Skip to Main content Skip to Navigation
Conference papers

Screening Data Points in Empirical Risk Minimization via Ellipsoidal Regions and Safe Loss Functions

Grégoire Mialon 1, 2 Alexandre d'Aspremont 1 Julien Mairal 2
1 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, CNRS - Centre National de la Recherche Scientifique, Inria de Paris
2 Thoth - Apprentissage de modèles à partir de données massives
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann
Abstract : We design simple screening tests to automatically discard data samples in empirical risk minimization without losing optimization guarantees. We derive loss functions that produce dual objectives with a sparse solution. We also show how to regularize convex losses to ensure such a dual sparsity-inducing property, and propose a general method to design screening tests for classification or regression based on ellipsoidal approximations of the optimal set. In addition to producing computational gains, our approach also allows us to compress a dataset into a subset of representative points.
Complete list of metadatas

Cited literature [29 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02395624
Contributor : Grégoire Mialon <>
Submitted on : Friday, June 12, 2020 - 3:46:18 PM
Last modification on : Friday, July 10, 2020 - 7:48:03 AM

File

main_aistats.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02395624, version 2

Collections

Citation

Grégoire Mialon, Alexandre d'Aspremont, Julien Mairal. Screening Data Points in Empirical Risk Minimization via Ellipsoidal Regions and Safe Loss Functions. AISTATS 2020 - 23rd International Conference on Artificial Intelligence and Statistics, Jun 2020, Palermo, Italy. ⟨hal-02395624v2⟩

Share

Metrics

Record views

1192

Files downloads

17