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ABSTRACT 
 
Large-scale mapping of coastal oil spills and their 
monitoring over time is a major issue that can be adressed 
by using hyperspectral images and dedicated processing. 
Previous researches have shown that it is possible to map 
the polluted coastline caused by the explosion of the 
Deepwater Horizon (DwH) platform from AVIRIS images 
(AVIRIS: Airborne Visible/InfraRed Imaging 
Spectrometer). But the detection processes required either 
ground truth or laboratory spectra of hydrocarbons or were 
not fully automatic. 

In this paper we focused on an AVIRIS image which 
covers The Bay Jimmy, located south of New Orleans, and 
particularly impacted by oil pollution. Two automatic 
methods were developed to detect oiled coasts. In the first 
one, we have developed a new spectral index able to detect 
directly hydrocarbon and less sensitive to noise than indices 
proposed in previous works. The second one extracts 
endmembers via Orthogonal Subspace Projection, and then 
sorts the endmembers in terms of hydrocarbon indices 
scores, in descending order. Then, the detection map or the 
abundance map corresponding to the best endmember is 
used to map oiled areas. Both approaches give results 
consistent with those of studies previously conducted on the 
same image, and with maps built from field observations.   

 
Index Terms— Hyperspectral, Oil spill, Automatic 

Detection, spectral unmixing, hydrocarbon indices 
 

1. INTRODUCTION 
 
In 2010, the United States suffered the largest oil spill in its 
history, with a leak of about 4.9 million barrels of oil. An 
important cleaning effort was done to prevent crude oil from 
reaching coastline. However, a significant amount of oil 
spilled over shorelines [1] [2].  

As oil was spreading along the Louisiana coasts, 
hyperspectral images have been acquired with the AVIRIS 
sensor. Previous studies have shown the potential of using 
remote sensing to detect oiled coastlines, [3], [4]. Oil 
detection methods are based on two main hydrocarbon 
absorption bands at 1.73 µm and 2.3 µm. The difficulty lies 
in the fact that dry or senescent plants have similar spectral 
characteristics that can cause false alarms. 

To map coastal lines impacted by DWH Oil, Kokaly et 
al. [3] used the Material Identification and Characterization 
Algorithm (MICA) of the PRISM module (Processing 
Routines in IDL for Spectroscopic Measurement) of the 
USGS (United States Geological Survey) [5]. It compares 
the spectrum of each pixel with reference spectra obtained 
either by field or lab measurements. Another method 
proposed by Arslan [4] is based on endmembers extraction 
using Pixel Purity Index (PPI) and the n-D Visualizer 
(ENVI® tools). But it is not an automatic method and some 
degree of subjectivity exists in extracting endmembers.  

The advantage of the methods proposed in this paper is 
that they can detect hydrocarbon pollution, without knowing 
a priori the type of hydrocarbon that has spilled,  with an 
automatic processing. 

 
2. MATERIAL AND METHODS 

 
The data studied is an AVIRIS image acquired above Bay 
Jimmy, south of New Orleans on September 14, 2010, and 
located between 29.252639°N, 89.907328°W and 
29.588961°N, 89.859397°W. Available image are geo-
corrected with a 3.5 m spatial sampling.  Data are in 
radiance unit with 224 contiguous spectral bands from 400 
to 2500 nm and a spectral sampling of 10 nm. In this work a 
part of this image shown in Figure 1 is processed. 
 
2.1. Pre-processing 
 
Before applying oil detection, some pre-processing is 
needed. First of all, the image is converted in reflectance 
unit using the atmospheric correction software COCHISE 
[6], that compensated the effects of atmospheric scattering 
and molecular absorption, in particular water vapor 
absorption. Radiative transfer parameters are calculated via 
MODTRAN 5.3 (MODerate resolution atmospheric 
TRANsmission) [7]. Past this stage, 196 spectral bands 
among the 224 are retained because some large and strong 
water vapor absorption bands are removed as well as some 
noisyl bands near 2.5 µm. 
In order to denoise the data, a Minimum Noise Fraction 
transformation is applied. Components that correspond to 
noise are ignored when applying the reverse MNF to 
reconstruct the image. 
  



 
Figure 1: RGV extract of AVIRIS image over Bay Jimmy. 

2.2. Automatic mapping based on hydrocarbon indices  
 
The first method, which has been developed, uses a new 
hydrocarbon index to directly detect the oiled areas. 

As a matter of fact, the spectral signature of 
hydrocarbons is characterized by two absorption bands 
(denoted as AB), the first at about 1.73 µm (C-H stretch of 
the first overtone band) and the second at 2.31 µm (C-H 
stretch combination band). The 1.73 µm AB is much 
specific to hydrocarbon but senescent vegetation can be 
confused with oil in this spectral range.  The potential of the 
1.73 µm AB for hydrocarbon detection has been 
demonstrated in [8]. Kühn et al. [9] defined a spectral 
Hydrocarbon (denoted as HC) Index, which is the depth of 
the 1.73 µm AB. This index allowed detection of soil-
hydrocarbon mixtures as well as plastic materials. In the 
present case, this index failed to detect the polluted coasts. 
We defined a new hydrocarbon index, Area1700, that 
calculates the area of the absorption features under a virtual 
line drawn between λa=1.658 and λb=1.754 µm (Figure 2). 
The advantage of this index is that it is less sensitive to 
noise and to the position of the center of the AB that can 
varies with the hydrocarbon composition.  
This index is applied on the image as shown on Figure 3. 
This allows mapping oiled coastal lines, but it also detects 
materials that contain hydrocarbon, such as boats, because 
of plastic component that have very high HC score.  Buoys 
that were deployed to prevent oil to reach the coasts are also 
detected, but with a lower HC score than oiled coast, due to 
their small size. The histogram of HC scores image 
presented in Figure 3 is adjusted on a part of the image 
containing no boats, because their high HC scores flatten the 
scale of HC scores of oiled coast lines. 
The Kühn index is also depicted on Figure 3. It does not 
detect all the oiled shorelines and is very sensitive to noise. 
The detection map thus obtained is in good agreement with 
results of previous works carried out on the same area at the 
same day [3] (see Figure 4). It is also compared with the 
map drawn from ground observations three days after, on 
September 17th, 2010 available in the Environmental 
Response Management Application (ERMA) website [10] 
(see Figure 5). The oiled soils detected with Area 1700 are 

quite similar to the most impacted soils depicted in red and 
orange. Some false alarms are present in the in-land 
vegetation. 

 
Figure 2: Area1700 index. To calculate Area1700 index, only the 
blue parts are counted.  

 
Figure 3: Area 1700 HC and Kuhn HC indices. Histograms have 
been ajusted on a part of image containing no boat. 

 
Figure 4 – Oiled coastlines mapped by Kokaly for the same Aviris 
image (2013). 



 
Figure 5 : ERMA, September 17, 2010 – SCAT (Shoreline 
Cleanup and Assessment Technique) oiling ground observations. 

2.3. Automatic mapping with endmembers extraction 
 
The second method we developed is based on endmembers 
extraction and linear unmixing, which is a classic approach 
to identify pure materials in a hyperspectral image and to 
calculate their related abundances in each pixel. The 
assumption is done that the different pure components 
(endmembers) are linearly mixed in the pixels. Such 
problem can be formulated as follows:  
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where pij is the radiance or the reflectance of the pixel j in 
the band i, and eik is the radiance (or reflectance) of the 
endmember k in the band i, and akj is the abundance of the 
endmember k in the pixel j. 

In order to avoid the detection of numerous 
undesirable elements during the endmembers extraction, a 
mask was applied to the boats, as well as to the plastic 
buoys surrounding the islands, when using this approach. To 
extract endmembers, a method based on the Orthogonal 
Subspace Projection (OSP) is used [11]. We chose OSP 
because it is very simple to implement and its results are 
reproducible, as the method does not use any random draw. 
More, it is not necessary to know the real number of 
endmembers, whose determination is a complex issue and 
has strong impact on the results of most of the endmembers 
extraction methods. In OSP, increasing the number of 
endmembers do not change the endmembers already 
extracted. In this work, this number was set to 20. The 
principle of this method is to search iteratively for extrema 
pixels. At each iteration data are projected orthogonally to 
the subspace supported by the endmembers previously 
extracted. Endmembers extraction is applied on a spectral 
subset which only contains specific HC spectral features. 
The bands 119 to 140 and 143 to 196 are kept, that 
correspond to the spectral ranges 1.5923 µm - 1.8015 µm 
and 1.9674 µm - 2.4962 µm. After the endmembers 
extraction, abundances map of each endmembers are 

computed using FCLS (Fully Constrained Least Squares) 
method. The next stage consists in finding the endmembers 
of interest, i.e. corresponding to the oil impacted materials. 
To do so, endmembers are sorted in descending order 
according to their HC scores. Two HC indices are 
considered Area1700 and Area2300, which is the area of the 
absorption features under a virtual line drawn between 
λa=2.21 µm and λb=2.38 µm, computed in the same way as 
Area1700. For more clarity, hydrocarbon indices have been 
normalized. The Table 1 presents the sorted endmembers 
according to their HC indices (number in parentheses). It 
shows that the 3rd, then the 5th endmembers are the best as 
they have high scores for both normalized indices. 
The figure 6 shows the spectrum of the endmembers 3, 5, 14 
and 17 that appear in Table 1. The absorption bands at 1.72 
and 2.3 µm are clearly observable.  

Table 1 – Endmembers sorted according to their normalized HC 
scores Area1700 and Area2300 (in parentheses). 

 
Area1700 Area2300 

1 3rd 
(1.000) 

3rd  
(1.000) 

2 14th  
(0.665) 

5th  
(0.680) 

3 5th  
(0.487) 

17th  
(0.517) 

 

 
Figure 6 – Endmembers spectra. 

The abundance maps corresponding to the 3rd endmember 
and to the sum of the 3rd and the 5th endmembers are shown 
on Figure 7. They can be compared to Figure 4 and Figure 5. 
The detected oiled areas are similar to those obtained by 
Kokaly [3] and with the high and moderate oiled areas 
observed on the field three days after [10]. The sum of the 
3rd and 5th endmembers abundances map enhanced a little 
more the oiled areas. The abundance maps of endmembers 
14 and 17 (not shown in this paper) allow identifying parts, 
but not all, of oiled shorelines. 
Finally, this method based on linear unmixing gives similar 
results as those based solely on HC index calculation, with 
slightly fewer false alarms on in-land vegetation.   
 



 
Figure 7: Abundance of the 3rd endmember (a) and sum of the 
abundances of the 3rd and 5th endmembers (b). Histograms are 
adjusted on the whole images.  

 
3. CONCLUSION 

 
Both technics presented in this paper allow the detection of 
oil spilling on shoreline. They make it possible to detect 
oiled coastline with very few false alarms, even in presence 
of senescent plants that are known to cause false alarms 
when detecting oiled materials using the 1.73 µm absorption 
band. The detected areas are consistent with field 
observations [1] and with those obtained in [3] and [4]. In 
addition, compared with these previous works, the proposed 
methods have the advantage of not requiring fields or lab 
measurements and of being fully automatic. The first 
method is very simple to implement because it only requires 
the calculation of a new HC index, Area1700, which is 
presented in this paper. This new HC index is significantly 

more efficient for detecting polluted coastlines than the 
index proposed by Kühn and using the same absorption 
band. The second method developed in this work is based 
on endmember extraction and linear unmixing. Endmembers 
that are used to map oiled shorelines are selected according 
to their Aire1700 and Aire2300 scores. This method, has a 
little more complex implementation, but gives significantly 
better results that the first one. But in order to limit to 
number of useless endmembers, a mask has been built to 
hide boats and buoys, which requires a manual pre-
processing. 
 

4. REFERENCES 
 

[1] United States Coast Guard, and U.S National Response Team. 
On scene coordinator report: Deepwater Horizon oil spill, 
Geological Survey open-file report, 2011 
 
[2] Kokaly, R. F, D. Heckman, J. Holloway, S. Piazza, B. 
Couvillion, G. D. Steyer, C. Mills and T. M. Hoefen, Shoreline 
surveys of oil-impacted marsh in southern Louisiana. U.S, U.S. 
Geological Survey Open-File Report 2011–1022, 2011 
 
[3] Kokaly, R. F., B. R. Couvillion, J. A. M. Holloway, D. A. 
Roberts, S. L. Ustin, S. H. Peterson, S. Khanna, S.C. Piazza,  
Spectroscopic remote sensing of the distribution and persistence of 
oil from the Deepwater Horizon spill in Barataria Bay marshes. 
Remote Sensing of Environment, 129, 210-230, 2013 
 
[4] Arslan, M. D, Oil Spill Detection and Mapping Along the Gulf 
of Mexico Coastline Based on Imaging Spectrometer Data. Texas: 
Texas A & M University PhD report, 2013 
 
[5] Kokaly, R. F., Spectroscopic remote sensing for material 
identification, vegetation characterization, and mapping, Proc. 
SPIE, Vol. 8390, 839014, doi: 10.1117/12.979120, 2012 
 
[6] Miesch, C. P., Poutier, L.; Achard, V.; Briottet, X.; Lenot, X.; 
Boucher Direct and inverse radiative transfer solutions for visible 
and near-infrared hyperspectral imagery. IEEE Trans. Geosc. 
Remote Sensing, vol. 43, n°7, 1552-1562, 2005 
 
[7] Berk A., et al, MODTRAN5: a reformulated atmospheric band 
model with auxiliary species and practical multiple scattering 
options, Proc. SPIE, Vol. 5571, p. 78-85 doi: 10.1117/12.564634, 
2004 
 
[8] Hörig, B., Kuhn, F.; Oschutz, F.; Lehmann, F., HyMap 
hyperspectral remote sensing to detect hydrocarbons. Int. Journal 
of Remote Sensing, 1413-1422, 2001 
 
[9] Kühn, F., Oppermann, K. and Horig, B., Hydrocarbon Index - 
An algorithm for hyperspectral detection of hydrocarbons, Int. 
Journal. of Remote Sensing.. 25, 2467-2473., 2004 
 
[10] https://erma.noaa.gov/gulfofmexico/erma.html  
 
[11] Chang, C.-I., Orthogonal subspace projection (OSP) revisited: 
a comprehensive study and analysis. IEEE Trans. on Geoscience 
and Remote Sensing, Vol. 43, no. 3, 502-518, 2005 

https://erma.noaa.gov/gulfofmexico/erma.html

	Automatic MAPPING of hydrocarbon pollution
	baseD on hyperspectral imaging
	Abstract


