M. Liu, R. Zhang, and W. Chen, Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications, Chem. Rev, vol.114, pp.5117-5160, 2014.

S. Peng, X. Han, L. Li, S. Chou, D. Ji et al., Electronic and Defective Engineering of Electrospun CaMnO 3 Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable Zinc-Air Batteries, Adv. Energy Mater, vol.8, p.1800612, 2018.

M. B. Stevens, L. J. Enman, A. S. Batchellor, M. R. Cosby, A. E. Vise et al.,

M. Boettcher and S. W. , Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts, Chem. Mater, vol.29, pp.120-140, 2017.

W. Li, N. Jiang, B. Hu, X. Liu, F. Song et al.,

L. Sun and Y. , Electrolyzer Design for Flexible Decoupled Water Splitting and Organic Upgrading with Electron Reservoirs, vol.4, pp.637-649, 2018.

J. Liu, Y. Zheng, D. Zhu, A. Vasileff, T. Ling et al.,

, Dependent Synergy on Ru/MoS 2 Interface: A Comparison of Alkaline and Acidic Hydrogen Evolution, vol.9, pp.16616-16621, 2017.

Y. Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo et al., Self-Templated Fabrication of MoNi 4 /MoO 3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution, Adv. Mater, vol.29, p.1703311, 2017.

B. Lassalle-kaiser, D. Merki, H. Vrubel, S. Gul, V. K. Yachandra et al., Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst, J. Am. Chem. Soc, vol.137, pp.314-321, 2015.

M. Yan, X. Pan, P. Wang, F. Chen, L. He et al., Field-Effect Tuned Adsorption Dynamics of VSe 2 Nanosheets for Enhanced Hydrogen Evolution Reaction, Nano Lett, vol.17, pp.4109-4115, 2017.

C. Hu and L. Dai, Multifunctional Carbon-Based Metal-Free Electrocatalysts for

, Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution, Adv. Mater, vol.29, p.1604942, 2017.

J. Di, C. Yan, A. D. Handoko, Z. W. Seh, H. Li et al., Ultrathin Two-Dimensional Materials for Photo-and Electrocatalytic Hydrogen Evolution, Mater, vol.21, pp.749-770, 2018.

S. Peng, F. Gong, L. Li, D. Yu, D. Ji et al., Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis, J. Am. Chem. Soc, vol.140, pp.13644-13653, 2018.

S. Zhao, Y. Wang, J. Dong, C. He, H. Yin et al.,

L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak et al.,

H. Zhao and Z. Tang, Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution, Nat. Energy, 2016.

D. Voiry, H. S. Shin, K. P. Loh, and M. Chhowalla, Low-Dimensional Catalysts for Hydrogen Evolution and CO 2 Reduction, Nat. Rev. Chem, vol.2, p.105, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01692396

S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially Oxidized Atomic Cobalt Layers for Carbon Dioxide Electroreduction to Liquid Fuel, Nature, vol.529, pp.68-71, 2016.

M. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi et al., Salehi-Khojin, A. Nanostructured transition Metal Dichalcogenide Electrocatalysts for CO 2 Reduction in Ionic Liquid, Science, vol.353, pp.467-470, 2016.

P. Abbasi, M. Asadi, C. Liu, S. Sharifi-asl, B. Sayahpour et al.,

, Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide, ACS Nano, vol.11, pp.453-460, 2017.

J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu et al.,

N. Ultrathin, Doped Mo 2 C Nanosheets with Exposed Active Sites as Efficient Electrocatalyst for Hydrogen Evolution Reactions, ACS Nano, vol.11, pp.12509-12518, 2017.

Y. Xu, X. Xiao, Z. Ye, S. Zhao, R. Shen et al., Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution, J. Am. Chem. Soc, vol.139, pp.5285-5288, 2017.

M. Miao, J. Pan, T. He, Y. Yan, B. Y. Xia et al., Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction, vol.23, pp.10947-10961, 2017.

Y. Abghoui and E. Skúlason, Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides, J. Phys. Chem. C, pp.121-24036, 2017.

Y. Wang, L. Chen, X. Yu, Y. Wang, and G. Zheng, Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Pt-Decorated Ni 3 N Nanosheets, Adv. Energy Mater, vol.7, p.1601390, 2017.

L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang et al., A Nanoporous Molybdenum Carbide Nanowire as an Electrocatalyst for Hydrogen Evolution Reaction, Energy Environ. Sci, vol.7, pp.387-392, 2014.

Y. Shi and B. Zhang, Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction, Chem. Soc. Rev, vol.45, pp.1529-1541, 2016.

Y. Zeng, Y. Wang, G. Huang, C. Chen, L. Huang et al., Porous CoP Nanosheets Converted from Layered Double Hydroxides with Superior Electrochemical Activity for Hydrogen Evolution Reactions at Wide pH Ranges, Chem. Comm, vol.54, pp.1465-1468, 2018.

J. Shi, D. Ma, G. Han, Y. Zhang, Q. Ji et al., Controllable Growth and Transfer of Monolayer MoS 2 on Au Foils and Its Potential Application in Hydrogen Evolution Reaction, ACS Nano, vol.8, pp.10196-10204, 2014.

Z. Liu, Z. Gao, Y. Liu, M. Xia, R. Wang et al., Heterogeneous Nanostructure Based on 1T-Phase MoS 2 for Enhanced Electrocatalytic Hydrogen Evolution, ACS Appl. Mater. Interfaces, vol.9, pp.25291-25297, 2017.

A. Y. Eng, A. Ambrosi, Z. Sofer, P. ?imek, and M. Pumera, Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method, ACS Nano, vol.8, pp.12185-12198, 2014.

X. Zhao, X. Ma, J. Sun, D. Li, and X. Yang, Enhanced Catalytic Activities of Surfactant-Assisted Exfoliated WS 2 Nanodots for Hydrogen Evolution, ACS Nano, vol.10, pp.2159-2166, 2016.

K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang et al., -x) Se 2x Nanotubes for Efficient Hydrogen Evolution Reaction, Component-Controllable WS, vol.2, issue.1

, ACS Nano, vol.8, pp.8468-8476, 2014.

Q. Ding, B. Song, P. Xu, and S. Jin, Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS 2 and Related Compounds, vol.1, pp.699-726, 2016.

D. Wang, M. Gong, H. Chou, C. Pan, H. Chen et al., Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS 2 Nanosheets-Carbon Nanotubes for Hydrogen Evolution Reaction, J. Am. Chem. Soc, vol.137, pp.1587-1592, 2015.

C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du et al., Preparation of High-Percentage 1T-Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution, Adv. Mater, 2018.

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen et al., Biomimetic Hydrogen Evolution: MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution, J. Am. Chem. Soc, vol.127, pp.5308-5309, 2005.

R. Li, L. Yang, T. Xiong, Y. Wu, L. Cao et al., Nitrogen Doped MoS, vol.2

, Nanosheets Synthesized via a Low-Temperature Process as Electrocatalysts with Enhanced Activity for Hydrogen Evolution Reaction, J. Power Sources, vol.356, pp.133-139, 2017.

P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al.,

G. Zhou, S. Wei, and Y. Li, Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts, Angew. Chem. Int. Ed, vol.55, pp.10800-10805, 2016.

Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan et al., Direct Transformation of Bulk Copper into Copper Single Sites via Emitting and Trapping of Atoms, Nature Catalysis, vol.1, pp.781-786, 2018.

L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen et al.,

, Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction, Angew. Chem. Int. Ed, vol.50, pp.7132-7135, 2011.

Y. Jiao, Y. Zheng, K. Davey, and S. Z. Qiao, Activity Origin and Catalyst Design Principles for Electrocatalytic Hydrogen Evolution on Heteroatom-Doped Graphene, Nat. Energy, 2016.

X. Zou, M. Liu, J. Wu, P. M. Ajayan, J. Li et al., How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO 2 to Hydrocarbons and Oxygenates, ACS Catal, vol.7, pp.6245-6250, 2017.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen et al., Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction

, Nano Lett, vol.13, pp.6222-6227, 2013.

D. Voiry, A. Mohite, and M. Chhowalla, Phase Engineering of Transition Metal Dichalcogenides, Chem. Soc. Rev, vol.44, pp.2702-2712, 2015.

S. Najmaei, J. Yuan, J. Zhang, P. Ajayan, and J. Lou, Synthesis and Defect Investigation of Two-Dimensional Molybdenum Disulfide Atomic Layers, Acc. Chem. Res, vol.48, pp.31-40, 2015.

J. Hong, Z. Hu, M. Probert, K. Li, D. Lv et al.,

J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji et al., Exploring Atomic Defects in Molybdenum Disulphide Monolayers, Nat. Comm, vol.6, p.6293, 2015.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves et al., Enhanced Catalytic Activity in Strained Chemically Exfoliated WS 2 Nanosheets for Hydrogen Evolution, Nat. Mater, vol.12, pp.850-855, 2013.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He et al., Defects Engineered Monolayer MoS 2 for Improved Hydrogen Evolution Reaction, Nano Lett, vol.16, pp.1097-1103, 2016.

G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson et al.,

F. Hunte, S. Shannon, Y. Zhu, W. Yang, and L. Cao, All The Catalytic Active Sites of MoS 2 for Hydrogen Evolution, J. Am. Chem. Soc, vol.138, pp.16632-16638, 2016.

Y. Yin, Y. Zhang, T. Gao, T. Yao, X. Zhang et al.,

P. Zhang, X. Cao, B. Song, and S. Jin, Synergistic Phase and Disorder Engineering in 1T-MoSe 2

, Nanosheets for Enhanced Hydrogen-Evolution Reaction, Adv. Mater, vol.29, p.1700311, 2017.

S. Park, J. Park, H. Abroshan, L. Zhang, J. K. Kim et al., Enhancing Catalytic Activity of MoS 2 Basal Plane S-Vacancy by Co Cluster Addition, ACS Energy Lett, vol.3, pp.2685-2693, 2018.

D. Voiry, R. Fullon, J. Yang, E. S. De-carvalho-castro, R. Kappera et al.,

D. Kaplan, M. J. Lagos, P. E. Batson, G. Gupta, A. D. Mohite et al.,

B. Asefa, T. Chhowalla, and M. , The Role of Electronic Coupling Between Substrate and 2D MoS 2
URL : https://hal.archives-ouvertes.fr/hal-01713257

, Nanosheets in Electrocatalytic Production of Hydrogen, Nat. Mater, vol.15, pp.1003-1009, 2016.

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun et al., Defect-Rich MoS 2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution, Adv. Mater, vol.25, pp.5807-5813, 2013.

Y. Xu, L. Wang, X. Liu, S. Zhang, C. Liu et al.,

, Monolayer MoS 2 with S Vacancy from Interlayer Spacing Expanded Counterparts for Highly Efficient Electrochemical Hydrogen Production, J. Mater. Chem. A, 2016.

C. Cheng, A. Lu, C. Tseng, X. Yang, M. N. Hedhili et al.,

H. Li and L. , Activating Basal-Plane Catalytic Activity of Two-Dimensional MoS 2 Monolayer with Remote Hydrogen Plasma, Nano Energy, vol.30, pp.846-852, 2016.

H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman et al., Activating and Optimizing MoS 2 Basal Planes for Hydrogen Evolution Through the Formation of Strained Sulphur Vacancies, Nat. Mater, p.364, 2016.

C. Tsai, H. Li, S. Park, J. Park, H. S. Han et al.,

F. , Generation of Sulfur Vacancies in the Basal Plane of MoS 2 for Hydrogen Evolution, Nat. Comm, vol.8, p.15113, 2017.

Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu et al.,

Z. Zhang, P. Zhang, X. Cao, B. Song, and S. Jin, Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets, J. Am. Chem. Soc, vol.138, pp.7965-7972, 2016.

J. D. Wiensch, J. John, J. M. Velazquez, D. A. Torelli, A. P. Pieterick et al., Comparative Study in Acidic and Alkaline Media of the Effects of pH and Crystallinity on the Hydrogen-Evolution Reaction on MoS 2 and MoSe 2, ACS Energy Lett, 2017.

Z. Zhao, F. Qin, S. Kasiraju, L. Xie, M. K. Alam et al., Vertically Aligned MoS 2 /Mo 2 C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution, ACS Catal, vol.7, pp.7312-7318, 2017.

H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping Transport Through Defect-Induced Localized States in Molybdenum Disulphide, Nat. Comm, 2013.

Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z. Ong et al.,

J. Wang, G. Zhang, Y. W. Zhang, Y. Shi, and X. Wang, Towards Intrinsic Charge Transport

, Monolayer Molybdenum Disulfide by Defect and Interface Engineering, Nat. Comm, vol.5, p.5290, 2014.

Z. Lin, B. R. Carvalho, E. Kahn, R. Lv, R. Rao et al., , p.2

. Mater, , vol.3, p.22002, 2016.

R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert et al., Control of Radiation Damage in MoS 2 by Graphene Encapsulation, ACS Nano, vol.7, pp.10167-10174, 2013.

G. Algara-siller, S. Kurasch, M. Sedighi, O. Lehtinen, and U. Kaiser, The Pristine Atomic Structure of MoS 2 Monolayer Protected from Electron Radiation Damage by Grapheme, Appl. Phys. Lett, p.203107, 2013.

S. Ahn, G. Kim, P. K. Nayak, S. I. Yoon, H. Lim et al., Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h-BN Layers, ACS Nano, vol.10, pp.8973-8979, 2016.

K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi et al., Targeted Synthesis of 2H-and 1T-Phase MoS 2 Monolayers for Catalytic Hydrogen Evolution

, Adv. Mater, vol.28, pp.10033-10041, 2016.

B. Guo, K. Yu, H. Li, H. Song, Y. Zhang et al., Hollow Structured Micro/Nano MoS 2 Spheres for High Electrocatalytic Activity Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces, vol.8, pp.5517-5525, 2016.

J. Zhang, J. Wu, H. Guo, W. Chen, J. Yuan et al., Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS 2, Adv. Mater, vol.29, p.1701955, 2017.

J. Hu, B. Huang, C. Zhang, Z. Wang, Y. An et al., Engineering Stepped Edge Surface Structures of MoS 2 Sheet Stacks to Accelerate the Hydrogen Evolution Reaction, Energy Environ. Sci, vol.10, pp.593-603, 2017.

H. Zhou, F. Yu, Y. Huang, J. Sun, Z. Zhu et al., Efficient Hydrogen Evolution by Ternary Molybdenum Sulfoselenide Particles on Self-standing Porous Nickel Diselenide Foam, Nat. Comm, vol.7, p.12765, 2016.

H. Yan, C. Tian, L. Wang, A. Wu, M. Meng et al., Phosphorus-Modified Tungsten Nitride/Reduced Graphene Oxide as a High-Performance, Non-Noble-Metal Electrocatalyst for the Hydrogen Evolution Reaction, Angew. Chem. Int. Ed, vol.54, pp.6325-6329, 2015.

R. Ye, P. Vicente, Y. Liu, J. Arellano-jimenez, M. Peng et al.,

Y. Li, B. I. Yakobson, S. Wei, M. J. Yacaman, and J. M. Tour, High-Performance Hydrogen Evolution from MoS 2(1-x) P x Solid Solution, Adv. Mater, vol.28, pp.1427-1432, 2016.

Q. Li, C. Han, X. Ma, D. Wang, Z. Xing et al.,

, Tungsten Nanoarrays to Enable Hydrogen Evolution at all pH Values, J. Mater. Chem. A, vol.5, pp.17856-17861, 2017.

J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An et al., Nanohybridization of MoS 2 with Layered Double Hydroxides Efficiently Synergizes the Hydrogen Evolution in Alkaline Media, vol.1, pp.383-393, 2017.

Y. Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo et al.,

S. Self, Templated Fabrication of MoNi 4 /MoO 3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution, Adv. Mater, vol.29, p.1703311, 2017.

R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu et al.,

, Ternary NiCo 2 P x Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction, Adv. Mater, vol.29, p.1605502, 2017.

C. Tang, Q. Hu, F. Li, C. He, X. Chai et al., Coupled Molybdenum Carbide and Nitride on Carbon Nanosheets: An Efficient and Durable Hydrogen Evolution Electrocatalyst in Both Acid and Alkaline Media, Electrochim. Acta, vol.280, pp.323-331, 2018.

Z. Lv, M. Tahir, X. Lang, G. Yuan, L. Pan et al., Well-Dispersed Molybdenum Nitrides on a Nitrogen-Doped Carbon Matrix for Highly Efficient Hydrogen Evolution in Alkaline Media, J. Mater. Chem. A, 2017.

X. Xiao, D. Huang, Y. Fu, M. Wen, X. Jiang et al.,

C. Zhao and Y. Shen, Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting, ACS Appl Mater Interfaces, vol.10, pp.4689-4696, 2018.

C. Tsai, K. Chan, and J. K. Nørskov,

, disulfide after the hydrothermal synthesis (blue), after annealing at 800 °C under Argon (green) and after annealing under H 2 below 600 °C (orange) and above 600, Hydrogen Evolution Activity of Layered Transition Metal Dichalcogenides. Surf. Sci, vol.640, 2015.

, The top and bottom MoS 2 structures represent the surface and the bulk sections of the

, MoS 2 nanosheets in the nanoflowers structures. The S vacancies are displayed in red circles

, TEM images of as-synthesized MoS 2 . MoS 2 nanosheets organized in the form of nanoflowers. (c, d) High resolution TEM image of the stacked individual layers of as-synthesized MoS 2