The Influence of Step Length to Step Frequency Ratio on the Perception of Virtual Walking Motions
Benjamin Niay, Anne-Hélène Olivier, Julien Pettré, Ludovic Hoyet

To cite this version:
Benjamin Niay, Anne-Hélène Olivier, Julien Pettré, Ludovic Hoyet. The Influence of Step Length to Step Frequency Ratio on the Perception of Virtual Walking Motions. ACM SIGGRAPH Symposium on Applied Perception, Sep 2019, Barcelone, Spain. hal-02395303

HAL Id: hal-02395303
https://hal.archives-ouvertes.fr/hal-02395303
Submitted on 5 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The Influence of Step Length to Step Frequency Ratio on the Perception of Virtual Walking Motions

Benjamin Niay, Anne-Hélène Olivier, Julien Pettré, Ludovic Hoyet
Inria, Univ Rennes, CNRS, IRISA, M2S
benjamin.niay@inria.fr

Motivations
• More realistic virtual motions are needed in entertaining applications.
• Walk Ratio (WR) = natural and invariant ratio between step length (SL) and step frequency (SF) of an individual.

Conclusions
• Viewers are able to identify self-selected step length to step frequency ratio of actors.
• Differences regarding actors’ gender seem to exist.
• New insights in the creation of personalized and more realistic walking motions.

Objectives
• Investigate the ability of viewers to recognize this natural ratio on virtual characters.
• Main Hypothesis: Viewers are able to identify the natural walk ratio of an individual.

Methods

Stimuli Generation:
• Motion capture (Xsens System)
 ○ 2 Female actors (1.78 and 1.65m, 26 and 22 years old).
 ○ 2 Male actors (1.80 and 1.78m, 24 and 20 years old).
• 5 free walks at different speeds captured to compute natural walk ratio.
• 5 walking speeds at 5 different cadences captured (from 80Hz to 120Hz, by 10Hz steps). We blended these motions to generate walking motions at different given speeds and step frequencies.

Perceptual Study:
• 15 Participants (11 Male 4 Female between 18 and 30 years old).
• Task: Participants adjusted the step frequency of virtual humans (using the keyboard) until they considered the motion to be the most natural.
• Factors: 4 Actors, 3 Speeds (0.8, 1.0, 1.2 m/s), 2 Initializations (min 80, max 120), 4 repetitions. Step frequency was bounded between 80 and 120 steps per min.
• Data Collected: Step frequency and Walk Ratio responses.

Results

Walk ratios estimated by the participants are not significantly different from the captured walk ratios except for Female 2

References

Acknowledgements
We wish to thank all the participants in our experiments.
This work was funded by the French ANR, as part of the JCJC Per² project ANR-18-CE33-0013.