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Abstract
The plasticity of membranes plays an important
functional role in cells, cell components and mi-
celles, where bending, budding and remodel-
ing implement numerous recognition and com-
munication processes. Comparatively, molecu-
lar simulation methods to induce, control and
quantitatively characterize such deformations
remain scarce. This work defines a novel col-
lective coordinate associated with membrane
bending, which strives to combine realism (by
preserving the notion of local atomic curva-
tures) and low computational cost (allowing
its evaluation at every time step of a molecu-
lar dynamics simulation). Enhanced sampling
simulations along this conformational coordi-
nate provide convenient access to the underly-
ing bending free energy landscape. To show-
case its potential, the method is applied to
three state-of-the-art problems: the determi-
nation of the bending free energy landscape of
a POPE bilayer, the formation of a POPE li-
posome, and the study of the influence of the
Pseudomonas quinolone signal on the budding
of Gram-negative bacterial outer membranes.

1 Introduction
Membranes, the ubiquitous delimiters of cells,
cell components and micelles, have long been
reduced to a passive structural role. How-
ever, over the years, substantial evidence that

their ability to deform under the influence of
diverse factors can be instrumental to biolog-
ical function has accumulated. Local mem-
brane curvature induced by nanoscale topog-
raphy is known to act as a biochemical signal,
modulating cell signaling1 and allowing cells to
sense and adapt to their environment.2 In bac-
teria, the budding of membranes initiates the
formation of payload-containing vesicles, em-
ployed as a means of communication between
cells which cleverly combines the fast diffusion
of small molecules and the protection offered by
encapsulation.3 The fluidity of bacterial mem-
branes can also be a crucial factor in the in-
direct recognition of their targets by antibac-
terial peptides.4 Finally, membrane remodeling
plays a role in host-pathogen interactions via
the trapping and transport of host and parasite
components.5

Zooming in at intracellular scales reveals that
membrane curvature also plays an important
part in the functions of several organelles. In
the endoplasmic reticulum, nascent proteins
are synthetized and folded inside cisternae de-
limited by highly curved membrane compo-
nents, then sorted and transported in mem-
brane vesicles of diverse shapes and sizes.6 Mi-
tochondria feature an extensively folded inner
membrane, whose invaginations (called cristae)
adopt specific shapes, sizes and densities de-
pending upon the current energetic require-
ments of the cell, optimizing the effectiveness
of the transmembrane proton gradient to max-
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imize ATP production.7 Understanding vesicu-
lation processes, based on the nature and plas-
ticity of the membranes, is also essential for the
design of synthetic vesicles for drug design and
delivery.8

Membrane curvature is generally modulated
by clusters of proteins with specific shapes, act-
ing as scaffolds to bend the membrane into
tubules, vesicles or other structures.9 However,
the protein binding event does not necessarily
come first: in many cases, at low surface den-
sities, proteins enter a recognition and sensing
mode in which they detect pre-existing curva-
tures of membrane components; if this recogni-
tion is succesful, the scaffolding mode, which
occurs at higher protein surface densities, is
triggered.10 Studying the mechanisms and en-
ergetics of membrane deformation is thus essen-
tial even in the absence of scaffolding proteins.

Molecular simulations are a precious tool
for the study of the deformability of mem-
branes. With the help of coarse-grained mod-
els, micrometer- and/or microsecond-scale sim-
ulations are now nearing feasability.11,12 How-
ever, very slow or energetically unfavorable pro-
cesses remain beyond reach of even such simpli-
fied models, especially when estimating free en-
ergies differences for which exhaustive sampling
is required. Consequently, biased simulations in
which the conformational space of a membrane
system is modified along a given collective co-
ordinate to enhance sampling are still very rele-
vant today.13,14 The effectiveness of such meth-
ods depends crucially on how well the collec-
tive coordinate is able to map the relevant span
of conformational space. The majority of co-
ordinates used to describe the deformation of
membrane systems are based on the Helfrich
model15 in which the free energy of a tension-
free membrane patch is expressed as:

Fbend =

∫
A

(
κ

2
(C1 + C2 − C0)

2 + κKG)dA (1)

which involves the local principal curvatures
C1 and C2 and Gaussian curvature KG = C1C2,
as well as three parameters: the bending mod-
ulus κ, the Gaussian curvature modulus κ and

the spontaneous curvature C0. Unfortunately,
the determination of these parameters for a
given membrane composition has proven par-
ticularly challenging both experimentally and
computationally.16,17 The determination of lo-
cal curvatures at the membrane surface atoms
stumbles on the non-trivial issue of the real-
time reconstruction of a smooth, continuous
surface from the instantaneous atomic posi-
tions. Fitting the surface using functions such
as quadric patches18 is time-consuming and
very sensitive to thermal noise. Denoising can
be addressed using Morse theory: the Morse-
Smale (MS) complex partitions a mesh or scalar
field into regions having uniform gradient flow
(i.e., containing lines that originate at a given
minimum and terminate at an associated maxi-
mum) and can help distinguish salient topologi-
cal features on the surface from nonsignificant19

or nonpersistent ones due to noise.20 However,
computing an adequate approximation of the
MS complex remains an algorithmically com-
plex and computationally costly operation.21

Alternately, these theoretical hurdles can be al-
together bypassed by designing phenomenologi-
cal approaches in which membrane curvature is
manipulated implicitly via its relationship with
other, more straightforward measures. As an
example, a recent study uses the approximate
local density at the center of a membrane patch,
obtained from the distances between the centers
of mass of every lipid and that of the patch: act-
ing on this coordinate expels atoms from the
membrane plane, inducing out-of-plane bend-
ing of the entire membrane.22 While effective
and simple, such coordinates can only induce
a limited repertoire of deformations; in addi-
tion, their complex relationship with membrane
curvature can complicate the interpretation of
quantitative results.

Because of these difficulties, and despite the
growing importance of membrane simulations,
there is a dearth of implementations of confor-
mational coordinates that simultaneously pro-
vide a realistic approximation of curvature and
satisfy the stringent computational cost limi-
tations inherent to being repeatedly evaluated
at millions of timesteps. This study sets out
to design such a coordinate, with the follow-
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ing specifications: (i) preserve the notion of lo-
cal curvatures, favoring generality; (ii) exploit
salient features on the membrane surface and
their persistence over time to achieve a better
approximation of the curvatures; (iii) provide
access from the most popular molecular dynam-
ics packages. The method is described in the
following section. Its effectiveness is showcased
further down, on typical membrane systems and
simulation setups.

2 Methods

2.1 Defining local curvature
Following Hoppe’s seminal work,23 the local
curvature κi at an atom i at coordinates Xi

on the membrane surface can be approximated
as:

κi =
minj∈1,...3 λj∑3

j=1 λj

(2)

where {λj, j ∈ 1 . . . 3} is the set of eigenvalues
of the covariance matrix Ai :

Ai(j, k) =
∑
l∈Ui

(Xl(j)−Xi(j))(Xl(k)−Xi(k))
T

(3)
Ui is a well-chosen set of neighboring atoms and
Xi the centroid thereof. The smallest eigen-
value’s corresponding eigenvector is normal to
the plane defined by the two other dominant
eigenvectors: curvature can thus be seen as the
relative weight of the out-of-plane component
of the local arrangement of atoms. Implement-
ing this definition thus requires overcoming two
major hurdles: (i) the determination of a suit-
able neighborhood Ui of atom i and (ii) the effi-
cient calculation of the eigenvalues λj and their
gradient.

2.2 Delimiting atomic neighbor-
hoods

In most works based on similar definitions of
local curvature, the neighborhood Ui of atom i
consists of either a fixed number of atoms near-
est to Xi, or all atoms within a fixed distance of
Xi.24 Such choices work well for smooth and flat

surfaces but can result in severe inaccuracies for
surfaces featuring (i) noise and/or (ii) sharp lo-
calized features such as edges or creases. Distin-
guishing signal from noise in the first scenario
requires evaluating the typical feature size of
both, which is usually non-trivial; in the second
scenario, points on either side of a sharp feature
usually belong to regions with distinct shapes
and curvatures, such that lumping them into
the same neighborhood via a simplistic nearest-
neighbor approach results in an unrealistic av-
eraging. Several methods have been proposed
for the denoising, feature identification and seg-
mentation of surfaces.19–21,25–29 Many are based
on approximations of Reeb graphs or MS com-
plexes and are both difficult to efficiently im-
plement and computationally too demanding to
be performed millions of times during a simu-
lation. Albeit conceptually simpler, approaches
that do not resort to Morse theory cannot use
the topology of the underlying scalar field as
a safeguard and can end up being even more
computationally expensive.19

As a tradeoff between adequate detection of
features and computational efficiency, this pa-
per uses a two-step region-growing approach
similar to that of Rabbani and coworkers.26

First, the traditional approach in which the
neighborhood Ui of an atom i consists of a fixed
number nneigh of neighbors (user-defined, de-
fault 100) is employed. The eigenvector Ni as-
sociated with the smallest eigenvalue of the co-
variance matrix thus obtained is normal to a
plane which represents a coarse local approxi-
mation of the surface at atom i. The quality of
this approximation, which depends on the plan-
earity of the surface, is evaluated by computing
atom i’s plane residual ρi (its distance from the
plane along its normal): ρi = |Ni ·Xi − ρUi

|
with ρUi

= 1/card(Ui) ·
∑

k∈Ui
Ni ·Xk. The fol-

lowing procedure is then iterated:

1. Select the atom with the lowest plane
residual not yet affected to a region as
the seed point from which a new region is
grown.

2. Iterate over the neighbors of the current
seed that have not yet been affected to
regions. Atoms whose normals make an
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angle lower than θmax (user-defined, de-
fault 5◦) with that of the seed are added
to the current region. Among these,
atoms whose plane residuals are less than
a threshold value (defined from a user-
chosen percentile Pseed of the distribution
of residuals at all atoms, default 10%) are
added to the list of seeds from which the
current region will be expanded. When
all neighbors have been iterated over, the
current seed is removed from the list of
seeds.

3. Repeat step 2 until the seed list for the
current region is empty.

4. Add the current region to the list of re-
gions and return to step 1.

The update of each atom’s neighbor list and
the growing of regions is performed at regular,
user-defined timestep intervals during the sim-
ulation to take into account the relative motion
of atoms and the evolution of surface features.
It is forced when the variation of an atom’s local
curvature between successive timesteps is larger
than a certain user-defined percentage (default
50%), to properly account for rapid local de-
formations that can occur in simulations under
strong bias.

When evaluating the curvature at atom i from
its neighborhood Ui (equations 2-3), the contri-
bution of each neighbor atom is weighted ac-
cording to whether it belongs to the same re-
gion as i or to a different one. The matrix el-
ements of the (weighted) covariance matrix Ai

are computed from the weighted centroids Xi:

Ai(j, k) =
∑
l∈Ui

wl(Xl(j)−Xi(j))(Xl(k)−Xi(k))
T

(4)

Xi =
1∑

l∈Ui
wl

·
∑
l∈Ui

wlXl

with:

wl =

{
W if l and i belong to the same region;
1 otherwise.

}
(5)

W ≫ 1 is a user-chosen parameter (default
20), representing the relative influence on the
local curvature of points in the same region
compared to points in different regions. Sharply
bent areas, in which the direction of the normal
vector varies sizeably between nearby atoms,
can become fragmented into many regions com-
prising only a few atoms each. This can con-
taminate the determination of local curvatures
with noise due to insufficient averaging, and
raise continuity problems due to the high ra-
tio of atoms that can switch between nearby
regions from one frame to the next. Using a
nonzero (albeit small) relative weight for points
in distinct regions is a tradeoff between allevi-
ating these issues and retaining the aforemen-
tioned benefits of using regions.

2.3 Efficiently computing eigen-
values and their gradient

Computing local membrane curvatures and
deriving associated biasing forces at each
timestep implies the cost-efficient computa-
tion of the eigenvalues of covariance matrix
Ai =

( a11 a12 a13
a12 a22 a23
a13 a23 a33

)
(equation 3) and their deriva-

tives with respect to the atomic coordinates
(or gradient). This work exploits the matrix’s
dimensionality and real symmetric nature to
provide a closed-form expression of the eigen-
values, computationally much more efficient
than generic matrix diagonlization methods.

The eigenvalues λl of Ai are given by the char-
acteristic equation:

P (λ) = |Ai−λI| = λ3+ γλ2+βλ+α = 0 (6)

with:

γ = −a11 − a22 − a33

β = a11a22 + a11a33 + a22a33 − a212 − a213 − a223
(7)

α = a11a
2
23 + a22a

2
13 + a33a

2
12 − a11a22a33 − 2a13a12a23

Cardano’s method30,31 is employed to solve
this third-degree equation, yielding the follow-
ing analytical expression for the eigenvalues
(demonstrated in Supporting Information):
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λl =

√
p

3
ξl −

1

3
γ (8)

with:

ξ1 = 2 cosϕ

ξ2 = − cosϕ−
√
3 sinϕ

ξ3 = − cosϕ+
√
3 sinϕ

ϕ =
1

3
arctan

√
27(α(q + 27

4
α) + β2

4
(p− β))

q
(9)

p = γ2 − 3β

q = −27

2
α− γ3 +

9

2
βγ

Considering the intricacy of the relationship
between the eigenvalues of Ai and the atomic
coordinates, the analytical expressions of the
partial derivatives ∂λl

∂Xj(k)
required for the calcu-

lation of biasing forces were obtained by recur-
sively applying the chain rule to the expression
of λl using the Tapenade automatic differentia-
tion engine.32

One of the benefits of using Cardano’s method
is the ability to obtain the eigenvalues with-
out the need to compute the corresponding
eigenvectors, which aren’t used in the defini-
tion of local curvature (equation 2). However,
the region-growing algorithm described above
requires surface normals, approximated by the
eigenvector associated with the smallest eigen-
value of the neighborhood atoms covariance
matrix. Thus, computing the eigenvectors does
become necessary at regular intervals.

In most cases, the eigenvectors Vl can be ob-
tained very easily from the eigenvalues λl, the
first two columns Ai(1) and Ai(2) of the covari-
ance matrix and the first two basis vectors ux

and uy (see Supporting Information for details):

V1 = (Ai(1)− λ1ux)× (Ai(2)− λ1uy)

V2 = (Ai(1)− λ2ux)× (Ai(2)− λ2uy) (10)
V3 = V1 ×V2

If V1 and V2 are collinear, or if any Ai(k)−

λjuk has a very small norm due to error cancel-
lations, this approach cannot be used and the
much slower, but more robust, QL algorithm
is employed instead. However, this was never
seen to happen in the application examples pre-
sented in this paper.

2.4 Registering membrane con-
formations

The individual components of a membrane
(lipid molecules) are known, over sufficiently
long timescales, to migrate with respect to
one another.33 As such, when comparing two
conformations of a lipid membrane patch, it
makes more sense to compare local curvatures
at points that are similarly placed on both sur-
faces (regardless of the serial numbers of the
lipid molecules at these points in each confor-
mation), than to compare curvatures at a spe-
cific lipid molecule which might be found in re-
gions of very different topologies even in per-
fectly superimposable conformations. A map-
ping of similarly-located atoms between confor-
mations, allowing to track salient features and
their evolution over time, is thus required.

This study employs the iterative closest point
(ICP) 3D shape-registration method. ICP
recursively applies the following procedure.
Given a mapping M between the indices of
atoms in the first and second conformation, the
goal is to find the optimal rotation R and trans-
lation T that, once applied to the atoms of
the first conformation, minimize the distance
between all pairs of points i and M(i). The
N atoms of the two conformations, of respec-
tive coordinates Xi and Yi, are first recen-
tered around their respective centroids X =
1
N

∑N
i=1Xi and Y = 1

N

∑N
i=1Yi. R is obtained

by SVD decomposition of the following covari-
ance matrix A:

A =
N∑
i=1

(Xi −X) · (YM(i) −Y)T

U,S,V = SVD(A) such that A = USVT

R = VUT (11)

5



In cases where the determinant of R is nega-
tive (-1), the actual rotation matrix is obtained
by replacing the third column vector of R by
its opposite. The translation is then obtained
as:

T = Y −R ·X (12)

At the start of the process (iteration 0), atom
i in conformation 1 is mapped to atom i in con-
formation 2: M0(i) = i. At iteration 1, the
transformations R1 and T1 are obtained as pre-
viously described; they are used to transform
Xi into X1

i. The nearest neighbor Yj of each
X1

i is then located, defining the new mapping
M1(i) = j. The error, defined as the distance
between neighbors d1 =

∑N
i=1∥X1

i − YM1(i)∥,
is also computed. The process is iterated un-
til the distance dfinal does not diminish signifi-
cantly from one iteration to the next. The final
mapping Mfinal between the transformed coor-
dinates Xfinal

i and Yi is used to compare the
local curvatures of both structures.

To ensure that the mapping between atoms
is as continuous as possible, limiting induced
discontinuities in the value of the collective co-
ordinate or its gradient, the ICP is performed
at regular intervals of ∆tmap during the sim-
ulation. Mt

t−∆tmap
is thus obtained by map-

ping the atoms of frame t onto those of frame
t−∆tmap. The mapping of atoms can then be
iteratively propagated to the starting frame of
the simulation:

Mt
0 = Mt

t−∆tmap
◦Mt−∆tmap

t−2∆tmap
◦ . . . ◦M∆tmap

0

(13)

2.5 Defining the conformational
coordinate

There are multiple ways to construct a scalar
collective coordinate describing the overall cur-
vature of a membrane from the scalar field of
local atomic curvatures, and selecting the most
adequate one is not trivial. This work employs
an approach similar to the Euclidean-space root
mean square deviation (RMSD) routinely used
to compare macromolecular structures. Defin-
ing a reference conformation with atomic cur-

vatures {κref
i , i ∈ 1 . . . N}, the collective coor-

dinate Γ at time t is defined from the instanta-
neous atomic curvatures as:

Γ(t) =
N∑
i=1

(
κMt

ref (i)
(t)− κref

i

)2

(14)

Mt
ref is obtained by mapping the atoms at time

t = 0 onto those of the reference structure,
then repeatedly propagating the mapping as
per equation 13: Mt

ref = Mt
0 ◦ M0

ref . This
straightforward definition’s main limitation is
the fact that, while small values of Γ provide
a good description of curvature conformational
space in the neighborhood of a reference con-
formation, large values of Γ can be simultane-
ously accomodated by a large number of pos-
sibly unrelated structures; the inability to uni-
formly sample these structures within tractable
computational time can raise convergence is-
sues for free energy calculations. However, the
same issue affects RMSD and does not prevent
it from being used (with the aforementioned
caveat in mind) as a conformational coordi-
nate34,35 or as a component of more complex
collective variables.36,37 Furthermore, as in tri-
angulation approaches, the degeneracy between
structures sharing similar deviations from a ref-
erence can be lifted by simultaneously measur-
ing the deviations from one or more additional
references.

2.6 Implementation details
The curvature restraint involves numerous
neighbor search operations at each timestep, for
the calculation of atomic curvatures, the grow-
ing of regions and the registration of consecu-
tive structures. To alleviate the corresponding
computational effort, a KD-tree algorithm was
employed, based on the Nanoflann header-only
library38 to which a periodic 3D Euclidean
metric was added.

The analytical expression of the gradient of Γ
and its implementation were validated by com-
paring the computed values to the correspond-
ing numerical derivatives δΓ/δXi at the limit of
small δXi values.

The collective variable was implemented into
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PLUMED 2.539 by deriving the Colvar C++
class. This makes it compatible with any of the
molecular dynamics engines natively supported
by PLUMED. In this work, the GROMACS
suite40 (versions 2016.4 and 2018.4) was used.
The source code of the collective coordinate and
the modified Nanoflann headers (∼ 3000 lines)
can be obtained from the author upon request.

3 Results and discussion

3.1 Bending free energy land-
scape of a POPE bilayer

As a proof of concept and to get a better
grip on the method’s practical use, a simple
and common 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine (POPE) bilayer patch
was used as a ‘toy’ system; the free energy
landscape associated with the bending of this
patch was explored using enhanced-sampling
MD simulations along the collective coordinate
Γ. The system was described using the DRY
MARTINI implicit-solvent coarse-grained for-
malism,41 which has been validated with re-
spect to its explicit-solvent counterpart on the
calculation of the bending moduli of common
lipids and is thus well suited to the task at
hand. A POPE patch placed along the xy
plane was constructed, equilibrated and sim-
ulated for 750 ns using well-tempered metady-
namics along Γ (see Supporting Information for
details). The restraint was applied to the head
beads on one side of the leaflet (atom set B of
cardinality NB). The reference structure for B
was taken as the closest to the average over an
unbiased 250 ns simulation of the system. To
favor the convergence of the free energy pro-
file which, as previously mentioned, becomes
harder to achieve the further away from the ref-
erence the system ventures, the exploration of
conformational space was limited using a har-
monic ‘wall’ potential along Γ, applied for Γ
values larger than 0.5. Figure 1 shows the free
energy profile (FEP) along Γ (the convergence
of the FEP as a function of simulation time
can be checked on Supporting Information fig-
ure S1). To visualize the evolution of mem-

brane conformations along the bending path-
way, the conformations were binned by values
of Γ; the headgroup beads of conformations in
each bin were then binned spatially along x and
y, and the deviation of their z coordinates from
z = 1/NB

∑
i∈B zi were computed. The results

were then averaged over all conformations in
each Γ bin and are shown on figure 1 for se-
lected values of Γ.

Figure 1: Free energy profile and confidence in-
terval for the deformation of a POPE bilayer
along Γ. Insets show the mean relative devi-
ations of the atoms to the average membrane
plane along the z axis around selected values of
Γ.

As can be seen, at lower Γ values (panels
a-b on figure 1) the deformation can be de-
scribed as a creasing of the membrane along one
membrane axis, resulting in a saddle-shaped
patch. The evolution of important structural
membrane properties along the crease are rep-
resented on Supporting Information figures S2-
S4 and can be summarized as follows. The dis-
tribution of areas per lipid is broadened com-
pared to that of a flat patch, both toward lower
and higher values; the inner leaflet, more com-
pressed than the outer, is characterized by lower
areas. The width of the membrane is also sig-
nificantly reduced compared to a flat patch. A
look at the deuterium order parameters reveals
that this is mainly due to the occurence of tor-
sions at the first few carbon atoms of the two
POPE acyl chains, during which the chains ro-
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tate away from the membrane normal axis; the
statistical orientation of the chain ends, on the
other hand, does not differ as much from that
of a flat patch. Bent conformations also reveal
local interpenetrations of the lipid tails of one
leaflet into the other, increasing the separation
between lipids within a leaflet and explaining
the occurence of the larger area per lipid values
mentioned above. Finally, the lateral diffusion
of lipids was found to be enhanced upon bend-
ing by a factor of 2 to 3, in line with the local
reorganizations observed.

As Γ grows larger, rather than continuing
along the original crease axis, the bending
starts to occur along the axis orthogonal to
it (panel c-d); the saddle thus progressively
morphs into several distinct peaks and dips
(panels e-f). For still larger Γ values (not shown
on figure 1), the volume of conformational space
mapped to a given δΓ element becomes too
large to be exhaustively sampled within typical
computational costs; however, a non-exhaustive
exploration of the free energy surface reveals
that the spatial periodicity of these peaks tends
to decrease and their number to increase, form-
ing a very rugged landscape; at this point, the
tops of nearby spikes can merge together, even-
tually splitting the membrane into two compo-
nents (see Supporting Information figure S5).

Interestingly, the direction of initial bending
for the POPE bilayer tends to place the leaflet
with the biased headgroups on the inside; in
comparable simulations carried out on a DPPC
patch, the direction of initial bending appears
more arbitrary. This could be due to POPE’s
strongly negative, compared to DPPC’s very
weakly positive, spontaneous curvature42 and
is corroborated by the fact that the distribu-
tions of areas per lipids in both leaflets tend to
remain more similar in bent patches of DPPC
than in POPE (see Supporting Information fig-
ure S2).

On figure 2, the correlation between the col-
lective coordinate Γ and the number of regions
into which the patch is segmented is plain to see
but features a substantial fuzzyness: in partic-
ular, conformations with Γ ∼ 0.25 have a high
probability to comprise anywhere from 7 to 17
distinct regions, and outliers outside this span

can also occasionally be found. Indeed, within
typical fluctuations around a given structure,
spurious movements of individual atoms can
cause a region to temporarily split into several
near-equivalent ones. Similarly, surface nor-
mals tend to vary very quickly in the vicin-
ity of sharp features, which the algorithm can
be forced to accomodate by creating several re-
gions consisting of a few (or even a single) atom.
This can be seen on the lower panel of figure 2:
the algorithm easily detects the large blue, or-
ange and tan patches which can be considered
nearly flat and are assigned their own regions;
however, at the hinge between the blue and or-
ange regions, several small regions can be ob-
served which can switch in and out of existence
from frame to frame depending on thermal fluc-
tuations. This is not a problem: curvatures
and normal vectors at sharp creases on noisy
surfaces are ill-defined by definition, and the
region-growing algorithm makes sure that the
effect on close-lying atoms on flat patches re-
mains minimal.

Interestingly, the saddle-shape conformations
observed at the onset of the bending mechanism
were also reported in previous studies induc-
ing curvature indirectly (for instance by con-
trolling the lipid density22 or along a prede-
fined path).43 However, the present study sug-
gests that introducing secondary bending axes
is cheaper in free energy than increasing the
bend along the axis of the original saddle: the
order of magnitude of the free energy penalty
is more than twice lower compared to the 80
kT found by Bubnis et al for the bending of a
DOPC patch along a single axis43, itself ∼ 5
times lower than the result obtained by Ma-
sone et al on a similar deformation of DPPC.22

Compared to methods de facto restricted to the
formation of a single feature in the center of the
patch, the ability of the method under consid-
eration to gives access to ‘rugged’ membrane
topologies with multiple peaks and throughs is
a crucial advantage for the exploration of low-
energy pathways. A larger conformational vol-
ume can can also be considered a disadvan-
tage if the Γ range it maps to is too small, es-
pecially when exhaustive sampling is required;
however, such conformational degeneracies can
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Figure 2: Top: distributions of Γ values for con-
formations segmented into a given number of re-
gions by the region-growing algorithm. Central
line: median value; box: interquartile range;
whiskers: rest of the distribution. Bottom: side
view of a POPE bilayer patch with Γ ∼ 0.26
featuring 15 regions; the upper leaflet residues
are colored according to the region they belong
to, and the heagroup beads (over which curva-
tures are computed) are represented as spheres.

be lifted by measuring each conformation’s de-
viation to several strategically-placed reference
structures instead of to a single one. This
was applied to the previously described POPE
patch, which was subjected to 400 ns of 2D well-
tempered metadynamics along the two coordi-
nates Γflat and Γbent, respectively quantifying
the deviation to a flat and bent reference patch
(figure 3). The bent reference structure was
chosen as representative of conformations with
0.375 < Γflat < 0.425; after minimization, it
had a Γflat value of 0.412.

The benefits of lifting the degeneracy can
clearly be seen: on the 2D plot, the conforma-
tions belonging to both minima along the 1D
FES (at Γflat ∼ 0.02 and Γflat ∼ 0.07, see fig-
ure 1) now appear spread out along Γbent and
can thus be distinguished from one another. It

Figure 3: Blue heightmap: 2D free energy sur-
face of the bending of a POPE bilayer with re-
spect to flat (Γflat, left inset) and bent (Γbent,
right inset) reference conformations, obtained
from 400 ns of metadynamics along these two
coordinates. Black circles: projection on the 2D
landscape of the conformations sampled during
750 ns of metadynamics along Γflat only.

is also clear from the figure that the sampled
conformational volume is much more extensive
in the 2D metadynamics than in the 1D simu-
lation, despite the latter’s longer duration; in-
deed, free energy barriers blocking the explo-
ration along a single coordinate can sometimes
be easily bypassed by applying bias along addi-
tional dimensions. This is especially apparent
for conformations with Γflat > 0.15, which span
a much larger range of Γbent values in the 2D
simulation compared to the 1D case. Adding a
second curvature coordinate to a metadynam-
ics simulation in PLUMED, however, raises the
computational cost by around 65%. This fig-
ure could possibly be reduced by implementing
the calculation of distances to several references
inside a single PLUMED COLVAR, avoiding re-
dundant calculations of atomic curvatures and
housekeeping of large coordinate arrays; in the
meantime, the accelerated sampling achieved
by the inclusion of an additional coordinate
might still be considered worth the added com-
putational cost.
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3.2 Formation of a POPE lipo-
some

In this scenario, enhanced sampling simulations
along the curvature coordinate are used to gen-
erate a liposome from a flat membrane patch,
as an alternative to ab initio liposome genera-
tion methods using mathematical models44 or
the aggregation of dispersed lipids. This repre-
sents a very frequent first step in liposome sim-
ulation studies and showcases the breadth of
the method’s field of applications. Unlike the
previous case study, for which the exhaustive
sampling of pathways was required, the goal
here is to suggest a possible liposome structure
as a starting point for further simulations at
minimal computational cost; the pathway fol-
lowed to reach it is of secondary importance
and no guarantee is sought that it is the most
likely or the lowest in free energy. A cylindri-
cal POPE bilayer patch of approximate diam-
eter 173Å, described using DRY MARTINI,41

was constructed and equilibrated. Its structural
stability was verified using 250 ns of unbiased
stochastic dynamics simulation. The equili-
brated structure was then subjected to 200 ns of
well-tempered metadynamics. The set of atoms
used for the calculation of local curvatures com-
prised the headgroups of the lipids on one side
of the leaflet pre-equilibration, and their posi-
tions in the equilibrated structure were used as
reference (see Supporting Information for de-
tails).

The main steps of the POPE globule forma-
tion mechanism are summarized on figure 4; as
explained above, the pathway is one example of
many possible outcomes and is only discussed
as such. Starting from a flat patch (left panel),
the biasing potential progressively builds up un-
til a small lipid subpatch is pushed out of the
membrane plane (middle left), initiating mem-
brane bending. The subpatch then grows to
become a hinge, around which the membrane
progressively folds upon itself. Once the fold-
ing is complete (middle right), the system re-
mains conformationally stable while the bias-
ing potential accumulates. The curvature in the
hinge regions then increases still further, even-
tually ejecting 35 lipids from the main patch

which then regroup to form a secondary glob-
ule. This behavior being undesired, the biased
simulation was stopped once the folding of the
patch upon itself was complete (which occurs
around 170 ns into the simulation) and the sys-
tem was allowed to relax via an unbiased sim-
ulation. Within 60 ns, the hinge region shifts
to equalize both sides of the folded patch and
the globule formation completes (right panel on
figure 4).

Looking at this mechanism reveals the dif-
ficulties of exhaustively sampling the free en-
ergy landscape of liposome formation. First,
in a nonperiodic patch, different positions for
the formation of the hinge become nonequiva-
lent and need to be exhaustively sampled over
the entire patch to provide an accurate free en-
ergy profile. Second, the folded patch has an
overall curvature of Γ > 2 compared to the
flat reference structure (see Supporting Infor-
mation figure S7 for the graph of Γ vs simu-
lation time); further transformations from this
state are thus highly degenerate. Other mecha-
nisms, such as the formation of additional hinge
points, are probably as likely as the observed
ejection phenomenon, and would require the
use of additional reference structures to be dis-
criminated. Third, starting the simulation from
other representative conformations of the circu-
lar patch and/or using slightly different meta-
dynamics parameters can result in a different
number of lipids being ejected. This is not spe-
cific to POPE: other lipids that are less prone to
spontaneous curvature, such as DPPC, exhibit
the same behavior. The problem is circum-
vented here by stopping the biased simulation
before the ejection occurs; however, obtaining
a complete free energy profile would require the
exhaustive sampling of all possible ejection sce-
narios. All the same, established liposome gen-
eration methods such as self-assembly also yield
varying distributions of liposome populations
and sizes depending on starting conditions.45,46.
Despite these limitations, this example demon-
strates the method’s ability for the rapid and
easy preparation of liposomes, globules and bi-
celles, whose formation often span timescales
inaccessible to Boltzmann sampling.
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Figure 4: Representative conformations along the formation pathway of a POPE liposome from a
circular patch. Approximate simulation times from left to right: 0, 93, 170 and 228 ns.

3.3 Influence of PQS on the bud-
ding of the Gram-negative
outer membrane

The Pseudomonas quinolone signal (PQS, 2-
heptyl-3-hydroxy-4-quinolone) is a quorum
sensing47 molecule of the Gram-negative bac-
terium Pseudomonas aeruginosa, a multiresis-
tant pathogen against which the need for new
antibiotics has been deemed critical by the
World Health Organization.48 Among the mul-
tiple mechanisms related to quorum sensing,
the interaction of PQS with the lipopolysac-
charide (LPS) layer of the outer bacterial mem-
brane favors the budding of the latter, eventu-
ally forming outer membrane vesicles (OMV)3

that encapsulate other molecules (notably, PQS
itself,49 or siderophores such as pyoverdine50)
and/or are enriched in membrane proteins (no-
tably, FpvA and other TonB-dependent trans-
porters51). Since OMVs are of paramount im-
portance for bacterial virulence, population
control and signalling within the biofilm and
hold great promise for targeted drug delivery,52

understanding their formation, and the quan-
titative effect of PQS thereupon, is essential.
However, accurate atomic and coarse-grained
models of LPS have only recently been made
available and the study of large-scale corre-
lated motion in such membranes is still in its
infancy.53 Here, the curvature restraint is used
to study the onset of the budding process and
quantify the effect of PQS thereupon.

A MARTINI54 model for PQS (figure 5) was
created based on, and validated according to,
atomistic simulations on this molecule in a sol-
vated environment (see Supporting Information

for details). The outer bacterial membrane was
represented using a square LPS/POPE bilayer
patch of approximate side length 130Å, whose
MARTINI parameters were taken from the
work of Van Oosten and coworkers55 and whose
starting structure was obtained by coarse-
graining the equilibrated all-atom conformation
of Kirschner et al.56 After equilibration, the
patch was duplicated; one copy was kept pris-
tine while the other was subjected to the in-
sertion of 25 PQS molecules (an approximate
20 mM concentration) in the outer LPS leaflet,
where PQS is experimentally known to inter-
act.57 Both systems were simulated without
bias and found to be stable over timescales of
200 ns. Both were then subjected to 400 ns of
well-tempered metadynamics. Curvatures were
computed on LPS head beads and the equi-
librated structure of the pristine LPS/POPE
patch was used as reference in both cases. To
favor convergence and limit the study to small
deformations, a harmonic barrier at Γ = 1.1
was imposed using a harmonic wall potential.

Figure 6 shows the bending free energy pro-
files obtained (see Supporting Information fig-
ure S8 for their convergence). By definition,
these are defined up to an additive constant:
the vertical positioning of the two plots with
respect to one another is thus arbitrary. How-
ever, it is clear that the energy penalty incurred
upon significant deformation of the membrane
patch (Γ > 0.6) is much reduced in the pres-
ence of PQS. PQS appears to limit the con-
formational volume of flat conformations by
narrowing the corresponding free energy basin
(Γ ∼ 0.20−0.55 in the absence of PQS) on both
sides. This makes sense from a purely sterical
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Figure 5: The PQS molecule and its MARTINI
representation. Grains are represented by el-
lipses delimiting their constitutive heavy atoms,
labeled by their MARTINI types and colored
by their nature (gray: apolar; green: nonpolar;
red: polar).

point of view: the additional space taken up by
multiple, rather bulky PQS molecules forming
strong interactions with the polar core of the
LPS leaflet induces interleaflet tension, which is
more easily relieved by bending the membrane
out of plane than by compressing the membrane
in-plane. It also comforts the currently adopted
view of PQS-induced membrane curvature phe-
nomena.57

However, the metadynamics simulations pro-
vide valuable additional mechanistic informa-
tion. The distribution of atomic curvatures
at LPS headgroups in the vicinity of PQS
molecules (<5Å along the membrane plane) re-
veals that, in high-Γ structures, PQS is more
likely to be found in locally flat areas than in
locally bent ones (figure 6, center panel), while
in low-Γ structures no such effect is apparent.
A similar picture emerges from the analysis
of area per lipid (APL) and membrane width
distributions (see Supporting Information fig-
ures S9-S10). At comparable Γ values, a wider
range of APL values is observed in the pres-
ence of PQS than in its absence; however, on
average, PQS molecules tend to avoid regions
of very high or low APL. Bent regions also
tend to feature reduced values of bilayer width;
the measure of leaflet overlap along the mem-
brane normal axis reveals that this is mainly
due to the interpenetration of the lipid tails
of both leaflets. PQS molecules tend to move

away from such areas, possibly to limit unfa-
vorable interactions made by the PQS polar
core. From these findings emerges an overall
picture in which rather mobile PQS molecules
tend to congregate in the flat regions, acting
as ‘pincers’ to bend the membrane patches in-
between. The mobility of PQS molecules within
the membrane, observed in the simulations, is
compatible with the recently reported lack of
durable hydrogen bonding interactions between
PQS and LPS.58

To the best of the author’s knowledge, the
evaluation of the free energetic effect of PQS on
LPS membrane bending and the report of PQS
distribution within a bent patch are two impor-
tant novel results in a field for which knowledge
at the atomic level remains very scarce.

3.4 Limitations
The use-cases described in the previous sec-
tion demonstrate the method’s potential for the
accelerated simulation of membrane bending
events and the quantitative study of their free
energy landscapes. Nonetheless, these capabili-
ties could be further refined by addressing some
of the method’s main limitations, summarized
below.

The most evident limitation is the necessity
to obtain a single scalar conformational coor-
dinate from a scalar field of atomic curvatures.
The solution employed here, akin to the RMSD
routinely applied to the comparison of macro-
molecular structures, suffers from the same lim-
itation as the former: the volume of conforma-
tional space corresponding to an isovalue of the
coordinate ‘blows up’ at large isovalues. This
problem can be partially worked around (for in-
stance by combining several coordinates), and
the low computational cost of the approach re-
mains an advantage when it is applied to mil-
lions of MD timesteps. Nevertheless, using
more robust methods leveraging Morse theory
and persistence diagrams20 would help to lift
the conformational degeneracy.

Other limitations stem from the ICP registra-
tion of successive reference conformations. The
first one is the treatment of periodic boundary
conditions. Prior to the registration process,
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Figure 6: Left: free energy profile and confidence interval for the deformation of an LPS/POPE
bilayer along Γ, with or without PQS; the minimum y-value of each curve was arbitrary positioned
at 0. Center: comparison of the distributions of atomic curvatures at LPS headgroups close to PQS
molecules in the xy plane (red) or randomly chosen (blue), for low and high values of Γ. Right:
typical placement of PQS (yellow surfaces) inside the bilayer at Γ ∼ 0.8 (green: polar LPS core;
pink: lipid A; cyan: POPE leaflet; purple: Ca2+ ions; glassy surface: water).

atoms in both conformations need to be placed
back into the unit cell; however, a large number
of atoms ‘jumping’ in the same direction across
the cell boundary from one reference to the next
could introduce a shift of surface features within
the cell and deteriorate the mapping, unless the
cell limits are correspondingly repositioned. In
practice, such an issue was never seen to occur if
the registration process is done sufficiently fre-
quently, rendering the costly process of finding
the best possible unit cell for both conforma-
tions superfluous.

A related issue originates from the mapping
of atoms between conformations following the
registration operation. As previously stated,
atoms at time t + δt are mapped to those at
time t, progressively generating a chain of map-
pings back to the initial reference structure.
The problem is that the mapping, based on a
nearest-neighbor relationship, is usually not bi-
jective: several t+ δt atoms can have the same
t atom as their nearest neighbor and thus be-
come simultaneously mapped to it. Mapping
two atoms at time t + δt to the same atom at
time t leaves one unmapped atom at t; this
breaks the connection to one of the reference
atoms at t+δt and all posterior time frames. As
the simulation progresses, the number of such
lost connections keeps rising and the number of
unique reference atoms still mapped to atoms
of the current conformation keeps decreasing.

The overall effect is a homogeneization of the
reference curvatures, which is not a problem if
these curvatures were initially homogeneous (as
occurs in a flat or quasi-spherical patches) but
raises issues for reference structures with local-
ized features.

The most straightforward workaround (i) is
to impose a bijective mapping by marking as
unavailable atoms in the reference structure
that have already been mapped and selecting
the closest neighbor still available; however, as
the mapping process progresses and fewer ref-
erence atoms become available, this can result
in atoms that are quite far away to become as-
sociated. In addition, the result depends on the
order in which the atoms are mapped: in partic-
ular, if the mapping process is performed by it-
erating over atom indices, and atoms with simi-
lar indices tend to be located in the same region
of the surface, this can result in the quality of
the mapping to be much better in some parts of
the surface (those with small atom indices, that
are mapped first) than others (those with large
atom indices, mapped last). Possible solutions
include (ii) trying several randomized mapping
orders and retaining the best (which minimizes
the sum of distances between mapped atoms);
(iii) choosing the mapping order such that the
i+1th mapped atom is the furthest from the ith,
to prevent situations in which parts of the sur-
face are better mapped than others; (iv) find-
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ing the best mapping among all possible com-
binations – a very costly operation even us-
ing the polynomial-complexity Kuhn-Munkres
algorithm59 (O(N4)). Compared to (iv), ap-
proaches (i) to (iii) tend to give comparable re-
sults if the mapping is performed at sufficiently
regular intervals, so approach (i) is used by de-
fault; the other approaches are implemented an
can be selected by the user for specific scenar-
ios. It should be kept in mind that similar issues
also plague comparable approaches in spite of
higher computational costs – for instance, the
permutation reduction approach of Bubnis et
al43 based on the minimization of a distance-
based cost function is not guaranteed to con-
verge to the global minimum. Applying the
Kuhn-Munkres algorithm to a pre-filtered set
of mappings (based for instance on topological
persistence) could be a worthwhile refinement
to the method. The filtering could also be based
on the chemical nature of the mapped atoms,60

tackling the problem of multicomponent mem-
branes for which mapping atoms based on posi-
tion only can result in atoms of different chem-
ical natures to become associated; a penalty
could be applied to such mappings.

Finally, the method remains computation-
ally costly despite its performance-oriented re-
finements (KD-tree, Cardano matrix diagonal-
ization...): slowdowns by a factor of 2 to 10
compared to unbiased simulations of similar
systems have been observed. Introducing ex-
plicit OpenMP/MPI parallelization into the
code would surely make an important differ-
ence.

4 Concluding remarks
Given the ubiquitousness of membrane remod-
eling processes and the growing popularity of
research in this field, it is the author’s hope
that the current work’s promising results will
trigger additional interest for the design of rel-
evant collective coordinates that strive for the
best tradeoff between precision, generality and
performance.
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Detailed expression of covariance matrix eigen-
values and eigenvectors; additional simulation
parameters; convergence of free energy profiles
(FEP); areas per lipid (APL) and deuterium or-
der parameters for POPE and DPPC patches;
side view of a bent POPE bilayer; representa-
tive structures of a POPE patch at high Γ val-
ues; reference conformation and atoms for the
cylindrical POPE patch; evolution of Γ during
the formation of a POPE liposome; LPS FEP
convergence; APL, leaflet overlap and PQS po-
sitions in bent LPS patches; MARTINI topol-
ogy for PQS.

References
(1) Lou, H. Y.; Zhao, W.; Zeng, Y.; Cui, B.

The role of membrane curvature in
nanoscale topography-induced intracellu-
lar signaling. Acc. Chem. Res. 2018, 51,
1046–1053.

(2) Schmick, M.; Bastiaens, P. I. H. The inter-
dependence of membrane shape and cel-
lular signal processing. Cell 2014, 156,
1132–1138.

(3) Schwechheimer, C.; Kuehn, M. J. Outer-
membrane vesicles from Gram-negative
bacteria: biogenesis and functions. Nat.
Rev. Microbiol. 2015, 13, 605–619.

(4) Lind, T. K.; Darré, L.; Domene, C.;
Urbanczyk-Lipkowska, Z.; Cárdenas, M.;
Wacklin, H. P. Antimicrobial peptide
dendrimer interacts with phosphocholine
membranes in a fluidity dependent man-
ner: A neutron reflection study combined
with molecular dynamics simulations.
Biochim. Biophys. Acta - Biomembr.
2015, 1848, 2075–2084.

14



(5) Santi-Rocca, J.; Blanchard, N. Membrane
trafficking and remodeling at the host-
parasite interface. Curr. Opin. Microbiol.
2017, 40, 145–151.

(6) Hanna, M. G.; Mela, I.; Wang, L.; Hen-
derson, R. M.; Chapman, E. R.; Edward-
son, J. M.; Audhya, A. Sar1 GTPase activ-
ity is regulated by membrane curvature. J.
Biol. Chem. 2016, 291, 1014–1027.

(7) Barbot, M.; Meinecke, M. Reconstitutions
of mitochondrial inner membrane remod-
eling. J. Struct. Biol. 2016, 196, 20–28.

(8) Huang, C.; Quinn, D.; Sadovsky, Y.;
Suresh, S.; Hsia, K. J. Formation and
size distribution of self-assembled vesicles.
Proc. Natl. Acad. Sci. 2017, 114, 2910–
2915.

(9) Salzer, U.; Kostan, J.; Djinović-
Carugo, K. Deciphering the BAR code
of membrane modulators. Cell. Mol. Life
Sci. 2017, 74, 2413–2438.

(10) Shi, Z.; Baumgart, T. Membrane tension
and peripheral protein density mediate
membrane shape transitions. Nat. Com-
mun. 2015, 6, 1–8.

(11) Simunovic, M.; Bassereau, P.; Voth, G. A.
Organizing membrane-curving proteins:
the emerging dynamical picture. Curr.
Opin. Struct. Biol. 2018, 51, 99–105.

(12) Chavent, M.; Duncan, A. L.; San-
som, M. S. Molecular dynamics simula-
tions of membrane proteins and their in-
teractions: From nanoscale to mesoscale.
Curr. Opin. Struct. Biol. 2016, 40, 8–16.

(13) Mori, T.; Miyashita, N.; Im, W.; Feig, M.;
Sugita, Y. Molecular dynamics simula-
tions of biological membranes and mem-
brane proteins using enhanced confor-
mational sampling algorithms. Biochim.
Biophys. Acta - Biomembr. 2016, 1858,
1635–1651.

(14) Dickson, B. M. Survey of adaptive bias-
ing potentials: comparisons and outlook.
Curr. Opin. Struct. Biol. 2017, 43, 63–67.

(15) W. Helfrich, Elastic properties of lipid
bilayers - theory and possible experi-
ments. Zeitschrift fur Naturforsch. Tl. C
Biochem. Biophys. Biol. Virol. 1973, 28,
693–703.

(16) Smirnova, Y. G.; Müller, M. Calculation
of membrane bending rigidity using field-
theoretic umbrella sampling. J. Chem.
Phys. 2015, 143, 243155.

(17) Hu, M.; Briguglio, J. J.; Deserno, M. De-
termining the Gaussian curvature modu-
lus of lipid membranes in simulations. Bio-
phys. J. 2012, 102, 1403–1410.

(18) Yesylevskyy, S. O.; Ramseyer, C. Determi-
nation of mean and Gaussian curvatures
of highly curved asymmetric lipid bilay-
ers: the case study of the influence of
cholesterol on the membrane shape. Phys.
Chem. Chem. Phys. 2014, 16, 17052–
17061.

(19) Gunther, D.; Jacobson, A.; Rein-
inghaus, J.; Seidel, H.-P.; Sorkine-
Hornung, O.; Weinkauf, T. Fast and
memory-efficienty topological denoising
of 2D and 3D scalar fields. IEEE Trans.
Vis. Comp. Graph. 2014, 20, 2585–2594.

(20) Chazal, F.; Guibas, L.; Oudot, S.;
Skraba, P. Analysis of scalar fields over
point cloud data. Proc. Twent. Annu.
ACM-SIAM Symp. Discret. Algorithms
2009, 1021–1030.

(21) Gyulassy, A.; Natarajan, V.; Pascucci, V.;
Bremer, P. T.; Hamann, B. A topolog-
ical approach to simplification of three-
dimensional scalar functions. IEEE Trans.
Vis. Comput. Graph. 2006, 12, 474–484.

(22) Masone, D.; Uhart, M.; Bustos, D. M.
Bending lipid bilayers: a closed-form col-
lective variable for effective free-energy
landscapes in quantitative biology. J.
Chem. Theory Comput. 2018, 14, 2240–
2245.

15



(23) Hoppe, H.; DeRose, T.; Duchamp, T.; Mc-
Donald, J.; Stuetzle, W. Surface recon-
struction from unorganized points. Proc.
19th Annu. Conf. Comput. Graph. Inter-
act. Tech. SIGGRAPH ’92. New York,
NY, USA, 1992; pp 71–78.

(24) Buchoux, S. Structural bioinformatics
FATSLiM : a fast and robust software to
analyze MD simulations of membranes.
Bioinformatics 2017, 33, 133–134.

(25) Co, C. S.; Heckel, B.; Hagen, H.;
Hamann, B.; Joy, K. I. Hierarchical clus-
tering for unstructured volumetric scalar
fields. Proc. IEEE Vis. Conf. 2003; pp
325–332.

(26) Rabbani, T.; van den Heuvel, F. A.; Vos-
selman, G. Segmentation of point clouds
using smoothness constraint. Int. Arch.
Photogram. Remote Sens. 2006, 36, 248–
253.

(27) Tierny, J.; Pascucci, V. Generalized
topological simplification of scalar fields
on surfaces. IEEE Trans. Vis. Comput.
Graph. 2012, 18, 2005–2013.

(28) Thomas, D. M.; Natarajan, V. Multi-
scale symmetry detection in scalar fields
by clustering contours. IEEE Trans. Vis.
Comput. Graph. 2014, 20, 2427–2436.

(29) Lee, J.; Kim, S.; Kim, S. J. Mesh segmen-
tation based on curvatures using the GPU.
Multimed. Tools Appl. 2014, 74, 3401–
3412.

(30) Cardano, G. Ars magna or The Rules of
Algebra; Dover Press, 1545.

(31) Kopp, J. Efficient numerical diagonaliza-
tion of hermitian 3x3 matrices. Int. J.
Mod. Phys. C 2008, 19, 523–548.

(32) Hascoet, L.; Pascual, V. The Tapenade
automatic differentiation tool: principles,
model, and specification. ACM Trans.
Math. Soft. 2013, 39, 20.

(33) Metzler, R.; Jeon, J. H.; Cherstvy, A. G.
Non-Brownian diffusion in lipid mem-
branes: Experiments and simulations.
Biochim. Biophys. Acta - Biomembr.
2016, 1858, 2451–2467.

(34) Bouvier, B.; Zakrzewska, K.; Lavery, R.
Protein-DNA recognition triggered by
a DNA conformational switch. Angew.
Chem. 2011, 50, 6516–6518.

(35) Basciu, A.; Malloci, G.; Pietrucci, F.;
Bonvin, A. M.; Vargiu, A. V. Holo-like and
druggable protein conformations from en-
hanced sampling of binding pocket volume
and shape. J. Chem. Inf. Model. 2019, 59,
1515–1528.

(36) Spiwok, V.; Králová, B. Metadynamics in
the conformational space nonlinearly di-
mensionally reduced by Isomap. J. Chem.
Phys. 2011, 135, 224504.

(37) Camilloni, C.; Pietrucci, F. Advanced sim-
ulation techniques for the thermodynamic
and kinetic characterization of biological
systems. Adv. Phys. X 2018, 3, 885–916.

(38) Blanco, J. L.; Rai, P. K. Nanoflann: a
C++11 header-only library for Near-
est Neighbor (NN) with KD-trees.
2014; https://github.com/jlblancoc/
nanoflann.

(39) Tribello, G. A.; Bonomi, M.; Bran-
duardi, D.; Camilloni, C.; Bussi, G.
PLUMED 2: New feathers for an old bird.
Comput. Phys. Comm. 2014, 185, 604–
613.

(40) Abraham, M. J.; Murtola, T.; Schulz, R.;
Páll, S.; Smith, J. C.; Hess, B.; Lin-
dahl, E. GROMACS: High performance
molecular simulations through multi-level
parallelism from laptops to supercomput-
ers. SoftwareX 2015, 1, 19–25.

(41) Arnarez, C.; Uusitalo, J. J.; Mas-
man, M. F.; Ingólfsson, H. I.;
de Jong, D. H.; Melo, M. N.; Peri-
ole, X.; de Vries, A. H.; Marrink, S. J.
Dry Martini, a coarse-grained force field

16



for lipid membrane simulations with im-
plicit solvent. J. Chem. Theory Comput.
2015, 11, 260–275.

(42) Kollmitzer, B.; Heftberger, P.; Rap-
polt, M.; Pabst, G. Monolayer sponta-
neous curvature of raft-forming membrane
lipids. Soft Matter 2013, 9, 10877–10884.

(43) Bubnis, G.; Risselada, H. J.; Grub-
müller, H. Exploiting lipid permutation
symmetry to compute membrane remod-
eling free energies. Phys. Rev. Lett. 2016,
117, 1–6.

(44) Qi, Y.; Cheng, X.; Han, W.; Jo, S.;
Roux, B.; Schulten, K.; Im, W.
CHARMM-GUI PACE CG Builder
for solution, micelle, bilayer and vesicle
simulations. J. Chem. Inf. Model. 2014,
54, 1003–1009.

(45) Hudiyanti, D.; Radifar, M.; Raharjo, T. J.;
Narsito, N.; Noegrohati, S. A coarse-
grained molecular dynamics simulation
using NAMD package to reveal aggrega-
tion profile of phospholipids self-assembly
in water. J. Chem. 2014, 2014 .

(46) Shinoda, W.; DeVane, R.; Klein, M. L.
Computer simulation studies of self-
assembling macromolecules. Curr. Opin.
Struct. Biol. 2012, 22, 175–186.

(47) Whiteley, M.; Diggle, S. P.; Green-
berg, E. P. Progress in and promise of
bacterial quorum sensing research. Nature
2017, 551, 313–320.

(48) Tacconelli, E.; Magrini, N. Global priority
list of antibiotic-resistant bacteria to guide
research, discovery, and development of
new antibiotics. 2017; https://www.
who.int/medicines/publications/
global-priority-list-antibiotic-resistant-bacteria/
en/.

(49) Mashburn, L. M.; Whiteley, M. Membrane
vesicles traffic signals and facilitate group
activities in a prokaryote. Nature 2005,
437, 422–425.

(50) Veith, P. D.; Chen, Y.-Y.; Gora-
sia, D. G.; Chen, D.; Glew, M. D.;
O’Brien-Simpson, N. M.; Cecil, J. D.;
Holden, J. A.; Reynolds, E. C. Porphy-
romonas gingivalis outer membrane vesi-
cles exclusively contain outer membrane
and periplasmic proteins and carry a cargo
enriched with virulence factors. J. Pro-
teome Res. 2014, 13, 2420–2432.

(51) Lappann, M.; Otto, A.; Becher, D.; Vo-
gel, U. Comparative proteome analysis
of spontaneous outer membrane vesicles
and purified outer membranes of Neisse-
ria meningitidis. J. Bacteriol. 2013, 195,
4425–4435.

(52) Wang, S.; Gao, J.; Wang, Z. Outer mem-
brane vesicles for vaccination and tar-
geted drug delivery. Wiley Interdiscip.
Rev. Nanomed. Nanobiotechnol. 2019, 11,
1–16.

(53) Khalid, S.; Piggot, T. J.; Samsudin, F.
Atomistic and Coarse Grain Simulations
of the Cell Envelope of Gram-Negative
Bacteria: What Have We Learned? Acc.
Chem. Res. 2019, 52, 180–188.

(54) De Jong, D. H.; Singh, G.; Ben-
nett, W. F.; Arnarez, C.; Wasse-
naar, T. A.; Schäfer, L. V.; Periole, X.;
Tieleman, D. P.; Marrink, S. J. Improved
parameters for the martini coarse-grained
protein force field. J. Chem. Theory Com-
put. 2013, 9, 687–697.

(55) Oosten, B. V.; Harroun, T. A. A MAR-
TINI extension for Pseudomonas aerug-
inosa PAO1 lipopolysaccharide. J. Mol.
Graph. Model. 2016, 63, 125–133.

(56) Kirschner, K. N.; Lins, R. D.; Maass, A.;
Soares, T. A. A glycam-based force
field for simulations of lipopolysaccharide
membranes: parametrization and valida-
tion. J. Chem. Theory Comput. 2012, 8,
4719–4731.

(57) Schertzer, J. W.; Whiteley, M. A bilayer-
couple model of bacterial outer membrane

17



vesicle biogenesis. MBio 2012, 3, e00297–
11.

(58) Li, A.; Schertzer, J. W.; Yong, X. Molec-
ular conformation affects the interaction
of the Pseudomonas quinolone signal with
the bacterial outer membrane. J. Biol.
Chem. 2019, 294, 1089–1094.

(59) Munkres, J. Algorithms for the assign-
ment and transportation problems. J. Soc.
Indust. Appl. Math. 1957, 5, 32–38.

(60) Temelso, B.; Mabey, J. M.; Kubota, T.;
Appiah-Padi, N.; Shields, G. C. ArbAlign:
A tool for optimal alignment of arbitrarily
ordered isomers using the Kuhn-Munkres
algorithm. J. Chem. Inf. Model. 2017, 57,
1045–1054.

18



Graphical TOC Entry

Using overall curvature as a collective coordinate in enhanced sampling
molecular dynamics simulations helps understand the formation of mem-

brane vesicles.
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