

Formation of harmful oxygenated components during the oxidation of di-n-buthylether as a potential biofuel candidate

Luc-Sy Tran, J. Wullenkord, Y. Li, O. Herbinet, M. Zeng, F. Qi, F. Battin-Leclerc, K. Kohse-Höinghaus

► To cite this version:

Luc-Sy Tran, J. Wullenkord, Y. Li, O. Herbinet, M. Zeng, et al.. Formation of harmful oxygenated components during the oxidation of di-n-buthylether as a potential biofuel candidate. 2ème Journée Scientifique Climibio, May 2019, Lille, France. hal-02396760

HAL Id: hal-02396760 https://hal.science/hal-02396760

Submitted on 14 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Luc-Sy Tran^{1,2,3,*}, Julia Wullenkord³, Yuyang Li⁴, Olivier Herbinet², Meirong Zeng⁴, Fei Qi⁴, Frédérique Battin-Leclerc², Katharina Kohse-Höinghaus³,

1 Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France 2 Laboratoire Réactions et Génie des Procédés (LRGP), CNRS, Université de Lorraine, ENSIC, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France 3 Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany 4 School of Mechanical Engineering, Shanghai Jiao Tong University (SJTU), Shanghai 200240, PR China *<u>luc-sy.tran@univ-lille.fr</u>

Formation of harmful oxygenated components during the oxidation of di-*n*-buthyl ether as a potential biofuel candidate

2^{ème} Journée Scientifique Climibio, 22.05.2019, Univ. Lille

Introduction

- More than 80% of the world's primary energy supply is currently produced through combustion process. Fossil fuels still dominate energy supplies, ~90% worldwide, leading to large amounts of emissions of greenhouse gases CO_2 .
- The use of biofuels to substitute the fossil fuels has been identified as a sustainable solution for mitigating global CO₂ emissions and improving the energy security.
- Di-n-butyl ether (DBE) has been proposed as a promising biofuel for diesel engines [1] (e.g. a high cetane number and favorable heating value, Table 1). However, emissions of harmful oxygenated components (e.g. aldehydes,

Table 1.	Diesel	DBE
Formula	C ₈ -C ₂₅	$C_8H_{18}O$
Structure	C ₈ -C ₂₅ HC	
Boiling point (K)	443-633	414
Density (kg/m³)	833	770
Lower heating value LHV (MJ/kg)	42.9	38.4

acids, dions) from the oxidation of this fuel are still not well understood.

Cetane	e ni	Jm	be
CCCAIIC			

~100

Experimental methods

Fig. 1a JSR-GC system at LRGP-CNRS Nancy

Table 2.

Deseter	ф (t	Т (К)	Initial gas mole fraction			
Reactor		(s)		He or Ar ^a	02	DBE	
JSR	1	2	435-1100	0.870	0.12	0.01	GC
	1	2	440-750	0.870	0.12	0.01	PI-MBMS
PFR	1	2 ^b	448-1015	0.935	0.06	0.005	EI-MBMS
	1	1 ^b	448-900	0.935	0.06	0.005	EI-MBMS
	0.7	2 ^b	448-900	0.909	0.086	0.005	EI-MBMS

^a He: GC experiments, Ar: MBMS experiments. ^b at ~1000 K

Atmospheric jet-stirred reactor (JSR) experiments:

- Experimental conditions are given in Table 2.
- Analysis of chemical species:
- \succ gas chromatographs (GC) (Fig. 1a) with 3 columns, coupled to a thermal conductivity detector, a flame ionization detector/methanizer, and a mass spectrometric detector [2].
- tunable synchrotron vacuum ultraviolet photoionization molecular-beam mass spectrometry (SVUV-PI-MBMS) (Fig. 1b) with energy resolution $E/\Delta E \approx 4000$ and mass resolution m/ Δ m \approx 2500 [3].

Atmospheric plug-flow reactor (PFR) experiment:

- Experimental conditions are summarized in Table 2.
- Analysis of chemical species by electron ionization (EI)-MBMS at 17 eV with mass resolution m/ Δ m \approx 2200 (Fig. 1c) [4].

Results

Detection of previously unobserved oxygenated components

Observation of an unusual oxidation behavior:

Fig. 2. Experimental mole fraction profiles of DBE and O₂. (a) JSR (ϕ =1.0, 1% DBE), (b) PFR (ϕ =1.0, 0.5% DBE), (c) DBE profile in JSR-GC and PFR-EI-MBMS experiments, (d) DBE profiles for different ϕ and PFR lengths L. Profiles in (c) and (d) are normalized by the respective inlet DBE mole fractions.

Acids

Fig. 4. Photoionization efficiency curves at 500 K from the JSR-PI-MBMS experiment for m/z 60 (a) and 88 (b), corresponding to acetic acid (CH₃COOH) and butanoic acid (C₃H₇COOH), respectively. Profiles of the detected acids: (c) JSR, (d) PFR.

<u>C₈H₁₆O₂ cyclic ethers</u>

ndation of China

91541201

KO1363/31-1

Diones $(C_8H_{14}O_3)$

Fig. 7. Profiles of fuel-specific peroxides: hydroperoxides $C_8H_{18}O_3$ (products of the first O_2 addition), keto-hydroperoxides $C_8H_{16}O_4$ (products of the second O_2 addition), di-keto-hydroperoxides $C_8H_{14}O_5$ and keto-di-hydroperoxides $C_8H_{16}O_6$ (products of the third O_2 addition).

Examples of newly-proposed reaction pathways

Fig. 3. Proposed mechanism of DBE oxidation resulting in two NTC zones. Dashed arrows represent series of reactions.

IN SCIENCE AND TECHNOLOGY

Fig. 8. Newly-proposed paths for DBE LT mechanism. (a) Formation of butanoic acid (C_3H_7COOH) and butyric anhydride ($C_8H_{14}O_3$). (b) Formation of *n*-butyl butanoate $(C_4O(CO)C_3)$.

Acknowledgements DFG CINIS COSE NSFC Alexander von Humbold Deutsche Stiftung/Foundation Forschungsgemeinschat

References

[1] B. Heuser, P. Mauermann, R. Wankhade, F. Kremer, S. Pischinger, Int. J. Engine Res. 16 (2015) 627–638. [2] O. Herbinet , F. Battin-Leclerc , Int. J. Chem. Kinet. 46 (2014) 619-639 . [3] Z. Zhou, X. Du, J. Yang, Y. Wang, C. Li, S. Wei, L. Du, Y. Li, F. Qi, Q. Wang, J. Synchrotron Rad. 23 (2016) 1035–1045. [4] C. Hemken, U. Burke, K.-Y. Lam, D.F. Davidson, R. Hanson, K. A. Heufer, K. Kohse-Höinghaus, Combust. Flame 184 (2017) 195–207.