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The Poisson Channel with Varying Dark Current
Known to the Transmitter

Ligong Wang, Member, IEEE

Abstract—This paper studies the continuous-time Poisson
channel whose dark current is random and may change for
every τ -second time interval, where the actual values of the
dark current are known to the transmitter as channel-state
information (CSI). In the limit where τ tends to zero, the capacity
gain provided by both causal and noncausal CSI is shown to
vanish linearly with τ , so CSI at the transmitter provides almost
no capacity improvement. The paper also considers a related
problem of the state-dependent very noisy channel. In the “very
noisy” limit, the capacity gain provided by noncausal CSI is
shown to be same as that provided by causal CSI.

Index Terms—Channel-state information, Gel’fand-Pinsker
problem, Poisson channel, Shannon strategy, very noisy channel.

I. INTRODUCTION

THE Poisson channel is a model for optical communication
links where the transmitter modulates the intensity of the

optical signal for transmission, and where the receiver per-
forms direct detection using photodetectors. The continuous-
time Poisson channel with infinite bandwidth subject to a peak-
power constraint and possibly also an average-power constraint
on its input signal has been extensively studied in the literature.
The capacity of this channel was computed using different
methods in [1]–[3]. The cut-off rate was computed in [2] (see
also [4], [5]), and the error exponent in [3] . The reliability
function of the ideal Poisson channel with noiseless feedback
was determined in [6]. The Poisson channel with random or
deterministic time-varying “dark current” was considered in
[7] and later in [8]. A fading model where the dark current
is fixed but the channel gain is time-varying was studied in
[9]. Several multiple-user models were studied in [10]–[15].
Among them, [13] considers the peak-limited continuous-time
Poisson channel with spurious photon arrivals at the receiver,
where the exact positions of these spurious arrivals are known
to the transmitter as channel-state information (CSI) before
transmission starts. It shows that, in terms of capacity, the
transmitter is able to completely cancel the influence of these
spurious arrivals, i.e., that the capacity is the same as when
there are no spurious arrivals or, equivalently, as when these
arrival positions are also known to the receiver.

Like [13], the current work also concerns the Poisson
channel with CSI at the transmitter. However, while in [13]
the CSI is the exact positions of the spurious arrivals, here
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we consider CSI that is the time-varying intensity of the
background light that generates these spurious arrivals. Hence,
effectively, we are looking at a Poisson channel whose dark
current varies with time, where the values of the dark current
are known to the transmitter as CSI. As we shall see, the
different types of CSI considered in [13] and in the current
work lead to drastically different capacity results.

The main result of this paper is that, if the dark current
varies very fast, then the benefit of both causal and noncausal
CSI at the transmitter is small. Specifically, if the dark current
can change after every τ seconds without memory, then the
benefit of (causal or noncausal) CSI at the transmitter is at
most O(τ) nats per second.

The current work is related to [7], which also studies
Poisson channels with varying dark currents. In [7], the dark
current is assumed to be either deterministic or random and
unknown to either the transmitter or the receiver, and in
the former case a closed-form capacity formula is derived.
When an average-power constraint is present, computing this
capacity becomes a problem of optimal power allocation,
which is further addressed in [8]. In our setting, where the
dark current is random and known only to the transmitter,
the capacity seems more difficult to compute. In fact, within
this work we do not provide an explicit capacity formula, but
derive upper bounds on capacity that are sufficiently tight in
the regime of interest.

Our work builds upon classic results on channels with CSI.
Shannon [16] studied the discrete memoryless channel (DMC)
affected by a random state that is independent and identically
distributed (IID) across different channel uses, where the state
is known to the transmitter causally. Gel’fand and Pinsker
[17] studied the case where CSI is available to the transmitter
noncausally. In both these settings [16], [17], the receiver does
not have CSI. If CSI is available to both the transmitter and the
receiver, then capacity is not affected by whether CSI at the
transmitter is causal or noncausal, and it can be achieved with
a simple rate-splitting scheme; see [18] and references therein.
Some of these results have been generalized to broadcast
channels [19]–[21].

Some examples of channels with CSI at the transmitter have
been solved. One of them is computer memory (modeled by
a perfect binary channel or a binary symmetric channel) with
stuck-at faults [22], [23]. In this example, causal CSI does not
increase capacity at all, whereas noncausal CSI increases it to
the same capacity as when CSI is available on both (transmitter
and receiver) sides. Another famous example is the additive
white Gaussian noise channel with an additive state, known
as the “dirty paper problem” [24], [25]. There, noncausal CSI
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again increases the capacity to that with CSI on both sides,
hence the additive state can be completely canceled using only
noncausal CSI at the transmitter. The capacity of this channel
with causal CSI is unknown, and an upper bound was given in
[26]. A third example is the above-mentioned Poisson channel
with spurious arrivals [13]. On this channel, causal CSI does
not increase capacity, whereas noncausal CSI, once again, can
completely cancel the interference of the states. For a general
DMC, an algorithm to numerically compute channel capacity
with noncausal CSI was proposed in [27].

We note that, in most of these examples (with the exception
of [26]), the capacity upper bounds are trivial. In particular,
in all the above examples of channels with noncausal CSI,
capacity upper bounds are obtained by revealing the CSI also
to the receiver. In the current work, we demonstrate methods
that can be used to prove nontrivial upper bounds on the
capacity with CSI.

As a side result, we apply our proof techniques to another,
simpler example, the very noisy channel (VNC) [12], [28],
which is sometimes used as an abstract model for wideband
channels. For the VNC, we show that, like for our Poisson
model, noncausal CSI has little advantage in terms of capacity
over causal CSI. Unlike the Poisson channel, however, causal
CSI on the VNC may improve capacity over the no-CSI case.

The rest of this paper is arranged as follows. Section II
introduces the Poisson channel model and provides some
background. Section III presents the results on the Poisson
channel, and provides some high-level intuition to our proof
methods. Section IV contains the proof of the main result.
Section V states and proves the result on the VNC. Section VI
concludes the paper with some discussions. The Appendix
proves a simple result that provides intuition to the Poisson
channel with causal CSI.

II. CHANNEL MODEL AND PRELIMINARIES

A. Channel Model and Some Notation

We consider a continuous-time Poisson channel whose input
signal must be a Lebesgue-measurable waveform on R+

0

subject to peak-power constraint A: for every t ∈ R+
0 ,

0 ≤ X(t) ≤ A with probability 1. (1)

We do not impose an average-power or a bandwidth constraint
on the input. We assume that the channel is affected by
background noise which has random, time-varying intensity
Λ(t), t ∈ R+

0 ; i.e., Λ(·) is the dark current. The output is a
doubly-stochastic Poisson process (Cox process): conditional
on the input signal being x(·) and the dark current being λ(·),
the output is a Poisson process whose time-t intensity equals
x(t)+λ(t). Let Z(t), t ∈ R+

0 , be the random counting function
describing the output process, then, for any t0, τ > 0,

Pr
[
Z(t0 + τ)− Z(t0) = k

∣∣Λ(·) = λ(·), X(·) = x(·)
]

= e−σ
σk

k!
, k ∈ Z+

0 , (2)

where

σ =

∫ t0+τ

t0

(
x(t) + λ(t)

)
dt. (3)

Conditional on X(·) = x(·) and Λ(·) = λ(·), the increments
of Z(·) over disjoint intervals are independent.

The Poisson channel is typically used to model optical
communication with a direct-detection receiver. The input
X(t) describes the intensity emitted from the transmitter’s
laser or light-emitting diode at time t; each unit jump in Z(·)—
called a “point” or an “arrival”—describes the detection of one
photon at the receiver’s photodetector; and the dark current
Λ(·) describes noise coming from the detector’s thermal noise,
background light, or light signal from interfering devices, etc.

To make the problem more tractable, we make some
simplifying assumptions on the random time-varying dark
current Λ(·). Divide R+

0 into slots of τ seconds long:
[0, τ), [τ, 2τ), . . .. We assume that Λ(t) remains constant
within each of these slots, while its values in different slots are
IID. Further, we assume that every Λ(t), t ∈ R+

0 , takes only
two values: 0 with probability (1− q) and n with probability
q, where n > 0 and q ∈ (0, 1).

The above model for Λ(·) is partially motivated by consider-
ing a situation where Λ(·) is an interfering signal generated by
on-off modulation over τ -second rectangular waveforms. Such
an interfering signal may be sent by the same transmitter but
intended for another receiver (in a broadcast scenario), or sent
by a nearby transmitter.

Since Λ(·) changes possibly every τ seconds without mem-
ory, we can think of this Poisson channel as a discrete-time
memoryless channel, where each channel-use is itself a τ -
second slot. To introduce some notation, consider, for example,
the slot [0, τ). Let S be a binary random variable taking the
values 0 and 1 with probabilities 1 − q and q, respectively.
We use S to characterize the dark current within [0, τ): if
S = 0 then Λ(t) = 0 for all t ∈ [0, τ); otherwise Λ(t) = n,
t ∈ [0, τ). Let x denote an input waveform x(t), t ∈ [0, τ),
and let X denote the set of all admissible input waveforms on
[0, τ) satisfying (1). For notational convenience, we introduce
the following description of the output on [0, τ), which we
shall use instead of the counting function z(·) in the rest of
this paper. Let the (possibly empty) set

y = {t1, . . . , tk} ⊂ [0, τ) (4)

be such that each ti ∈ y corresponds to the position of an
arrival, i.e., an increase by 1 in z(t), t ∈ [0, τ). Note that,
since with probability one Z(·) contains only unit jumps, the
two descriptions of the output process in terms of y and of
z(·) are equivalent. Thus, each τ -second slot can be seen as
one use of a discrete-time channel, whose input x and output
y are both continuous-time objects, while the state s is binary.
We further let u denote any mapping

u : {0, 1} → X , s 7→ us, (5)

i.e., each u is determined by two input waveforms u0,u1 ∈ X .
Let U denote the set of all such mappings (i.e., waveform
pairs).

We use a letter like P to denote a probability distribution,1

1For simplicity of notation, we shall not define σ-algebras for probability
measures. This should not cause any confusion within the scope of this work.
However, it should be kept in mind that, in general, our “distributions” are
indeed probability measures and not necessarily probability mass functions or
probability density functions.
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and sometimes add indicative subscripts to it. In particular, PS
denotes the state distribution on {0, 1}:

1− PS(0) = PS(1) = q, (6)

PX denotes a distribution on X , and PU a distribution on U .
We use × to denote products of distributions. For example,
when S and X are generated independently according to PS
and PX, respectively, their joint distribution is PS × PX.
Further, we use PU|S to denote a “conditional distribution”
of U given S. (More precisely, it is a stochastic kernel
with source {0, 1} and target U , together with the σ-algebras
defined on these sets.) We use W to denote the transition
law (again a stochastic kernel) of the Poisson channel on
[0, τ): W(·|x, s) is the conditional distribution for Y given
that X = x and S = s.

B. Preliminaries

The capacity of the peak-limited Poisson channel with
constant dark current was computed using different methods
in [1]–[3]. For peak-power constraint A and constant dark
current ν (i.e., Λ(t) = ν with probability one for all t), it is
given by [3, Theorem 1]:

CPois
Const(A, ν)

= max
p

(
p(A+ ν) log

A+ ν

pA+ ν
+ (1− p)ν log

ν

pA+ ν

)
(7)

where the maximum is achieved by

p∗ =

(
1 + ν

A
)1+ ν

A(
ν
A
) ν
A · e

− ν

A
. (8)

It is useful to note that p∗ as a function of ν
A is monotonically

increasing, and satisfies [2]

e−1 ≤ p∗ ≤ 0.5. (9)

For the Poisson channel with random, time-varying dark
current described in Section II-A, let us consider four cases:
without CSI, with causal and noncausal CSI, respectively,
at the transmitter, and with CSI at both the transmitter and
the receiver. The capacity formulas for these four cases can
be readily obtained by generalizing classic formulas to allow
general input and output alphabets.

Case 1: No CSI.
In this case, an encoder working at blocklength T seconds

maps a message to an input signal x(t), t ∈ [0, T ], and a
corresponding decoder maps the output signal on [0, T ] back
to a message. The capacity, denoted by CPois

NoCSI(A, n, q, τ), is
defined as the maximum rate in nats per second at which
information can be transmitted such that the probability of
a decoding error, computed for a uniformly chosen message,
can be made arbitrarily small as T tends to infinity.2 Viewing
the channel as a discrete-time memoryless channel as in
Section II-A, one can generalize the standard capacity formula
[29] to general input and output alphabets to obtain

CPois
NoCSI(A, n, q, τ) =

1

τ
sup I(X;Y) (10)

2For simplicity, we only consider average error probabilities.

with supremum over distributions of the form

PS(s)PX(x)W(y|x, s), (11)

with PS given by (6).
Case 2: Causal CSI at the transmitter only.
In this case, to choose the input value x(t) at time t, the

encoder looks at both the message and the past and current
values of the dark current, λ(s), s ∈ [0, t]. The decoder
is of the same structure as in Case 1. Denote the capacity
by CPois

Cau (A, n, q, τ), which is defined similarly as in Case 1.
Generalizing [16] we have

CPois
Cau (A, n, q, τ) =

1

τ
sup I(U;Y) (12)

with supremum over distributions of the form

PS(s)PU(u)W(y|us, s). (13)

Case 3: Noncausal CSI at the transmitter only.
In this case, the encoder maps the message and the entire

dark current λ(t), t ∈ [0, T ], to the input waveform x(t),
t ∈ [0, T ]. Denote the capacity by CPois

NonCau(A, n, q, τ). Gener-
alizing [17] we have

CPois
NonCau(A, n, q, τ) =

1

τ
sup
(
I(U;Y)− I(U;S)

)
(14)

with supremum over distributions of the form

PS(s)PU|S(u|s)W(y|us, s). (15)

Remark 1: In some literature, the mapping U in (12) and
(14) is taken to be any auxiliary random variable, and the
channel input X is generated according to a conditional
distribution PX|US . It is however well understood that (in
both cases of causal and noncausal CSI) it is optimal to take
PX|US to be deterministic, thus reducing the auxiliary random
variable U to a random mapping that maps S to X; see, e.g.,
[18].

Case 4: CSI at both the transmitter and the receiver.
In this case, capacity is not affected by whether CSI is

known to the transmitter causally or noncausally. Denote the
capacity by CPois

Both(A, n, q, τ). A simple time-sharing argument
shows that (see [7], [8])

CPois
Both(A, n, q, τ) = (1−q)CPois

Const(A, 0)+qCPois
Const(A, n), (16)

where CPois
Const(A, ν) is the capacity of the Poisson channel with

peak-power constraint A and constant dark current ν.
The various capacities introduced above can be ordered as

follows.
Proposition 2: For all A, n, q, and τ ,

CPois
Both(A, n, q, τ) ≥ CPois

NonCau(A, n, q, τ) ≥ CPois
Cau (A, n, q, τ)

≥ CPois
NoCSI(A, n, q, τ) ≥ CPois

Const(A, qn). (17)

Proof: The first three inequalities in (17) follow imme-
diately from the fact that more knowledge cannot decrease
capacity. It remains to prove the last inequality. To this end,
consider the following scheme for the no-CSI case. The
transmitter and the receiver first discretize the channel as
in [3]: they divide the interval [0, T ] into small slots of ∆
seconds (we restrict ∆ to be such that τ/∆ is an integer),
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and approximate each slot by a binary-input binary-output
channel. Specifically, the binary input being 0 corresponds
to transmitting 0, and it being 1 corresponds to transmitting
A during the slot; the output being 0 corresponds to having
no arrival in the output in the slot, and the output being 1
corresponds to having at least one arrival. The transmitter and
the receiver then use some common randomness (which cannot
increase capacity in point-to-point settings) to permute these
slots. After permutation, they ignore the common randomness
they have used, and use the new sequence of channel-uses
to communicate. The resulting channel is a memoryless one.
Denote its transition law by Wb, then

Wb(0|0) = 1−Wb(1|0) = (1− q) + qe−n∆ (18a)
Wb(0|1) = 1−Wb(1|1) = e−A∆

(
(1− q) + qe−n∆

)
. (18b)

As ∆ tends to zero, one can easily check that the capacity of
the binary channel (18) divided by ∆ tends to CPois

Const(A, qn).
(In fact, as ∆ tends to zero, the above binary channel ap-
proaches the binary channel resulting from Wyner’s original
discretization scheme [3].) Hence using the above scheme we
can achieve CPois

Const(A, qn) on our model of Poisson channel
with a random dark current without CSI.

III. RESULTS AND METHODS

A. Results

In this paper, we are interested in the regime where τ is
small. We show that, in this regime, CSI at the transmitter,
be it causal or noncausal, provides almost no benefit in terms
of capacity. More precisely, the capacity increase due to CSI
vanishes as τ tends to zero, and is no more than some constant
times τ . Our main result is the following theorem.

Theorem 3 (Noncausal CSI): For all A, n, q, and τ ,

CPois
NonCau(A, n, q, τ)− CPois

Cons(A, qn)

≤

[
5 +

n

A
+

(A+ n)2

8(min{q, 1− q})2
n2

]
(A+ n)2τ. (19)

Proof: See Section IV.
Note that Proposition 2 and Theorem 3 together imply that

CPois
Cau (A, n, q, τ)− CPois

Cons(A, qn)

≤

[
5 +

n

A
+

(A+ n)2

8(min{q, 1− q})2
n2

]
(A+ n)2τ. (20)

In particular, as claimed earlier, the capacity benefit of (causal
or noncausal) CSI on our channel model vanishes in the limit
where τ approaches zero:

CPois
Cons(A, qn) = lim

τ↓0
CPois

NoCSI(A, n, q, τ)

= lim
τ↓0

CPois
Cau (A, n, q, τ)

= lim
τ↓0

CPois
NonCau(A, n, q, τ). (21)

In contrast, compairing (7) and (16) shows that

CPois
Both(A, n, q, τ)− CPois

Const(A, qn)

= (1− q)CPois
Const(A, 0) + qCPois

Const(A, n)− CPois
Const(A, nq), (22)

which is positive for all A, n > 0 and q ∈ (0, 1), and does
not depend on τ . Note that (21) and (22) together imply
that, as τ approaches zero, the gap between CPois

Both(A, n, q, τ)
and CPois

NonCau(A, n, q, τ) approaches the right-hand side of (22).
Hence, when CSI is available to both the transmitter and the
receiver, it increases capacity compared to the no-CSI, causal-
CSI, and noncausal-CSI cases.3

In fact, the bound for causal CSI (20) can be tightened to
the following, which we state without a proof. A proof outline
was presented in [30].4

Proposition 4 ([30, Proposition 2]): For all A, n, q, and τ ,

CPois
Cau (A, n, q, τ)− CPois

Const(A, qn) ≤ 4(A+ n)2τ. (23)

Remark 5: Recall that a different model of Poisson channel
with CSI at the transmitter was studied in [13], where CSI
consists of the exact positions of the arrivals caused by
interference. It is shown there that such CSI, when available to
the transmitter noncausally, can help to completely cancel the
effect of interference: the capacity with noncausal CSI equals
the capacity of the Poisson channel without this interference.
In contrast, the current work shows that, if the transmitter only
knows the intensity of the interference, and if this intensity
changes fast, then noncausal CSI becomes nearly useless.

For causal CSI, [13] shows (somewhat heuristically) that
causal knowledge of arrival times caused by interference does
not increase capacity at all, whereas the current work shows
that causal knowledge of interference intensity provides little
capacity benefit in the regime where τ is small. These two
observations are related in spirit. We note, however, that in
our model the dark current has memory, so causal knowledge
of the dark current value actually allows a short look-ahead,
hence causal CSI in our model cannot be seen as strictly
weaker than causal CSI considered in [13].

B. Some Intuition

First let us consider noncausal versus causal CSI. From (14)
we observe the following. For a τ -second slot on a Poisson
channel, when τ is small, the mutual information I(U;Y)
must also be small. Thus, to make the right-hand side of (14)
positive, one must choose I(U;S) to be small. This means
that U must be “nearly independent” of S. Such a choice
will result in I(U;Y) being “nearly equal” to its value in the
causal case as in (12), where U is independent of S. Hence,
one sees that noncausal CSI cannot be “much more useful”
than causal CSI.

Next we discuss why capacity with causal CSI is not
much larger than without CSI. For a τ -second slot on the
Poisson channel as described in Section II-A, consider a binary
approximation to the channel output: the binary output symbol
yb equals 1 if there is at least one point in the actual output y

3One might be tempted to think that a dark current that changes very fast
would be nearly equivalent to a constant dark current, because, whatever the
value of λ(·), the probability that it produces an arrival within a certain τ -
second interval is very small. One can see from (22) that such a view is not
valid.

4We note that the proof outlined for the noncausal result in [30] is incorrect.
(It is unclear whether the bound [30, Proposition 3] itself is valid or not.) The
causal result [30, Proposition 2] and its outlined proof are correct.
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within this slot, and equals 0 otherwise. When τ is small, yb
captures most of the information in y, because the probability
that y contains two or more points is very small (on the order
of τ2), and because the exact positions of the points, if any,
cannot carry much information, as the interval is short. For Yb
we have

PYb|XS(1|x, s) = 1− e−‖x‖+sτ ≈ ‖x‖+ snτ (24a)
PYb|XS(0|x, s) ≈ 1− ‖x‖ − snτ, (24b)

where ‖ · ‖ denotes the L1 norm. Thus we have a channel
where the input and the state act “almost independently,”
where by “independently” we mean that the conditional output
distribution can be written as the sum of a part that depends
only on the input and another part that depends only on
the state. But for DMCs where the input and the state act
independently in this sense, one can show that causal CSI
does not increase capacity at all: it is optimal to choose x
independently of s. We formally prove this as Proposition 8
in the Appendix.

C. Proof Method

Guided by the above observation, our method to prove
an upper bound on CPois

NonCau(A, n, q, τ) is roughly as follows.
We first fix a value I(U;S) = α, and then upper-bound
the difference between I(U;Y) with noncausal CSI and
CPois

Const(A, qn) in terms of the parameter α. To this end, we
apply an upper bound similar to the duality-based upper bound
[31], [32] on I(U;Y), where we choose the reference output
distribution as the output distribution that results when the
transmitter ignores both the CSI and the time-varying nature
of the dark current to choose the optimal input distribution
in the constant-dark-current case, i.e., it chooses the input
distribution that achieves CPois

Const(A, qn). Let us denote the
resulting bound on I(U;Y)− CPois

Const(A, qn) by f(α), then

CPois
NonCau(A, n, q, τ) ≤ CPois

Const(A, qn) + f(α)− α. (25)

Our desired result is obtained by maximizing f(α) − α over
α.

Note that in the actual proof we must consider all possible
continuous-time input and output signals; we cannot base
our proof on a binary approximation similar to (24). This is
because there exists no guarantee that such an approximation
is optimal in the limit where τ ↓ 0. In fact, for any fixed τ > 0,
one can use Wyner’s method [3] to show that, if one further
divides each τ -second slot into finer slots of ∆ seconds long
and applies binary approximation to each ∆-second slot, then,
as ∆ approaches zero, such a scheme will become optimal.
But this does not imply that such a binary approximation is
also optimal if one chooses ∆ = τ , even if τ itself is small.

The proof method, where we fix I(U;S) = α and then
bound I(U;Y) in terms of α, can be applied to a broader
class of channels where the input and the state have “little
influence” on the output distribution. As an example, we shall
prove in Section V that, for the very noisy channel, noncausal
CSI provides little capacity improvement over causal CSI.

IV. PROOF OF THEOREM 3

Consider the formula (14). Fix I(U;S) to be

I(U;S) = α, (26)

whose value can depend on τ . By Pinsker’s inequality [31],

δ
(
PSPU|S ,PS × PU

)
≤
√
α

2
, (27)

where PU is the marginal distribution of PSPU|S on U, and
where δ(·, ·) denotes the total variation distance.

We next look at the I(U;Y) term in (14). Let PS|U be the
conditional distribution of S given U according to the joint
distribution PSPU|S . For convenience, denote

πu , PS|U(1|u). (28)

Let Ŵ denote the conditional distribution of Y given U, then

Ŵ(·|u) = (1− πu)W(·|u0, 0) + πuW(·|u1, 1) (29)

for every u ∈ U . For any distribution Q on Y , we have the
following bound, which is related to the duality-based upper
bound [31], [32]:

I(U;Y) = E
[
D
(
Ŵ(·|U)

∥∥∥PUŴ
)]

= E
[
D
(
Ŵ(·|U)

∥∥∥Q)]−D(PUŴ
∥∥∥Q)

≤ E
[
D
(
Ŵ(·|U)

∥∥∥Q)]. (30)

We choose Q to be doubly-stochastic Poisson under which,
with probability (1−q), Y is a homogeneous Poisson process
of intensity p∗A, and with probability q, it is a homogeneous
Poisson process of intensity p∗A + n, on [0, τ), where p∗ is
given in (8). Note that this Q would be the output distribu-
tion if the transmitter ignored the CSI and chose the input
distribution to be the one that achieves CPois

Const(A, qn).
Conditional on U = u, Y is doubly stochastic Poisson; its

intensity is u0(t), t ∈ [0, τ), with probability (1− πu), and is
u1(t) +n, t ∈ [0, τ), with probability πu. Thus we can obtain
the following Radon-Nikodym derivative using [33, (19.125)]:

dŴ(·|u)

dQ
(y)

=

(1− πu)e−‖u0‖
∏
t∈y

u0(t) + πue
−‖u1‖−nτ

∏
t∈y

(u1(t) + n)

(1− q)e−p
∗Aτ (p∗A)|y| + qe−(p∗A+n)τ (p∗A+ n)|y|

(31)

where | · | denotes the cardinality of a set, and where ‖ · ‖
denotes the L1 norm: for a nonnegative waveform x,

‖x‖ =

∫ τ

0

x(t) dt. (32)

We write the relative entropy in (30) as the following summa-
tion:

D
(
Ŵ(·|u)

∥∥∥Q)
=

∞∑
k=0

Ŵ(|Y| = k|u) E

[
log

dŴ(·|u)

dQ
(Y)

∣∣∣∣∣|Y| = k

]
. (33)
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First consider the summand in (33) with k = 0, which
means Y = ∅. If Ŵ(∅|u) ≥ Q(∅), then we use Ŵ(∅|u) ≤ 1
to derive the following bound:

Ŵ(∅|u) log
Ŵ(∅|u)

Q(∅)

≤ log
Ŵ(∅|u)

Q(∅)

= log
(1− πu)e−‖u0‖ + πue

−‖u1‖−nτ

(1− q)e−p∗Aτ + qe−(p∗A+n)τ

= log
(

(1− πu)e−‖u0‖ + πue
−‖u1‖−nτ

)
︸ ︷︷ ︸

≤(1−πu)e−‖u0‖+πue−‖u1‖−nτ−1

− log
(

(1− q)e−p
∗Aτ + qe−(p∗A+n)τ

)
︸ ︷︷ ︸
≥(1−q) log(e−p∗Aτ)+q log(e−(p∗A+n)τ)

≤ (1− πu)e−‖u0‖ + πue
−‖u1‖−nτ − 1

+ (1− q)p∗Aτ + q(p∗A+ n)τ

≤ (1− πu)

(
1− ‖u0‖+

‖u0‖2

2

)
+ πu

(
1− (‖u1‖+ nτ) +

(‖u1‖+ nτ)2

2

)
− 1 + p∗Aτ + qnτ

= p∗Aτ − ‖û‖+ (q − πu)nτ

+
(1− πu)‖u0‖2

2
+
πu(‖u1‖+ nτ)

2

2
≤ p∗Aτ − ‖û‖+ (q − πu)nτ + (A+ n)2τ2,

if Ŵ(∅|u) ≥ Q(∅), (34)

where
û , (1− πu)u0 + πuu1. (35)

If Ŵ(∅|u) < Q(∅), we use Ŵ(∅|u) ≥ 1− (A+ n)τ to write

Ŵ(∅|u) log
Ŵ(∅|u)

Q(∅)
≤
(
1− (A+ n)τ

)
log

Ŵ(∅|u)

Q(∅)

≤ log
Ŵ(∅|u)

Q(∅)
− (A+ n)τ log Ŵ(∅|u).

(36)

For the second term on the right-hand side of (36), we have

log Ŵ(∅|u) = log
(

(1− πu)e−‖u0‖ + πue
−‖u1‖−nτ

)
≥ (1− πu) log

(
e−‖u0‖

)
+ πu log

(
e−‖u1‖−nτ

)
= −‖û‖ − πunτ

≥ −(A+ n)τ. (37)

Plugging the above into the second term on the right-hand
side of (36), and upper-bounding the first term there by the
right-hand side of (34), we obtain

Ŵ(∅|u) · log
Ŵ(∅|u)

Q(∅)
≤ p∗Aτ − ‖û‖+ (q − πu)nτ + 2(A+ n)2τ2,

if Ŵ(∅|u) < Q(∅). (38)

Combining (34) and (38) we conclude that (in both cases)

Ŵ(∅|u) · log
Ŵ(∅|u)

Q(∅)
≤ p∗Aτ − ‖û‖+ (q − πu)nτ + 2(A+ n)2τ2. (39)

For the summand in (33) with k = 1, we have

Ŵ(|Y| = 1|u)

= (1− πu)‖u0‖e−‖u0‖ + πu(‖u1‖+ nτ)e−‖u1‖−nτ . (40)

Conditional on U = u, and further conditional on the event
|Y| = 1, the probability density function of the position of
the point in Y is

f(t) ,
(1− πu)e−‖u0‖u0(t) + πue

−‖u1‖−nτ (u1(t) + n)

Ŵ(|Y| = 1|u))
(41)

for t ∈ [0, τ), which can be bounded from above and below
as

û(t) + πun

Ŵ(|Y| = 1|u)
· (1− (A+ n)τ)

≤ f(t) ≤ û(t) + πun

Ŵ(|Y| = 1|u)
. (42)

Hence, using (31),

E

[
log

dŴ(·|u)

dQ
(Y)

∣∣∣∣∣|Y| = 1

]

=

∫ τ

0

f(t)

log
(1− πu)u0(t)e−‖u0‖ + πu(u1(t) + n)e−‖u1‖−nτ

(1− q)p∗Ae−p∗Aτ + q(p∗A+ n)e−(p∗A+n)τ
dt

≤
∫ τ

0

f(t) log
(1− πu)u0(t) + πu(u1(t) + n)(

(1− q)p∗A+ q(p∗A+ n)
)
e−(p∗A+n)τ

dt

=

∫ τ

0

f(t) log
û(t) + πun

p∗A+ qn
dt+ p∗Aτ + nτ

=

∫ τ

0

û(t) + πun

Ŵ(|Y| = 1|u)
log

û(t) + πun

p∗A+ qn
dt

+

∫ τ

0

(
f(t)− û(t) + πun

Ŵ(|Y| = 1|u)

)
log

û(t) + πun

p∗A+ qn
dt

+ p∗Aτ + nτ. (43)

Consider the second integral on the right-hand side of (43).
Using (42) its integrand can be bounded as(
f(t)− û(t) + πun

Ŵ(|Y| = 1|u)

)
log

û(t) + πun

p∗A+ qn

=

(
û(t) + πun

Ŵ(|Y| = 1|u)
− f(t)

)
︸ ︷︷ ︸

≥0

log
p∗A+ qn

û(t) + πun

≤

(
û(t) + πun

Ŵ(|Y| = 1|u)
− f(t)

)
·max

{
0, log

p∗A+ qn

û(t) + πun

}
≤ (û(t) + πun)(A+ n)τ

Ŵ(|Y| = 1|u)
·max

{
0, log

p∗A+ qn

û(t) + πun

}
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= max

{
0,

(û(t) + πun)(A+ n)τ

Ŵ(|Y| = 1|u)
log

p∗A+ qn

û(t) + πun

}
. (44)

Using the following inequality (which can be verified, e.g.,
by computing the derivative of its left-hand side with respect
to a)

a log
b

a
≤ be−1, a, b > 0,

we can continue (44) to(
f(t)− û(t) + πun

Ŵ(|Y| = 1|u)

)
log

p∗A+ qn

û(t) + πun

≤ max

{
0,

(A+ n)τ

Ŵ(|Y| = 1|u)
· (p∗A+ qn)e−1

}

≤ (A+ n)2τ

Ŵ(|Y| = 1|u)
, (45)

hence∫ τ

0

(
f(t)− û(t) + πun

Ŵ(|Y| = 1|u)

)
log

û(t) + πun

p∗A+ qn
dt

≤ (A+ n)2τ2

Ŵ(|Y| = 1|u)
. (46)

Plugging this into (43) we have

E

[
log

dŴ(·|u)

dQ
(Y)

∣∣∣∣∣|Y| = 1

]

≤
∫ τ

0

û(t) + πun

Ŵ(|Y| = 1|u)
log

û(t) + πun

p∗A+ qn
dt

+
(A+ n)2τ2

Ŵ(|Y| = 1|u)
+ p∗Aτ + nτ. (47)

Combining (40) and (47) we can upper-bound the summand
in (33) with k = 1 by

Ŵ(|Y| = 1|u) E

[
log

dŴ(·|u)

dQ
(Y)

∣∣∣∣∣|Y| = 1

]

≤
∫ τ

0

(û(t) + πun) log
û(t) + πun

p∗A+ qn
dt+ (A+ n)2τ2

+ Ŵ(|Y| = 1|u)(p∗Aτ + nτ). (48)

For the remaining summands in (33) with k ≥ 2, we have

dŴ(·|u)

dQ
(y)

≤

(1− πu)
∏
t∈y

u0(t) + πu
∏
t∈y

(u1(t) + n)(
(1− q)(p∗A)|y| + q(p∗A+ n)|y|

)
e−(p∗A+n)τ

≤ (1− πu)A|y| + πu(A+ n)|y|

(1− q)(p∗A)|y| + q(p∗A+ n)|y|
· e(p∗A+n)τ

≤ (A+ n)|y|

(p∗A)|y|
· e(p∗A+n)τ

=

(
A+ n

p∗A

)|y|
· e(p∗A+n)τ , (49)

therefore
∞∑
k=2

Ŵ(|Y| = k|u) E

[
log

dŴ(·|u)

dQ
(Y)

∣∣∣∣∣|Y| = k

]

≤ log
A+ n

p∗A
·
∞∑
k=2

Ŵ( |Y| = k|u) · k

+ (p∗A+ n)τ ·
∞∑
k=2

Ŵ( |Y| = k|u). (50)

To bound the first term on the right-hand side, we use the
following

∞∑
k=2

Ŵ(|Y| = k|u) · k

= E
[
|Y|
∣∣u]− Ŵ(|Y| = 1|u) · 1

= ‖ū‖+ qnτ − (1− q)‖u0‖e−‖u0‖

− q(‖u1‖+ nτ)e−‖u1‖−nτ

≤ ‖ū‖+ qnτ − (1− q)‖u0‖(1− ‖u0‖)
− q(‖u1‖+ nτ)(1− ‖u1‖ − nτ)

= (1− q)‖u0‖2 + q(‖u1‖+ nτ)
2

≤ (A+ n)2τ2. (51)

Hence we continue (50) as

∞∑
k=2

Ŵ(|Y| = k|u) E

[
log

dŴ(·|u)

dQ
(Y)

∣∣∣∣∣|Y| = k

]

≤ log
A+ n

p∗A
· (A+ n)2τ2

+ (p∗A+ n)τ ·
∞∑
k=2

Ŵ( |Y| = k|u)

≤
(

log
1

p∗︸ ︷︷ ︸
≤1

+ log
A+ n

A︸ ︷︷ ︸
≤ n
A

)
(A+ n)2τ2

+ (p∗A+ n)τ ·
∞∑
k=2

Ŵ( |Y| = k|u)

≤
(

1 +
n

A

)
(A+ n)2τ2

+ (p∗A+ n)τ ·
∞∑
k=2

Ŵ( |Y| = k|u), (52)

where, to obtain log 1
p∗ ≤ 1 for the last step, we recall (9).

Plugging (39), (48), and (52) into (33), we obtain

D
(
Ŵ(·|u)

∥∥∥Q) ≤ p∗Aτ − ‖û‖+ (q − πu)nτ

+

∫ τ

0

(û(t) + πun) log
û(t) + πun

p∗A+ qn
dt

+
(

4 +
n

A

)
(A+ n)2τ2

+ (p∗A+ n)τ ·
∞∑
k=1

Ŵ(|Y| = k|u)︸ ︷︷ ︸
≤(A+n)τ
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≤ p∗Aτ − ‖û‖+ (q − πu)nτ

+

∫ τ

0

(û(t) + πun) log
û(t) + πun

p∗A+ qn
dt

+
(

5 +
n

A

)
(A+ n)2τ2. (53)

Consider the following expression:

p∗Aτ − ‖ū‖+

∫ τ

0

(ū(t) + qn) log
ū(t) + qn

p∗A+ qn
dt

=

∫ τ

0

(
p∗A− ū(t) + (ū(t) + qn) log

ū(t) + qn

p∗A+ qn

)
dt, (54)

where we define

ū , (1− q)u0 + qu1. (55)

We shall continue (53) by first bounding (54), and then
bounding the difference between the right-hand side of (53)
and (54). To bound (54), note that, for every t, the second
derivative of the integrand in (54) with respect to ū(t) equals
(ū(t)+qn)−1, which is positive for all ū(t) ∈ [0,A], implying
that the integrand is convex in ū(t) on [0,A]. Furthermore,
we can check that, for both ū(t) = 0 and at ū(t) = A, this
integrand equals CPois

Const(A, qn). Hence the integrand is always
upper-bounded by CPois

Const(A, qn). We thus conclude∫ τ

0

(
p∗A− ū(t) + (ū(t) + qn) log

ū(t) + qn

p∗A+ qn

)
dt

≤ τ · CPois
Const(A, qn). (56)

Comparing (53) with (54) and using (56) we obtain

D
(
Ŵ(·|u)

∥∥∥Q)− τ · CPois
Cons(A, qn)−

(
5 +

n

A

)
(A+ n)2τ2

≤ ‖ū‖ − ‖û‖+ qnτ − πunτ

+

∫ τ

0

(û(t) + πun) log
û(t) + πun

p∗A+ qn
dt

−
∫ τ

0

(ū(t) + qn) log
ū(t) + qn

p∗A+ qn
dt

= ‖ū‖ − ‖û‖+ qnτ − πunτ

+

∫ τ

0

(û(t) + πun) log
û(t) + πun

ū(t) + qn
dt

+

∫ τ

0

(û(t) + πun− ū(t)− qn) log
ū(t) + qn

p∗A+ qn
dt. (57)

Using the log-sum inequality, we can bound the first integral
on the right-hand side of (57) as∫ τ

0

(û(t) + πun) log
û(t) + πun

ū(t) + qn
dt

≤
∫ τ

0

(
(1− πu)u0(t) log

(1− πu)u0(t)

(1− q)u0(t)

+ πu(u1(t) + n) log
πu(u1(t) + n)

q(u1(t) + n)

)
dt

= ‖u0‖(1− πu) log
1− πu

1− q
+ (‖u1‖+ nτ)πu log

πu

q

≤ ‖u0‖(1− πu) · q − πu

1− q
+ (‖u1‖+ nτ)πu ·

πu − q
q

≤
(
‖u0‖(1− πu) + (‖u1‖+ nτ)πu

)
· |πu − q|

min{q, 1− q}

≤ (A+ n)τ

min{q, 1− q}
· δ(PS|U,PS). (58)

We bound the second integral on the right-hand side of (57)
as∫ τ

0

(û(t) + πun− ū(t)− qn) log
ū(t) + qn

p∗A+ qn
dt

≤
∫ τ

0

|û(t) + πun− ū(t)− qn| ·
∣∣∣∣log

ū(t) + qn

p∗A+ qn

∣∣∣∣dt
≤
∫ τ

0

|û(t) + πun− ū(t)− qn| · log
A+ qn

qn
dt

≤
∫ τ

0

|û(t) + πun− ū(t)− qn| · A
qn

dt

=

∫ τ

0

|(πu − q)(u1(t) + n− u0(t))| · A
qn

dt

≤
∫ τ

0

|πu − q| · (A+ n) · A
qn

dt

=
(A+ n)Aτ

qn
· δ(PS|U,PS). (59)

Plugging (58) and (59) into (57) we obtain

D
(
Ŵ(·|u)

∥∥∥Q)− τ · CPois
Cons(A, qn)−

(
5 +

n

A

)
(A+ n)2τ2

≤ ‖ū‖ − ‖û‖+ qnτ − πunτ

+

(
(A+ n)τ

min{q, 1− q}
+

(A+ n)Aτ
qn

)
· δ(PS|U,PS)

≤ ‖ū‖ − ‖û‖+ qnτ − πunτ

+
(A+ n)2τ

min{q, 1− q} · n
· δ(PS|U,PS). (60)

Taking expectation over U and recalling (30), we have

I(U;Y)− τ · CPois
Cons(A, qn)−

(
5 +

n

A

)
(A+ n)2τ2

≤ E
[
‖Ū‖ − ‖Û‖+ qnτ − PS|U(1|U)nτ

]
︸ ︷︷ ︸

=0

+
(A+ n)2τ

min{q, 1− q} · n
· δ(PSPU|S ,PS × PU)

=
(A+ n)2τ

min{q, 1− q} · n
· δ(PSPU|S ,PS × PU). (61)

Recalling (14) and (27), we now have

CPois
NonCau(A, n, q, τ)− CPois

Cons(A, qn)

≤ (A+ n)2

min{q, 1− q} · n
·
√
α

2
− α

τ
+
(

5 +
n

A

)
(A+ n)2τ

=
(A+ n)4

8(min{q, 1− q})2
n2
· τ +

(
5 +

n

A

)
(A+ n)2τ

− 1

τ

(
√
α−

√
1

8
· (A+ n)2τ

min{q, 1− q} · n

)2

. (62)

The right-hand side of the above is maximized at

α =
(A+ n)4τ2

8(min{q, 1− q})2n2
, (63)

and the maximum equals the right-hand side of (19). This
completes the proof.
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V. A RELATED PROBLEM: THE VERY NOISY CHANNEL

In this section, we study the very noisy channel (VNC)
[12], [28] with CSI. On a communication channel, if the
number of degrees of freedom (e.g., bandwidth) available for
transmission increases, while the transmitter resource (e.g.,
power) is held fixed, then the resource available to be used on
each degree of freedom becomes small [12]. The channel thus
becomes “very noisy” in the sense that, within each channel
use, the transmitter has limited ability to influence the output.
Consequently, the capacity per channel use is small. To model
such a scenario, we generalize the model adopted in [12],
[28] to include a channel state. The mathematical formulation
is given below.5

Unlike the Poisson model we consider, the VNC capacity
may benefit from causal CSI. However, we shall show that,
similar to the Poisson case, noncausal CSI at the transmitter is
“not much more useful” than causal CSI; see Theorem 6. Com-
ing back to the picture where VNC is seen as an abstraction
for a wideband channel, this result means that noncausal CSI
does not increase the per-second capacity of such a channel
over causal CSI.

A. Channel Model and Preliminaries

Consider a state-dependent channel with input x ∈ X ,
output y ∈ Y , and state s ∈ S , where X ,Y,S are all finite.
The channel law is

W (y|x, s) = β(y)[1 + εψ(y|x, s)], x ∈ X , y ∈ Y, s ∈ S,
(64)

where β(·) is a distribution on Y; ψ satisfies∑
y∈Y

β(y)ψ(y|x, s) = 0, x ∈ X , s ∈ S; (65)

the state sequence S is IID according to PS and is independent
of the message; and ε is some positive parameter, which is
typically close to zero. This channel is a generalization of
the VNC without states [12], [28]. Its capacity in various
CSI settings is defined in the same way as for general state-
dependent DMCs; see [18].

First consider the capacity of this channel with causal CSI at
the transmitter and no CSI at the receiver, which we henceforth
denote by CVNC

Cau (ε). By Shannon’s classic result [16],

CVNC
Cau (ε) = max I(U ;Y ), (66)

where U takes value in the set U containing all mappings S to
X , and where the maximum is taken over joint distributions of
the form PS(s)PU (u)W (y|u(s), s), with u(s) denoting result
of applying the mapping u on the state s. For the VNC (64),
the derived channel law from u to y is given by

W (y|u) = β(y)
[
1 + εψ̄(y|u)

]
, u ∈ U , y ∈ Y, (67)

with
ψ̄(y|u) ,

∑
s

PS(s)ψ(y|u(s), s). (68)

5Note that the Poisson model considered in this paper cannot be seen as a
special case of this VNC model.

The channel (67) itself can be seen as a VNC without states,
hence we can apply the results in [12], [28] to obtain

lim
ε↓0

CVNC
Cau (ε)

ε2
=

1

2
max
PU

∑
y,u

β(y)PU (u)η̄(y|u)2 (69)

where η̄ depends on PU and is given by

η̄(y|u) = ψ̄(y|u)−
∑
u′

PU (u′)ψ̄(y|u′), u ∈ U , y ∈ Y. (70)

Denote the capacity of (64) with noncausal CSI at the
transmitter (and no CSI at the receiver) by CVNC

NonCau(ε). We
know that [17]

CVNC
NonCau(ε) = max I(U ;Y )− I(U ;S), (71)

where the maximization is over joint distributions of the form
PS(s)PU |S(u|s)W (y|u(s), s).

B. Result and Proof

Clearly, CVNC
NonCau(ε) ≥ CVNC

Cau (ε). Our main result concerning
the VNC states that the difference between CVNC

NonCau(ε) and
CVNC

Cau (ε) is at most on the order of ε4, and is hence negligible
compared to CVNC

Cau (ε) (or CVNC
NonCau(ε)).

Theorem 6: For the state-dependent VNC (64),

lim sup
ε↓0

CVNC
NonCau(ε)− CVNC

Cau (ε)

ε4
≤ 9

2
ψ4

max, (72)

where
ψmax , max

x,y,s
|ψ(y|x, s)|. (73)

Proof: Under a joint distribution on S × U × Y of the
form

PSUY (s, u, y) = PS(s)PU |S(u|s)W (y|u(s), s), (74)

and given channel law (64), the conditional distribution of
Y = y given U = u is

Ŵ (y|u) = β(y)
[
1 + εψ̂(y|u)

]
(75)

where
ψ̂(y|u) ,

∑
s

PS|U (s|u)ψ(y|u(s), s) (76)

for all u, y.
Consider the capacity formula (71). We fix the second term

on the right-and side of (71) as a function of ε

I(U ;S) = α(ε) (77)

and upper-bound the first term. Let R denote the capacity-
achieving output distribution in the causal case.6 We have

I(U ;Y ) = E
[
D
(
Ŵ (·|U)

∥∥∥PUŴ)]
= E

[
D
(
Ŵ (·|U)

∥∥∥R)]−D(PUŴ∥∥∥R)
≤ E

[
D
(
Ŵ (·|U)

∥∥∥R)]
=
∑
u,y

PU (u)Ŵ (y|u) log
Ŵ (y|u)

R(y)

6The exact form of R is unknown, and is not needed for our proof.
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=
∑
u,y

PU (u)Ŵ (y|u)

(
log

Ŵ (y|u)

W (y|u)
+ log

W (y|u)

R(y)

)

=
∑
u,y

PU (u)Ŵ (y|u) log
Ŵ (y|u)

W (y|u)

+
∑
u,y

PU (u)
(
Ŵ (y|u)−W (y|u)

)
log

W (y|u)

R(y)

+
∑
u,y

PU (u)W (y|u) log
W (y|u)

R(y)

=
∑
u

PU (u)D
(
Ŵ (·|u)

∥∥∥W (·|u)
)

+
∑
u,y

PU (u)
(
Ŵ (y|u)−W (y|u)

)
log

W (y|u)

R(y)

+
∑
u

PU (u)D
(
W (·|u)

∥∥R)
≤
∑
u

PU (u)D
(
Ŵ (·|u)

∥∥∥W (·|u)
)

+
∑
u,y

PU (u)
(
Ŵ (y|u)−W (y|u)

)
log

W (y|u)

R(y)

+ CVNC
Cau (ε). (78)

Here, the last step follows because R is chosen to be the
capacity-achieving output distribution in the causal case, hence
the Kuhn-Tucker conditions imply

D
(
W (·|u)

∥∥R) ≤ CVNC
Cau (ε), u ∈ U . (79)

Consider the first term on the right-hand side of (78). Each
relative entropy in it satisfies (see, e.g., [34, Lemma 17.3.3])

lim
ε↓0

D
(
Ŵ (·|u)

∥∥∥W (·|u)
)

∑
y

(
Ŵ (y|u)−W (y|u)

)2

2Ŵ (y|u)

= 1, (80)

where

∑
y

(
Ŵ (y|u)−W (y|u)

)2

2Ŵ (y|u)

=
∑
y

β(y)2ε2

(∑
s

(
PS|U (s|u)− PS(s)

)
ψ(y|u(s), s)

)2

2Ŵ (y|u)

≤
∑
y

β(y)2ε2
(
2δ
(
PS|U (·|u), PS

)
ψmax

)2
2Ŵ (y|u)

≤
∑
y

2β(y)2ε2δ
(
PS|U (·|u), PS

)
ψ2

max

Ŵ (y|u)
(81)

where ψmax is given in (73), and where δ(·, ·) denotes the total
variation distance between two distributions. The last step (81)
follows because the total variation distance is upper-bounded
by 1. Next note that Ŵ (y|u) tends to β(y) as ε ↓ 0, and that∑
y β(y) = 1. These imply that the right-hand side of (81)

asymptotically equals 2ε2δ
(
PS|U (·|u), PS

)
ψ2

max in the limit
ε ↓ 0. We can thus combine (80) and (81) to

lim sup
ε↓0

D
(
Ŵ (·|u)

∥∥∥W (·|u)
)

ε4

≤ lim sup
ε↓0

2δ
(
PS|U (·|u), PS

)
ψ2

max

ε2
. (82)

Because U is finite, we can simultaneously take expectations
on both sides of (82) over u:

lim sup
ε↓0

∑
u PU (u)D

(
Ŵ (·|u)

∥∥∥W (·|u)
)

ε4

≤ lim sup
ε↓0

2δ(PSU , PS × PU )ψ2
max

ε2
. (83)

Next note that, by (77) and Pinsker’s inequality [31],

δ(PSU , PS × PU ) ≤
√
α(ε)

2
, (84)

so (83) further implies

lim sup
ε↓0

∑
u PU (u)D

(
Ŵ (·|u)

∥∥∥W (·|u)
)

ε4

≤ lim sup
ε↓0

√
2α(ε)

ε2
· ψ2

max. (85)

Next consider the second term on the right-hand side of
(78). For all u and y, we have (assuming ε is small enough
so that εψmax < 1)

log
W (y|u)

R(y)
≤ log

β(y)(1 + εψmax)

β(y)(1− εψmax)

≤ 2εψmax

1− εψmax
.

Similarly,

log
W (y|u)

R(y)
≥ − 2εψmax

1− εψmax
. (86)

Therefore we have the following upper bound:∑
u,y

PU (u)
(
Ŵ (y|u)−W (y|u)

)
log

W (y|u)

R(y)

≤
∑
u,y

PU (u)
∣∣∣Ŵ (y|u)−W (y|u)

∣∣∣ · 2εψmax

1− εψmax

=
∑
u,y

PU (u)β(y)ε

∣∣∣∣∣∑
s

(
PS|U (s|u)− PS(s)

)
ψ(y|u, s)

∣∣∣∣∣
· 2εψmax

1− εψmax

≤
∑
u,y

PU (u)β(y)ε
(
2δ(PS|U (·|u), PS)ψmax

)
· 2εψmax

1− εψmax

=
4ε2ψ2

max

1− εψmax
· δ(PSU , PS × PU )

≤ 4ε2ψ2
max

1− εψmax
·
√
α(ε)

2
, (87)
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where the last step again follows from (84). Hence we obtain

lim sup
ε↓0

∑
u,y PU (u)

(
Ŵ (y|u)−W (y|u)

)
log W (y|u)

R(y)

ε4

≤ lim sup
ε↓0

2
√

2α(ε)

ε2
· ψ2

max. (88)

Combining (71), (77), (78), (85), and (88) we now have

lim sup
ε↓0

CVNC
NonCau(ε)− CVNC

Cau (ε)

ε4

≤ lim sup
ε↓0

max
α(ε)

{
3
√

2ε2ψ2
max

√
α(ε)− α(ε)

}
ε4

. (89)

The maximization in (89) is achieved by

α(ε) =
9ε4ψ4

max

2
, (90)

which yields (72).

C. Comparison to CSI at Both Transmitter and Receiver

Consider the capacity of the VNC (64) with CSI on both
sides, which we denote by CVNC

Both (ε).
Proposition 7: For the channel (64),

lim
ε↓0

CVNC
Both (ε)− CVNC

Cau (ε)

ε2

≥ 1

2

∑
y,u

β(y)P ∗U (u)

[∑
s

PS(s)η∗(y|u(s), s)2

−

(∑
s

PS(s)η∗(y|u(s), s)

)2]
, (91)

where P ∗U is the distribution that achieves the maximum in
(69), and where

η∗(y|u(s), s) = ψ(y|u(s), s)−
∑
u′

P ∗U (u′)ψ(y|u′(s), s) (92)

for all y, u, s.
Proof: When S is known to both the transmitter and the

receiver, a rate-splitting strategy is optimal, and the capacity
equals the weighted sum over s of the capacities given each
realization S = s:

lim
ε↓0

CVNC
Both (ε)

ε2
=

1

2
max
PX|S

∑
s,y,x

PS(s)β(y)PX|S(x|s)η(y|x, s)2

(93)
where η is determined by PX|S as

η(y|x, s) = ψ(y|x, s)−
∑
x′

PX|S(x′|s)ψ(y|x′, s) (94)

for all x, y, s. To derive a lower bound on (93), we make a
possibly suboptimal choice for PX|S :

PX|S(x|s) =
∑

u : u(s)=x

P ∗U (u) (95)

for all x, s. Then (93) implies

lim
ε↓0

CVNC
Both (ε)

ε2
≥ 1

2

∑
s,y,u

PS(s)β(y)P ∗U (u)η(y|u(s), s)2. (96)

On the other hand, we can rewrite (69) as

lim
ε↓0

CVNC
Cau (ε)

ε2
=

1

2

∑
y,u

β(y)P ∗U (u)

(∑
s

PS(s)η(y|u(s), s)

)2

.

(97)
Comparing (96) and (97) yields the desired result.

Due to the convexity of the function a 7→ a2, the right-
hand side of (91) is in general positive. Hence, comparing
Theorem 6 and Proposition 7 we see that, in terms of the
capacity of the VNC, noncausal CSI at the transmitter is
almost only as beneficial as causal CSI, whereas additional
CSI at the receiver is significantly more beneficial.

VI. CONCLUDING REMARKS

In this paper we have derived upper bounds on the ca-
pacities of two channels with CSI. Our main interest is in
the continuous-time Poisson channel with a random time-
varying dark current, where the values of the dark current are
known to the transmitter as CSI, either causally or noncausally.
Our capacity bound for the Poisson channel shows that the
improvement in capacity from both causal and noncausal
CSI vanishes like O(τ) when the coherence time τ of the
dark current approaches zero. For a related side result, we
consider the state-dependent VNC with noncausal CSI at the
transmitter. For this channel our upper bound shows that the
improvement in capacity due to noncausal CSI over causal
CSI is negligible.

Our intuition regarding noncausal CSI is similar for both
the Poisson channel and the VNC: the mutual information
attainable over these channels is small, hence the dependence
between the state and the auxiliary random variable in the
Gel’fand-Pinsker formula must also be weak.

It is well-known that channels with noncausal CSI are
closely related to Marton’s inner bound on the capacity region
of a broadcast channel [35], which employs binning. Our
results in Theorems 3 and 6 imply that certain types of
binning-based strategies are not useful on related broadcast
channel models. This fact is related to, but not a consequence
of previous capacity results on the Poisson and very noisy
broadcast channels [12], [15].

APPENDIX

In this appendix we show a simple result: causal CSI cannot
increase the capacity of a type of DMC on which the channel
input and the state act “independently,” in a sense we specify
below.7

Consider a DMC with input x ∈ X , state s ∈ S, and output
y ∈ Y , where X ,Y,S are all finite. The state sequence is IID
according to PS and is independent of the message. Given
input x and state s, the output Y is distributed according to
W (·|x, s), which has the following form:

W (y|x, s) = V (y|x) + φ(y|s), x ∈ X , y ∈ Y, s ∈ S, (98)

where V and φ are such that W (·|x, s) is a valid distribution
on Y for all x ∈ X and s ∈ S.

7We are not aware whether this result has appeared in pervious works or
not.
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Proposition 8: The capacity of the channel (98) with causal
CSI at the transmitter equals its capacity without CSI.

Proof: The capacity of the channel (98) with causal CSI
is given by Shannon [16] as maxPU I(U ;Y ), where U takes
value in the set of mappings from S to X and must be chosen
independently of S. In this case,

PY |U (y|u) =
∑
s

PS(s)W (y|u(s), s), u ∈ U , y ∈ Y. (99)

We shall show that each mapping u induces the same output
distribution as a random input that does not depend on s.
Indeed, it follows immediately from (98) and (99) that

PY |U (y|u) =
∑
s

PS(s)[V (y|u(s)) + φ(y|s)] (100)

for all u, y. If we choose X randomly and independently of s
according to distribution πu:

πu(x) =
∑

s : u(s)=x

PS(s), x ∈ X , (101)

then the probability that Y = y is given by∑
x,s

PS(s)πu(x)[V (y|x) + φ(y|s)]

=
∑
x

πu(x)V (y|x) +
∑
s

PS(s)φ(y|s)

=
∑
s

PS(s)V (y|u(s)) +
∑
s

PS(s)φ(y|s)

=
∑
s

PS(s)[V (y|u(s)) + φ(y|s)], (102)

which is the same as PY |U (y|u). Hence the transmitter choos-
ing mapping u is equivalent to it choosing a random input
according to πu, but the latter can be done without CSI.
This implies that there is no advantage in using Shannon
strategies [16] over directly using input symbols. In particular,
maxPU I(U ;Y ), the capacity of (98) with causal CSI, cannot
exceed maxPX I(X;Y ), the capacity without CSI.
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