(38) is Kepler’s modified third law.

The post-Keplerian elements for different perturbations
of similar order of magnitude can be added linearly. Besides,
as we further restrict our study to low-eccentricity systems
the difference between the three eccentricity parameters can
be neglected since it is of order ∼ ek. It follows that, in this
work,

k = 3Js + (15Jt )eff + 3ε, (39)

δ = −3Js − (15Jt )eff +
ε

2

( mcmp

M
− 9

)
+©(e2), (40)

where the ε terms give the 1PN corrections (Damour &
Deruelle 1985), the Js terms give the spin quadrupole cor-
rection (Wex 1998) and the Jt terms are the effective con-
tributions that allow the inclusion of the tidal quadrupole
within the DD formalism to first order in eccentricity (see
appendix B). The “eff” subscript is here to remind us that
it is obtained through the matching procedure of appendix
B, using equation (B7). Besides, to leading order in ek,

ev = er = e. (41)

Of particular interest for timing is the orbit of the pul-
sar itself. Using the centre-of-mass relation of the perturbed
problem (Damour & Deruelle 1985) one finds that the angu-
lar motion is unchanged compared to the reduced problem
of equations (34)-(38), and the radial motion is given by

rp = ap
(
1 − erp cos E

)
, (42)

where the pulsar semi-major axis ap = a mc
M , and as before

erp = e+©(ke). Therefore, at leading order in ke the centre-
of-mass relation of a DD solution is identical to the Keplerian
one.

3.2 Variable quadrupole Jv

The variable quadrupole component Jv generates perturba-
tions which, as we will see below, are finite to first order.
Therefore, the variable problem (29) can be readily treated
to first-order using the method of variation of the elements.

3.2.1 Variation of the elements

The perturbation of the two-body Keplerian motion by a
perturbing potential Φp results in variations of the orbital
elements with time. The orbital elements are defined here
as the elements describing the osculating orbit, namely the
tangential Keplerian orbit, at the time of passage at ascend-
ing node Ta. We keep here the same notations as in previous
section, though the orbital elements a, e, i,Ω, ω,Tp differ at
first order from their DD counterpart (see appendix A). We
will match the two approaches in Section 3.3.

The time evolution is described to first order by the so-
called Lagrange planetary equations (e.g. Beutler 2004; Wex
1998):

Ûp =
2
√

1 − e2

na
∂Φp

∂ω
, (43)

Ûe = −

√
1 − e2

na2e

[
∂Φp

∂ω
+

√
1 − e2

n
∂Φp

∂T0

]
, (44)

Ûi =
1

na2
√

1 − e2

[
1

tan i
∂Φp

∂ω
−

1
sin i

∂Φp

∂Ω

]
, (45)

ÛΩ =
1

na2
√

1 − e2 sin i

∂Φp

∂i
, (46)

Ûω =

√
1 − e2

na

[
−2

∂Φp

∂p
+

1
ae

∂Φp

∂e
−

1
p tan i

∂Φp

∂i

]
, (47)

ÛTp =
1 − e2

n2a2e

∂Φp

∂e
, (48)

where p = a(1 − e2) is the semi-latus rectum, n = 2π/P =√
mr/a3 is the mean motion, and the perturbing potential is

given by the Jv term of (29),

Φp = Jv(t)
GM

r
a2

r2 , (49)

such that the perturbing acceleration is ®Fp = mr ®∇Φp (note
the absence of minus sign in the present convention).

Equations (43)-(48) are somewhat impractical for low
eccentricities, particularly due to the 1/e factors in some
terms. We therefore adopt a different parametrisation in the
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rest of this paper, defining the so-called Laplace-Lagrange
parameters (Lange et al. 2001).

κc = e cosω (50)

κs = e sinω (51)

instead of e and ω, and using the time of passage at ascend-
ing node,

Ta = Tp −
ω

n
+ 2

κs
n
+©

(
e2

)
, (52)

instead of Tp as fiducial time reference. Equations for
Ûκc, Ûκs, ÛTa are obtained after taking the time derivative of

equations (50)-(52) and inserting equations (43)-(48).

3.2.2 Results: the perturbed orbital elements

The perturbed orbital elements are

x(1)(t) = x + ∆x(t), (53)

where x ∈ {a, κc, κs, i,Ω, ω,Ta} an unperturbed element and
∆x(t) =

∫ t

Ta
dt ′ Ûx(t ′). The instantaneous value of the perturbed

orbital elements x(1)(t) defines the so-called osculating orbit
to the binary motion, e.g. the unperturbed Keplerian orbit
instantaneously tangential to the actual orbit.

We obtain ∆i = ∆Ω = ∆a = 0 and

∆κc = −3n∆s, (54)

∆κs = 3n∆c, (55)

∆Ta = 6 (∆c − ∆1) , (56)

where we have introduced

∆c =

∫ t

Ta

dt ′Jv(t ′) cosσ′, (57)

∆s =

∫ t

Ta

dt ′Jv(t ′) sinσ′, (58)

∆1 =

∫ t

Ta

dt ′Jv(t ′), (59)

with σ′ = n(t ′ − Ta).
We shall recall that the time scale for quadrupole varia-

tions is T2 >> P, and therefore ∆c ∼ ∆s ∼ P and ∆1 ∼ T2. As
a result ∆1/∆c ∼ T2/P >> 1 in ∆Ta (56), while the variations
of eccentricity are of order ∼ 3Jv(t) in ∆κc,∆κs (equations
(54)-(55)).

It is worth mentioning that we could readily calculate
the perturbation terms at order eJv , had we not decided to
limit ourselves to lower order eccentricity terms. We have
checked that no secular effect would become important at
order eJv and found that, despite the fact that terms linearly
growing with time are present, their effect identically cancels
once injected in a Keplerian model and thus need not be
included here.

3.3 Matching with the constant problem

In Section 3.2, we calculated the orbital elements corre-
sponding to the osculating orbit at the time of passage at
ascending node Ta, while in Section 3.1 we defined them
through the DD formalism. One can show that, as expected,
the two sets of orbital elements are identical to zeroth order

in perturbation (see appendix A). It follows that the DD el-
ements can be used interchangeably in equations (43)-(48),
which remain accurate to first order.

Consequently, the solution to the general problem (27)
is obtained by merely replacing the DD orbital elements
x ∈ {a, κc, κs, i,Ω, ω,Ta} by x → x + ∆x, equation (53), us-
ing equations (54)-(55).

4 TIMING MODEL FOR SPIDER PULSARS

4.1 Orders of magnitude of spider timing

In this subsection we will briefly review the fundamental
principles behind binary pulsar timing in order to establish
the order of magnitude of its various components in spider
systems. Pulsars have a rotational phase φ(τ) that evolves
very regularly with the proper time of the pulsar τ, to the
point that the phase can usually be expanded merely to
second order in time,

N(τ) = ντ +
1
2
Ûντ2, (60)

where N = φ/2π is the turn number, ν the spin frequency,
and Ûν is the frequency derivative. In pulsars, the deriva-
tive is related to the pulsar spin-down due to the conversion
of rotational energy into pulsar wind and electromagnetic
emissions in the magnetosphere. In a few cases (see Mar-
shall et al. (2016) and references therein) a second deriva-
tive could be measured. However, spider pulsars are recycled
millisecond pulsars (Roberts 2012) with a characteristically
low spin-down, making them even more unlikely to have a
detectable second derivative.

On its path to telescopes, the signal suffers a number
of delays which, when they are time or frequency depen-
dent break the regularity and simplicity of equation (60). It
is customary to use the formal time of arrival at the Solar
system barycentre (SSB) at infinite frequency as an inter-
mediate between delays due to the Solar system and delays
due to the pulsar binary system and propagation through
interstellar space (Blandford & Teukolsky 1976; Damour &
Deruelle 1986; Wex 1998; Voisin 2017),

tSSB
a = τe + ∆R + ∆E + ∆S + ∆K + ∆A + ∆DM + ∆D . (61)

where τe is the time of emission in the pulsar frame.
The Doppler delay ∆D is purely an effect of proper mo-

tion and acceleration of the binary with respect to the Solar
system, and is usually neglected because unseparable from
ν and Ûν. It results from the variation of the Doppler factor
between the SSB and the binary centre-of-mass frame. It is
totally independent of binary motion, assuming general rel-
ativity to be correct, and therefore we refer the interested
reader to the literature (e.g. Edwards et al. (2006); Damour
& Taylor (1992)).

The dispersion measure (DM) delay ∆DM results from
the scattering of radio waves on free electrons of the inter-
stellar medium. Once this delay removed, the time of arrival
is virtually at “infinite frequency”. In spider pulsars, huge
dispersion measure variations are seen (e.g. Polzin et al.
(2018)) particularly around superior conjunction. Therefore,
unlike in other pulsars this delay is strongly modulated by
orbital motion. It can in principle be fitted out by using
data in several frequency bands, and/or by trimming the
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data around the eclipse. Alternatively, gamma rays do not
interact significantly with the interstellar medium and there-
fore gamma-ray data is not sensitive to this effect. We will
not consider it further.

The aberration delay ∆A is the relativistic aberration
of the pulsar beam due to the velocity of the frame of the
pulsar relative to the observer. Its amplitude is ∼

ap

νPc ∼

2 mc
0.1M�

(
M

1.7M�

)−2/3 (
P
4

)−1/3 250Hz
ν ns where ap = amc/M is

the pulsar semi-major axis. This is not detectable with cur-
rent facilities and shall be dismissed below.

The Kopeikin delays ∆K account for the parallax ef-
fect arising from the motion of amplitude ≤ ap of the
pulsar on the plane of the sky at a finite distance d,
which can couple with the Earth’s own motion of ampli-
tude aE ' 1AU (Kopeikin 1995, 1996). Given the close orbit
of spiders ap << aE and the Kopeikin delay is ∼

apaE

cd ∼

10 mc
0.1M�

(
M

1.6M�

)−2/3 (
P
4

)2/3 100pc
d ns. One last term accounts

for the change of viewing geometry due to the proper motion
at velocity V of the binary on the plane of the sky relative to
the Solar system. This delay grows linearly with time at a

rate apV/cd ∼ 1 V
500km/s

mc
0.1M�

(
M

1.7M�

)−2/3 (
P
4

)2/3 100pc
d µs/yr.

Therefore the Kopeikin terms are negligible unless the pul-
sar has a particularly fast proper motion and is exception-
ally nearby. In the following these terms will therefore be
dismissed.

The Shapiro delay ∆S accounts for the relativistic dis-
tortion of the light path due to the gravitational field of
the companion. It is typically of order Gmc/c3 ∼ 0.5 mc

0.1M� µs
except in the unlikely event that the orbital inclination is ex-
tremely close to 90◦, but in this case the beam would be in-
tercepted by the companion. Therefore, even in the unlikely
event that this delay can be detected, its calculation based
on the unperturbed two-body dynamics would be accurate
enough, and we will no longer consider it in this paper.

The Einstein delay ∆E connects the coordinate time
at infinity to the proper time of the pulsar, by including
the distortion due to the gravitational field of the compan-
ion and the velocity of the pulsar. Its time-variable com-
ponent (the only one detectable), is of order eP Gmc

2πac2 ∼

3 e
10−5

mc
0.1M�

(
P
4h

M
1.7M�

)1/3
ns. Likewise the Shapiro delay, this

delay is unlikely to be detectable in current datasets, and
even if it were a calculation based on unperturbed motion
would be accurate enough, so we shall dismiss it in the fol-
lowing.

The Rœmer delay ∆R is the most important delay for
pulsars in binary systems. It accounts for the geometric vari-
ation of the light travel time across the orbit. It is of order

∼ ap sin i/c ∼ 0.2 sin i mc
0.1M�

(
M

1.7M�

)−2/3 (
P
4h

)2/3
s. As we shall

see below, this is the only delay significantly affected by
quadrupole effects.

4.2 The perturbed Rœmer delay

The Roemer delay is the time taken by light to cross the
distance between the pulsar and the binary barycentre pro-
jected onto the line connecting the latter to the Solar system

barycentre,

∆R =
®zo · ®rp

c
, (62)

where ®zo is a unit vector along the line going from the So-
lar system barycentre to that of the binary (equations (30)-
(33)), and ®rp is the pulsar position relative to the binary
barycentre.

4.2.1 Low eccentricity, constant quadrupole and
relativistic effects

For low eccentricity binaries, it has been pointed out (Lange
et al. 2001) that a parametrisation in terms of the Laplace-
Lagrange parameters κc, κs, equations (50)-(51), to first or-
der in eccentricity is more adapted than the parametrisation
in terms of eccentricity and longitude of periastron e, ω. This
is essentially because the longitude of periastron is poorly
constrained in a quasi-circular orbit, which mathematically
leads to degeneracies between the parameters. Thus, we
propose here a generalisation of the low-eccentricity binary
Rœmer delay proposed in (Lange et al. 2001) and imple-
mented as the ELL1 model in the timing software Tempo2
(Hobbs et al. 2006; Edwards et al. 2006), which is based on a
DD solution of the equations of motion rather than a purely
Keplerian solution.

Combining equations (37) and (36), one obtains the
time of passage at periastron to first order in eccentricity,

Ta = T̄a +
(e + ev)

n̄
sinω +©(e2), (63)

where ω is the longitude of periastron,

n̄ = n(1 + k) (64)

is the observable mean motion, and

T̄a = Tp −
ω

n̄
(65)

is the observable time of passage at ascending node.
Using the fact that E = n(t − Tp) + e sin n(t − Tp) +©(e2)

(equation (37)), combined with equation (65), it follows that

E = σ − ω + e sin(σ − ω) +©(e2) (66)

where σ = n̄
(
t − T̄a

)
.

Inserting (66) in (36) one also obtains the angular po-
sition,

v = σ + (e + ev) sin ((1 − k)(σ − ω)) +©(e2). (67)

Inserting (66)-(67) in (34)-(35), expanding consistently
to first order in eccentricity and in perturbation with the
restriction that secularly growing terms of order ekσ must
be kept, and inserting the result in equation (62), one obtains
the Rœmer delay,

∆R = x
(
sinσ −

3
2
κ′s −

κ′s
2

cos 2σ +
κ′c
2

sin 2σ
)

(68)

where x = ap sin i/c is the projected semi-major axis of the
pulsar orbit, and

κ′c = e cos (ω + kσ) , (69)

κ′s = e sin (ω + kσ) (70)

are the precessing Laplace-Lagrange parameters which can
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be readily expressed as a function of the Laplace-Lagrange
parameters κc, κs (equations (50)-(51)) by expanding the
trigonometric functions.

Thus, we find that the generalised ELL1 model is ob-
tained by replacing the Laplace-Lagrange parameters of
Lange et al. (2001) by their precessing counterparts (69)-
(70). This results in modulating the eccentricity terms with
an envelope at the precession angular frequency

Ûω = kn̄. (71)

Additionally, we note that the second term of (68) had no
counterpart in the original ELL1 model: although it is math-
ematically present, it had been discarded as an unconstrain-
ing constant. Here, this terms oscillates with the precession
angular frequency Ûω. Such slow evolution is prone to be ab-
sorbed in timing-noise removal (see, e.g., Coles et al. 2011;
van Haasteren & Levin 2013), in particular if the removal
is not done simultaneously and self-consistently with the fit
of the timing model. Thus, if timing noise removal is not
performed self-consistently, it could be more accurate to re-
move the second term from (68), being understood that it
is fitted as a component of timing noise.

Equation (68) was also found in Susobhanan et al.
(2018) although these authors did only consider secular pre-
cession, and not short-term periodic effects. Here, these ef-
fects are effectively taken into account by the redefinition of
the orbital parameters within the DD framework (see also
appendix A). We shall see in Section 5.2 that this has the
very important consequence that the minimum eccentricity
of the orbit is not zero but a value strictly larger. Further,
we account for the effects of a variable quadrupole moment.

4.2.2 Complete perturbed Rœmer delay with variable
quadrupole

We can now operate the replacement X → X + ∆X where
X ∈ {Ta, κc, κs} using equations (54)-(56) in order to obtain
the perturbed Rœmer delay from equation (68). We should
keep in mind that this procedure is only valid at linear order
in the perturbation parameters.

Noting that the time scale of quadrupole variations is
much longer than the orbital period, T2 � P, we evaluate
equations (57)-(58) as

n∆c = Jv(t) sinσ +©(P/T2), (72)

n∆s = −Jv(t) cosσ +©(P/T2). (73)

With that simplification, the variable quadrupole per-
turbation is effectively obtained from equation (68) by per-
forming the replacements

σ → σ′ = σ + 6n̄
∫ t

Ta

dt ′Jv(t ′), (74)

x → x′ = x − 3Jv(t). (75)

such that our final Rœmer delay is given by

∆R = x′
(
sinσ′ −

3
2
κ′s −

κ′s
2

cos 2σ′ +
κ′c
2

sin 2σ′
)
, (76)

with the understanding that for terms at first order in ec-
centricity σ and σ′ are equivalent.

The main effect of the variable quadrupole lies in the
replacement of the orbital phase σ → σ′. Indeed, Taylor

expanding equation (76) to first order in Jv , we find that
∆R = ∆R(x, σ)+∆σR +∆

x
R

where ∆R(x, σ) is given by equation
(68) and

∆
σ
R = 6xn̄

∫ t

Ta

dt ′Jv(t ′) cosσ, (77)

∆
x
R = −3xJv(t) sinσ. (78)

It follows that ∆σ
R
/∆x

R
∼ 3T2/P � 1.

Orbital period variability in spiders is usually accounted
for by a Taylor expansion (e.g. Pletsch & Clark 2015),

σ′(t) =
∑
i=0

n̄(i)

(i + 1)!
(
t − T̄a

) i+1
(79)

where n̄(0) = n̄ is the observable orbital angular frequency,
and n(i)s are empirical parameters of the timing model.

It follows from this equation that the instantaneous or-
bital period is P(t) = P + ∆P(t), with

∆P(t)
P
= 1 −

1
n̄

dσ′

dt
= −6Jv(t) +©(P/T2), (80)

where at this order n̄ and n are equivalent. We emphasise
that this result holds only because T2 � P and corresponds
exactly to the results derived by Applegate (1992) from con-
servation laws.

We now turn to the apparent change in projected semi-
major axis given by x → x′. This effect was noted in
(Lazaridis et al. 2011), considering the Applegate (1992)
mechanism. These authors pointed out that, since the orbital
angular momentum is conserved in this model, a change in
orbital period leads to a change in separation through Ke-
pler’s third law. Our present model also conserves angular
momentum, and we therefore obtain the same effect. How-
ever we note that Lazaridis et al. (2011) gave the uncorrect
relation ∆a/a = 2∆P/P while we have from (75) and (80)
2∆a/a = ∆P/P. In any case, we see that given the order
of magnitude of Jv (see next section) this effect is not de-
tectable in known pulsars, as also concluded Lazaridis et al.
(2011), as it would only contribute ∼ xJv(t) to the Roemer
delay.

5 DISCUSSION

We report in Table 1 the list of spider pulsars for which or-
bital period variations have been observed so far, together
with estimates of some relevant quantities discussed in this
paper. In particular, we discuss corrections to mass estimates
in Section 5.1, periastron precession in Section 5.2, and pe-
riod variations in Section 5.3.

5.1 Mass measurements

As shown in Section 4.2.2, the orbital period effectively ob-
servable through the Rœmer delay, equation (76), includes
the effect of periastron precession. One therefore measures
the observable mean motion n̄ = 2π

P̄
= n (1 + k), equation

(64). It follows that the so-called mass function from the
pulsar timing (see e.g. Hobbs 2006) can be expressed as

fm =
(mc sin i)3

M2 (81)

= G−1(ap sin i)3n̄2 (1 − δ − 2k) (82)
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Table 1. Spider pulsars for which orbital period variations have been observed so far along with the main quantities discussed in this
paper. Derived from the literature: estimated companion mass mc ; amplitude of the quadrupole variations ‖Jv ‖, equation (92); time

scale of period variations T2; estimate of the amplitude of the timing delay associated with the period variation itself ∆σR ∼ 6xJv , equation

(77); estimate of the amplitude of the timing delay associated with the variation of the projected semi-major axis ∆xR ∼ 3xJv , equation
(78). Predicted: periastron precession Ûω assuming the companion is Roche lobe filling, f = 1, and k2 = 0.1, equation (71); minimum

eccentricity (86) ; amplitude of the delay associated with emin, ∆
emin
R ∼ xemin. Interline: idem assuming k2 = 0.01 and f = 0.5.

System Variable quadrupole Precession & Minimum eccentricity References

PSR mc (M�) J̃2(10−8) T2(yr) ∆σR (ms) ∆xR (µs) Ûω (cyc/yr) emin ∆
emin
R (µs)

J2051-0827 0.05 5.8 6.2 0.36 0.0079 -12 0.0032 1.4e+02 [1]

0.0027 9.9e-06 0.45

J1959+2048 0.03a 3.1 19b 0.29 0.0083 -2.7 0.0028 2.5e+02 [2]

-0.005 8.8e-06 0.78

J1731-1847 0.039a 5.7 17b 0.81 0.02 -3.8 0.0032 3.9e+02 [3]
-0.0071 1e-05 1.2

J0024-7204J 0.03a 0.29 1.2e+02c 0.26 0.00035 -8.5 0.0028 1.1e+02 [4]
-0.0033 8.8e-06 0.35

J0024-7204O 0.01a 1.8 22b 0.29 0.0024 -4 0.0015 67 [5]

0.0065 4.6e-06 0.21
J1807-2459A 0.01a 0.65 61c 0.15 0.00024 -7.5 0.0015 18 [6]

0.032 4.6e-06 0.056

J2339-0533 0.32 8.4 6.2 -3.6 0.16 -16 0.0084 5.2e+03 [7]
-0.037 2.6e-05 16

J1023+0038 0.2 8.5 35c 11 0.088 -12 0.0065 2.2e+03 [8]
-0.025 2e-05 7

J1723-2837 0.4 31 2.7b 3.7 1.1 -5.6 0.0094 1.1e+04 [9]

-0.016 2.9e-05 36
aAssuming a pulsar mass of 1.35M� and an inclination of 60°.
b Observation time span shorter than T2, but at least two orbital frequency derivatives.
c Only one orbital frequency derivative detected, likely due to an observation time span too short: T2 is unreliable.
d An alternate solution is mc = 0.7M� (van Staden & Antoniadis 2016).

[1]: Lazaridis et al. (2011); Shaifullah et al. (2016); [2]: Arzoumanian et al. (1994); [3]: Ng et al. (2014); [4]: Freire et al. (2003);
[5]: Lynch et al. (2012); [6]: Pletsch & Clark (2015); [7]: Archibald et al. (2009);

[8]: Crawford et al. (2013); van Staden & Antoniadis (2016)

where ap = amc/M is the semi-major axis of the pulsar, i is
the inclination of the orbital plane relative to the plane of
the sky, k and δ are defined in (39)-(40). One can solve equa-
tion (81) for the companion mass mc if the pulsar projected
semi-major axis x = ap sin i is known (e.g. from the timing),
and assumes/knows either the pulsar mass or the orbital
inclination (e.g. from optical light-curve modelling, Breton
et al. 2013). At relevant order, one can solve for the uncor-
rected mass function (i.e. δ = k = 0 above) and re-inject the

obtained leading order solution m(0)c to obtain the first order
correction (the only one relevant here) by linearising (81),
thus giving explicitly

mc = m(0)c

©­­­­«
1 −

Js + 5Jt + ε
(
m
(0)
c mp

3M (0)2
+ 1

)
1 − 2

3
m
(0)
c

M (0)

ª®®®®¬
, (83)

where M(0) = mp + m(0)c .
In spider binaries, the mass ratio q can be measured

directly through optical spectroscopy of the companion (see
e.g. (van Kerkwijk et al. 2011)), leading to an estimate of
the mass of the pulsar using the mass function (81). Taking
into account quadrupole and relativistic effects leads to a
corrected pulsar mass,

mp = m(0)p

(
1 − 3Js − 15Jt − ε

(
q

(1 + q)2
+ 3

))
, (84)

where m(0)p is the uncorrected mass.

As we can see, the obtained correction is of order ∼ k
which is expected to be no more than ∼ 10−3 from equa-
tion (24) and (25). In state-of-the-art measurements using
optical observations of the companion (e.g. van Kerkwijk
et al. (2011); Romani et al. (2015); Linares et al. (2018))
this correction is largely dominated by uncertainties on the
orbital inclination i, and to a smaller extent by the uncer-
tainty on radial velocity measurements. In principle, such
accuracy can be achieved using pulsar timing by measur-
ing the Shapiro delay due to the companion (e.g. Demorest
et al. (2010)), but so far no such measurement was possible
for spiders, partly due to prolonged radio eclipses caused by
evaporated material outflowing from the companion (see,
e.g., Polzin et al. 2018, for a recent study).

5.2 Minimum eccentricity, precession and spider
age

5.2.1 Minimum eccentricity

The timing formula (68) provides a measure of the DD ec-
centricity, the physical interpretation of which is important
to differentiate from that of the osculating eccentricity de-
fined in the Keplerian sense. In appendix A we show that
the DD eccentricity e is related to the osculating Keplerian
eccentricity eK through equation (A5)

e = eK + emin, (85)
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where the minimum eccentricity is defined as

emin = −(δ + 2k), (86)

with k and δ given in equations (39) and (40), respectively.
Assuming that quadrupole precession dominates over rela-
tivistic precession, we can approximate using (39) and (90)

emin ' Ûωt/n̄ = 4.6 · 10−3
(

k2
0.1

) (
q
1

16

)−1

f 5
(
ρ f (q)

ρ f (
1
16 )

)5

. (87)

This minimum eccentricity can be interpreted as a
parametrisation of the short-term perturbative effects pre-
sented in equations (B2)-(B4) rather than as a geometrical
feature. Due to orbital precession, there is no solution which
describes a closed ellipse. Had we chosen a different orbital
parametrisation than the DD model (see appendix B), extra
terms of order k would have been present in the Roemer de-
lay (equation (68)). This model would have been perfectly
equivalent, though arguably more contrived.

Another conceptual way of interpreting the residual ec-
centricity is that the presence of extra terms at perturbation
order in the trajectory (see (B8)) is an unavoidable con-
sequence of Bertrand’s theorem. This theorem states that
strictly periodic trajectories can only be obtained from the
∝ 1/r Newtonian or the ∝ r2 harmonic oscillator potentials.
We readily see here that a perfectly circular orbit which
would only include secular precession as an effect of pertur-
bations would be a violation of Bertrand’s theorem as such
a trajectory would be periodic and appear as circular under
a redefinition of the orbital period.

We therefore conclude that while the osculating Kep-
lerian eccentricity can be zero due to circularisation, an ef-
fective non-zero DD eccentricity component e = emin must
remain and, should it be detected, can enable a measurement
of Ûω.

5.2.2 Eccentricity measurement and periastron precession

To our knowledge eccentricity measurements have so far
been reported for two spiders: the black widows PSR J2051-
0827 with e ∼ 5 ·10−5 (see, e.g., Lazaridis et al. 2011; Shaiful-
lah et al. 2016)) and PSR J1731−1847 with e ∼ 3 · 10−5 (Ng
et al. 2014). We note that an eccentricity measurement was
originally reported for the redback PSR J2339-0533 (Pletsch
& Clark 2015), but has since been reconsidered to be con-
sistent with zero (C. Clark, private communication).

In Section 3.1 we showed that, together with relativis-
tic effects, the spin and tidal quadrupole components are
responsible for orbital precession and can in principle be
measured due to the non-vanishing DD eccentricity. Using
equations (39) and (71) we can decompose the precession
rate into three components, Ûω = Ûωrel + Ûωs + Ûωt , which pro-
vide the relativistic, spin quadrupole and tidal quadrupole

contributions, respectively:

Ûωrel = 1.6 · 10−2
(

4h
P

)5/3 (
M

1.7M�

)2/3
cyc/yr, (88)

Ûωs = −0.7
(

4h
P

) (
k2
0.1

)
[1 + q] f 5

(
ρ f (q)

ρ f (
1
16 )

)5

cyc/yr,(89)

Ûωt = −10
(

4h
P

) (
k2
0.1

) (
q
1
16

)−1

f 5
(
ρ f (q)

ρ f (
1
16 )

)5

cyc/yr.(90)

From the above it is clear that the tidal contribution domi-
nates.

We present estimates of Ûω in Table 1 for the consid-
ered subset of spider systems under both a large (k2 = 0.1,
f = 0.9) and a small (k2 = 0.01, f = 0.5) deformation hy-
pothesis. Given the large predicted precession rates it ap-
pears that measuring the eccentricity with a timing model
not accounting for this effect will average the value down
and might, in several cases, wash it out entirely. It is quite
likely that the lack of measured eccentricity so far in most
spider systems is a consequence of the use of an improper
timing model. We therefore strongly advocate switching to
our proposed model to perform further spider timing.

One such example of a system that would benefit from
our timing model is PSR J2051−0827. The eccentricity is
reported to vary between subsets of timing data covering a
few years and attempts to measure it over the entire two
decades of observations has failed to produce a consistent
value (Lazaridis et al. 2011; Shaifullah et al. 2016). This
behaviour is in line with the prediction from an unmod-
eled precession, and hence PSR J2051−0827 is particularly
promising to yield a measurement of Ûω. This, in turn, could
open an unprecedented window into probing the internal
structure of the companion by enabling us to constrain the
apsidal motion constant k2 and will be presented in a forth-
coming publication.

The comparatively large minimum eccentricity implies
that a (possibly large) fraction of timing residuals in some
spider systems might be caused by precession. However, it is
also possible for this signature to be small due to 1) the ap-
sidal motion constant is small and thus the companion being
quite ‘rigid’ (e.g. more similar to low-mass white dwarf than
a regular star; see Section 2.2.1), and/or 2) the companion is
significantly smaller than the Roche lobe. The tentative ec-
centricity measurements that have been reported do not al-
low to distinguish between these different cases as significant
averaging might have occurred due to the use of unsuitable
timing models.

5.2.3 Spider age

We expect spider binaries to be ‘born’, e.g. emerging from
the recycling process at the end of the low-mass X-ray bi-
nary phase, with an already very small Keplerian eccen-
tricity eK0 � 1. From this point forward orbital eccentric-
ity should be driven by tidal circularisation only – this is
likely an over-simplifying assumption –, and the osculat-
ing Keplerian eccentricity will then decay exponentially as
eK (t) ∼ eK0 exp(−t/τc) (Hut 1981), with the time scale given
by equation (7). One can therefore define an eccentricity age
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τe = τc log

(
eK0

e − emin

)
, (91)

where e is the DD eccentricity measured nowadays. We can
then consider the upper limit eK0 = 1 and use the numbers

from Section 2 along with e−emin = 10−5 to obtain τe . 3·108

and 3 · 104yr for typical black widows and redbacks, respec-
tively. Although these time scales are sensitive to the actual
mass ratio and filling factor, the choice of e0 is extremely
conservative and hence the presence of any leftover Keple-
rian eccentricity should in principle be very unlikely. The
detection of a spider with e > emin could indicate that the
system was born recently or that a mechanism yet to iden-
tify pumps up orbital eccentricity in these systems (Ogilvie
2014). It has been suggested that in pulsar-white dwarf bi-
naries with observed eccentricities a circumbinary disc may
temporarily form out of the material ejected by the com-
panion after the end of the accretion phase and injects ec-
centricity into the system (Antoniadis 2014). The question
is therefore open as to whether a similar mechanism could
apply in spider systems.

5.3 Effects of quadrupole variations

From Table 1, we see that the amplitude of the quadrupole
variation,

‖Jv ‖ = max(Jv(t)) −min(Jv(t)), (92)

is typically in the range 10−8 . ‖Jv ‖ . 10−7. The time scale
T2 of the variations is estimated as the leading harmonic of
the Fourier transform of the period changes given by equa-
tion (80) or, in the case where less than one pseudo-period
has been observed, by the period of the best sinusoidal fit.
The observed variation time scale ranges from about 3 years
to 22 years. We note three exceptions to the previous state-
ment: PSRs J0024-7204J, J1807-2459A and J1023+0038. In
these three cases only one orbital frequency derivative could
be observed and therefore the result of the fit may be unreli-
able. It is impossible to say, however, whether this situation
arises from an observing time span which is not long enough
or from the fact that the orbital period of these systems
is intrinsically not oscillating. In the latter case it is more
likely that a mechanism other than quadrupole variations is
responsible (see below).

PSR J1723-2837 displays by far the largest quadrupole
amplitude, ‖Jv ‖ ' 3 · 10−7, while also having the fastest pe-
riod of variation, T2 ' 3yr. Coincidentally, it is the only
spider companion which shows evidence of asynchronous ro-
tation from optical observations (van Staden & Antoniadis
2016). This property might invalidate our primary assump-
tion of phase-locking if the structure involved with asyn-
chronous rotation extends beyond a thin shell of negligible
mass. Whether this could in turn produce the seemingly ex-
ceptional values will require further investigation.

We should also remark even if the time scale of or-
bital period variations may be somewhat similar to that
of constant-quadrupole precession, these two effects are not
degenerate in a timing analysis. Indeed, the former effect is
modulated at the orbital frequency, while the latter is mod-
ulated at twice that frequency, as can be seen from equation
(76).

In Section 4.2.2 we made the assumption that short-
term variations of the orbital elements can be neglected,
P/T2 � 1, in order to simplify the timing model. This as-
sumption appears well justified as P/T2 ∼ 10−4 for all sys-
tems presented in Table 1, meaning that extra-delays ob-
tained without this approximation are of order ∼ P/T2∆

σ
R
�

1µs, which is smaller than the timing accuracy achievable in
these systems. The same argument also justifies the approx-
imations implicitly made in Applegate (1992).

We note, however, a number of inconsistencies arising
from existing work. Indeed, Shaifullah et al. (2016) report
evidence that period variations may occur in PSR J2051-
0827 on shorter time scales, possibly less than 45 days. If
these variations are related to aligned quadrupole variations,
then the neglected short-term effects might eventually have
to be reintroduced into the timing model. The same pul-
sar also displays important variations of its projected semi-
major axis x over time which are at odds with the magnitude
with those expected from equation (78). We note that only
one other pulsar has a reported variation of x, J0024-7204J,
which is also at odds with the magnitude expected from pe-
riod variations. In Shaifullah et al. (2016) it is also observed
that the changes in x seem uncorrelated with the changes in
period, further suggesting that the two effects might have a
different origin. They suggest that the mechanism could be
spin-orbit coupling, proposing that a slight misalignment be-
tween the spin axis of the companion and the orbital angular
momentum might produce the required changes in x. How-
ever they note that this misalignment should then change
over time, a behaviour for which a mechanism is yet to be
found.

Beside the quadrupole, other effects such as mass loss
due to evaporation and gravitational-wave radiation will in-
duce changes in orbital period. It must be noted, however,
that in both cases the effect is monotonous (the period in-
creases and decreases respectively) and cannot explain the
well-established oscillations of PSR J2051-0827, for example.
It has been shown in specific cases (particularly Lazaridis
et al. (2011)) that the magnitude of these effects was too
small by several orders of magnitude to explain the ob-
served period variations. Another effect is magnetic brak-
ing (e.g. Rappaport et al. (1983); Spruit & Ritter (1983)),
which also results in decreasing the orbital period by trans-
ferring angular momentum to the wind of the companion.
However, fully convective stars such as spider companions
(Chen et al. 2013) are thought to have a significantly re-
duced magnetic activity that nullifies magnetic braking (e.g.
Rappaport et al. (1983); Spruit & Ritter (1983)). Finally,
variations of the Doppler factor connecting the frame of the
observer to the binary frame (Doppler delay in Section 4)
can also cause apparent orbital period and semi-major axis
variations. This can be estimated from position and proper
motion measurements (see also Lazaridis et al. (2011)). In
all cases, if present, these effects are absorbed in the fit for
orbital period derivatives (see equation (79)).

5.4 Timing of non-pulsar binary systems

While we have focused most of this paper on spider binary
pulsars, the timing model we propose can appropriately ac-
count for the orbital dynamics of a wider range of binary
systems. Any such system must fulfill the basic requirements
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under which our mathematical development is valid, namely:
1) a small eccentricity, 2) a ‘primary’ star that suffers neg-
ligible quadrupole distortion, and 3) a ‘secondary’ star that
is tidally locked, but which may suffer quadrupole distor-
tions. Notable systems that fall under this category are hot
Jupiters, hot subdwarf B (sdB) binaries or cataclysmic vari-
ables (CVs). It should be stressed that, even when no apsidal
motion or eccentricity is detected, a simple upper limit on
the eccentricity translates in an upper limit on the apsidal
motion constant k2 through the relation e ≥ emin.

The structure of CV companions has been shown to
be extremely centrally condensed, with apsidal motion con-
stants as low as k2 ∼ 10−4 − 10−2 (Cisneros-Parra 1970;
Warner 1978, and Section 2.2.1). As a result, the expected
apsidal motion as well as minimum eccentricity is often be-
yond reach of current observations (e.g. Parsons et al. 2014).
Nonetheless, upper limits on eccentricity can still be turned
into upper limits on k2. For example, NN Ser is an eclips-
ing system comprising a white dwarf and a post-common
envelope secondary with excellent eclipse timing precision
(Beuermann et al. 2010; Parsons et al. 2010, 2014), but no
detected eccentricity. The 0.1s timing uncertainty of the pri-
mary eclipse translates in emin < e . 2 · 10−5 and k2 . 0.005,
which falls within the expected range.

The 3-hour eclipsing sdB+M dwarf binary
2M 1938+4603 is reported to have an eccentricity e & 4·10−5

and apsidal motion is not detected because of the short
monitoring time span (Barlow et al. 2012). Although the
two components of the system are very different, it is
not clear whether the quadrupole distortion of one star
dominates over the other or if they are similar, in which
case both contributions should blend (e.g. Kopal 1978). As
this discussion is beyond the scope of the present paper, we
only consider two extreme cases. Assuming the quadrupole
moment of the M dwarf secondary dominates, the condition
e > emin implies that k2 . 0.0025 for the secondary. Such a
low value is similar to what is expected for CV companions
(see above) which is consistent with 2M 1938+4603 sharing
a similar formation scenario with CVs. On the other hand,
if the primary’s quadrupole moment dominates, then its
corresponding apsidal motion constant is k2 . 0.02.

Hot Jupiters given share multiple similarities with black
widows. A subset of these exoplanets have short, circular or-
bital periods (. 1 d), fill a significant fraction of their Roche
Lobe, are tidally locked, have an irradiated day side, and
have a system mass ratio comparable to or more extreme
than that of black widows (see, e.g., Dawson & Johnson
2018, and references therein for a recent review). Further-
more their apsidal motion constant is expected to be as high
as 0.2 (Kramm et al. 2012). Transit time variations would
be expected in these systems due to precession induced by
the minimum eccentricity. One challenge, however, is that
this effect might be difficult to disentangle from gravita-
tional perturbations caused by other planets in the system
(Agol et al. 2005) or rotating stellar spots on the host (Hol-
czer et al. 2016). We estimate the time scale of the tran-
sit time variations due to minimum eccentricity to range
between sub-seconds to few minutes (assuming a fiducial
Jupiter-mass planet in a 1-day orbit around a 1 M� star with
k2 = 0.2). This wide range of variations results from the ex-
treme sensitivity on the assumed Roche lobe filling factor.
While the typical precision achievable to measure transit

times is currently of the order of minutes, more accurate
timing should reveal that exoplanets must possess a resid-
ual minimum eccentricity.

6 CONCLUSIONS

In this paper, we assumed that the non-Keplerian dynam-
ical behaviour of spiders is dominated by the quadrupole
moment of the companion star. This quadrupole can be de-
composed into an intrinsic constant component due to cen-
trifugal forces, an extrinsic component due to the equilib-
rium tides arising from the neutron star gravitational pull,
and a variable component that is related to the companion’s
internal structure. Although the privileged mechanism for
the latter is the so-called Applegate mechanism (Applegate
1992; Applegate & Shaham 1994), the treatment we pro-
pose here does not depend on a specific model. Instead, our
approach focuses on finding a self-consistent solution to the
dynamical response of the system to an arbitrary quadrupole
perturbation. We also take into account relativistic effects –
essentially precession – to first post-Newtonian order (1PN).

We show that in spider systems tidal interactions will
rapidly phase-lock the companion’s rotation and reduce the
eccentricity to very small values. Both of these are the two
main assumptions enabling us to find a solution to the or-
bital motion of a relativistic (1PN) binary, exact to first
order in eccentricity, in which the companion possesses a
tidal and centrifugal quadrupole moment. We call such a
solution an effective DD solution, in reference to Damour
& Deruelle (1985) and Wex (1998). We then add the ef-
fect of a variable quadrupole by matching Lagrange per-
turbation theory with our effective DD solution. Because
the eccentricity is small, we adopt the Laplace-Lagrange
parametrisation (Lange et al. 2001) of eccentricity and pe-
riastron longitude. We therefore obtain a generalisation of
the ELL1 timing model (Lange et al. 2001) contained in the
Rœmer delay of equation (76). Our effective DD solution
consistently accounts for precession, both quadrupole and
relativistic, quadrupole variations, and low eccentricity. We
believe that this new model should provide a much more
appropriate parametrisation that can improve the timing of
spider pulsars by accounting for additional systematic ef-
fects and possibly enable some of them to be incorporated
into pulsar timing array experiments. This would represent
a particularly important step change as a large fraction of
the millisecond pulsar population is found in spider systems.
However, we note that the prediction power of the model is
diminished by the absence, to our knowledge, of a deter-
ministic model for quadrupole variations. Predictability is
however not necessary in pulsar timing arrays.

One particular application of our work is the possibil-
ity of measuring the tidal-centrifugal quadrupole moment
of the companion star through the orbital precession it in-
duces. Our precession model extends the one recently pro-
posed in Susobhanan et al. (2018): in addition to secular
precession it accounts for short-term periodic effects caused
by the tidal-centrifugal quadrupole and relativistic perturba-
tions through a redefinition of the orbital elements summa-
rized in Table A1. The main consequence of this new model
is the existence of a so far unrecognised non-Keplerian min-
imum eccentricity, equation 85, which cannot be damped
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by circularisation effects. This eccentricity term scales with
the quadrupole deformation of the companion and, given
the large magnitude of tidal interactions existing in spider
systems, we estimate (equation (87) and Table 1) that is
should be detectable in many if not all spider systems. This,
in turn, implies that periastron precession is likely going to
be measurable. We also show that orbital period variations
and precession are uncorrelated effects since they are asso-
ciated with different harmonics of the orbital period.

If detected, precession will shed a new light on the in-
ternal structure and evolution of these exotic stars. Together
with optical observations to constrain the filling factor of the
companion and the inclination of the system, a measurement
of the quadrupole moment would give a direct constrain on
the apsidal motion constant k2, through equations (22)-(23),
which depends only on the internal structure of the star. We
show that the induced precession could be very fast, possibly
up to an entire orbit every few weeks, equation (71).

We note that the fact that precession was so far not
included in the timing models used for spiders might have
dramatically hindered eccentricity measurements. Besides,
the apparently variable eccentricity and periastron longitude
reported for J2051-0827 (Shaifullah et al. 2016) is strong
evidence for precession. At the same time, we show that
detecting larger-than-minimum eccentricities in some spider
systems can hint to the fact that they are younger than
expected. In an attempt to quantify this statement, we in-
troduce the eccentricity age τe in equation (91) which gives
the maximum time needed for the system to reach the ob-
served eccentricity after the last mass transfer episode. For
instance, a black widow with an eccentricity e − emin ∼ 10−5

cannot have left mass transfer for more than a few hundred
million years (or a few ten million years in the case of a
redback).

Additionally, we provide explicit formulae to connect
observables with physical quantities, especially for mass
measurements, equations (81)-(84) (see also appendix A). In
particular, we show that periastron precession can change
the mass measurements by up to 0.1% meaning that this
effect should be treated as an additional systematic uncer-
tainty. For the moment though, the error budget is domi-
nated by other sources of errors such as the precision with
which the orbital inclination is derived from optical data
(e.g. Linares et al. (2018)).

We showed in Section 5.3 that the effects of quadrupole
variations on a long time scale can be accounted for by
our model, while those occurring on a scale commensurate
to the orbital period can be safely ignored. On the other
hand, we note that a number of intriguing observations in
PSRs J2051-0827 and J0024-7204J such as large projected
semi-major axis variations cannot be accounted for by a
time-variable, aligned quadrupole (see Table 1). As sug-
gested in Lazaridis et al. (2011), these might require the
inclusion of further physical effects such as spin-orbit cou-
pling.

We also highlight that the tidal interaction induces
a low-frequency timing delay at the precession frequency,
which could otherwise be absorbed into the red noise typi-
cally present in timing residuals. Our timing model can prop-
erly disentangle this effect.

Finally, we demonstrate that our orbital solution ex-
tends the framework already established in other areas of

binary stellar astrophysics. Our prediction of a minimum
eccentricity allows one to infer an upper limit on the apsidal
motion constant even in the absence of a measurable orbital
precession.

ACKNOWLEDGEMENTS

The authors acknowledge support of the European Research
Council, under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 715051;
Spiders). This work made use of SageMath (http://www.
sagemath.org). The authors wish to thank Mark Kennedy,
Vik Dhillon, Colin Clark and Daniel Mata Sánchez for in-
sightful discussions about the manuscript.

REFERENCES

Agol E., Steffen J., Sari R., Clarkson W., 2005, Monthly Notices

of the Royal Astronomical Society, 359, 567

Alpar M. A., Cheng A. F., Ruderman M. A., Shaham J., 1982,

Nature, 300, 728

Antoniadis J., 2014, The Astrophysical Journal, 797, L24

Antoniadis J., Tauris T. M., Ozel F., Barr E., Champion D. J.,
Freire P. C. C., 2016, preprint, p. arXiv:1605.01665

Applegate J. H., 1992, The Astrophysical Journal, 385, 621

Applegate J. H., Shaham J., 1994, The Astrophysical Journal,

436, 312

Archibald A. M., et al., 2009, Science, 324, 1411

Arzoumanian Z., Fruchter A. S., Taylor J. H., 1994, The Astro-

physical Journal, 426, L85

Barlow B. N., Wade R. A., Liss S. E., 2012, The Astrophysical

Journal, 753, 101

Bassa C. G., et al., 2014, Monthly Notices of the Royal Astro-

nomical Society, 441, 1825

Bassa C. G., et al., 2017, The Astrophysical Journal, 846, L20

Bellm E. C., et al., 2016, The Astrophysical Journal, 816, 74

Benvenuto O. G., De Vito M. A., Horvath J. E., 2012, The As-

trophysical Journal, 753, L33

Beuermann K., et al., 2010, Astronomy and Astrophysics, 521,

L60

Beutler G., 2004, Methods of Celestial Mechanics: Volume I:

Physical, Mathematical, and Numerical Principles, 1st soft-
cover edition without cd-rom of original hardcover edition.

edition edn. Springer, Berlin ; New York

Blandford R., Teukolsky S. A., 1976, The Astrophysical Journal,

205, 580

Breton R. P., et al., 2013, The Astrophysical Journal, 769, 108

Brinkworth C. S., Marsh T. R., Dhillon V. S., Knigge C., 2006,
Monthly Notices of the Royal Astronomical Society, 365, 287

Burderi L., D’Antona F., Di Salvo T., Burgay M., 2002,
arXiv:astro-ph/0208021

Chen H.-L., Chen X., Tauris T. M., Han Z., 2013, The Astrophys-
ical Journal, 775, 27

Cisneros-Parra J. U., 1970, Astronomy and Astrophysics, 8, 141

Coles W., Hobbs G., Champion D. J., Manchester R. N., Verbiest

J. P. W., 2011, Monthly Notices of the Royal Astronomical
Society, 418, 561

Crawford F., et al., 2013, The Astrophysical Journal, 776, 20

Damour T., Deruelle N., 1985, Ann. Inst. Henri Poincaré Phys.

Théor., Vol. 43, No. 1, p. 107 - 132, 43, 107

Damour T., Deruelle N., 1986, Annales de l’institut Henri
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APPENDIX A: OSCULATING ORBIT TO THE
DD SOLUTION

The correspondence between the observable orbital ele-
ments, denoted with a bar, and the DD elements has been
explicited in Sections 3.1 and 4. We collate them in Table A1.
Additionally we work out below the relationship between the
elements describing the osculating Keplerian orbit to the DD
solution at the time of periastron passage. We choose this
particular epoch because of the simplicity the relationship
has then.

The osculating eccentricity eK and semi-latus rectum
pK are obtained from the Laplace vector integral ®L and the
orbital angular momentum ®h (see e.g. Beutler (2004)),

pK =
h2

GM
, (A1)

eK =
q

GM
, (A2)
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Table A1. Correspondence between the observable elements, the
DD elements (Damour & Deruelle 1985), and the elements of the

osculating Keplerian orbit at periastron passage.

Observable DD Keplerian at t = Tp
x̄ x = x̄ xK = x̄(1 + δ + 2k)
n̄ n = n̄(1 − k) nK = n̄(1 − 2δ − 4k)
κ̄s κs = κ̄s κKs = κ̄s + (δ + 2k) sin ω̄
κ̄c κc = κ̄c κKc = κ̄c + (δ + 2k) cos ω̄
T̄a Ta = T̄a + 2κs/n̄ TK

a = T̄a + 2κ̄s/n̄
−2 δ+2k

n̄ (ω̄ − sin ω̄)
Derived elements

ω̄ = arctan κ̄s
¯κc ω = ω̄ ωK = ω̄

ē =
(
κ̄c

2 + κ̄s2
)1/2

e = ē eK = ē + δ + 2k
T̄p = T̄a +

ω̄
n Tp = T̄p TK

p = T̄p

where

®h = ®r × Û®r, (A3)

®L = Û®r × ®h − GM
®r
r
. (A4)

Expressing ®r and Û®r at t = Tp using the DD equations (34)-
(38) and expanding to first order in eccentricity and pertur-
bation one gets

eK = e + δ + 2k . (A5)

Now using the relation between the semi-latus rectum and

the semi-major axis aK , pK = aK (1 − eK 2
), one obtains,

aK = a(1 + δ + 2k). (A6)

Equating the radial coordinate r = rK where rK = aK (1 −
eK cos EK ) is the radial coordinate of the osculating orbit
and r is defined for the DD solution by equation (35), we
obtain at relevant order that EK (t = Tp) = 0 and therefore
TK
p = TP . By further equating the directions, ®rK = ®r, one

then straightforwardly obtains ωK = ω.
As mentioned in the text, the orbital inclination i and

the longitude of the line of ascending node Ω are not affected
by the perturbations considered in this paper. In particular,
it follows that the projected semi-major axis of the osculat-
ing orbit is immediately obtained by xK = aK sin iK .

APPENDIX B: PSEUDO-DD SOLUTIONS

Here we show that, to first order in eccentricity and pertur-
bation, and including secular terms (i.e. precession) the DD
formalism can be formally extended to include any pertur-
bation deriving from a potential of the form

Φα(r) = −J
GM

r
aα

rα
, (B1)

where J � 1 is the constant dimensionless magnitude of the
perturbation, and α the perturbation index.

The particular case α = 3 corresponds to the spin-
induced quadrupole moment when the spin axis is orthogo-
nal to the orbital plane. This case can be directly solved by
a conchoidal transformation of the equations of motion as
shown in (Wex 1998; Damour & Deruelle 1985) and Section
3.1.1.

The same mathematical trick is however not generally

applicable to other values of α, but the mathematical sim-
plicity and closed-form of the DD solutions makes it inter-
esting to turn these solutions in a similar form if possible. In
this paper, we are particularly interested by the case α = 5
which corresponds to the potential of an equilibrium tide.

We derive the variation of the orbital elements by in-
serting the potential Φp = −Φα into Lagrange’s planetary
equations (43)-(48), also using equations (50)-(51) and (52).
Neglecting periodic terms of order ∼ Je, we obtain the fol-
lowing variations,

∆κc = αJ
[

1
2
(1 − α) nκsc0 − ns1

]
, (B2)

∆κs = αJ
[
−

1
2
(1 − α) nκcc0 + nc1

]
, (B3)

∆Ta = αJ [(−2 + κc(α − 1)) c0+

(2 − 3κsn∆t) c1 + 3nκc∆ts1] , (B4)

and ∆p = ∆i = ∆Ω = 0. Using the definition of the mean

motion n =
√

GM
a3 and of the semi-latus rectum p = a(1− e2)

we also obtain,

∆a = 2αJan (κsc1 − κcs1) , (B5)

∆n = 3αJn2 (κcs1 − κsc1) . (B6)

We want the osculating orbital elements to match the DD
orbital elements at the time of periastron passage Tp (see
appendix A). Therefore we integrate the variations from
Tp = Ta+ω (to relevant order) to t, leading to: ∆t = t−Ta, c0 =
∆t −ω/n, c1 = (sin n∆t − sinω)/n and s1 = −(cos n∆t −cosω)/n.

Inserting the perturbed orbital elements (see equation
(53)) in the exact 2-body solution (equation (34)-(38) with
k = δ = δv = δr = 0) one derives the position vector of
the perturbed motion, equation (34). One then expands the
result to first order in eccentricity and perturbation while
retaining secular effects using equations (66) and (67), that
is keeping terms of order ∼ e,∼ J and to any order in ∼ teJ.

At this stage the solution is expressed in terms of Ke-
plerian orbital elements (superscript K in appendix A). We
thus need to replace them by the “pseudo-DD”elements us-
ing in particular equations (A5) and (A6) to replace eK and
aK . One then finds, provided that

k = −δ =
α(α − 1)

2
J, (B7)

that the perturbed position vector exactly matches the po-
sition vector derived from the DD solution with k and δ

defined as in equation (B7). Explicitly, the position vector
reads

®r = a ©­«
cosσ − 3

2 κ
′
c +

1
2 κ
′
s sin 2σ + 1

2 κ
′
c cos 2σ

sinσ − 3
2 κ
′
s +

1
2 κ
′
c sin 2σ − 1

2 κ
′
s cos 2σ

0

ª®¬( ®x, ®y,®z) (B8)

with σ = (1 − k)n(t − Ta) − 2κs = n̄(t − T̄a), κ′c = e cos (ω + kσ)
and κ′s = e sin (ω + kσ) are defined as in (69) and (70), (®x, ®y, ®z)
is defined in Section 3.1.1.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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