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Abstract

Let G be a graph and Ds and Dt be two dominating sets of G of size k. Does there exist a sequence
〈D0 = Ds, D1, . . . , D`−1, D` = Dt〉 of dominating sets of G such that Di+1 can be obtained from Di

by replacing one vertex with one of its neighbors? In this paper, we investigate the complexity of
this decision problem. We first prove that this problem is PSPACE-complete, even when restricted
to split, bipartite or bounded treewidth graphs. On the other hand, we prove that it can be solved in
polynomial time on dually chordal graphs (a superclass of both trees and interval graphs) or cographs.

1 Introduction

General introduction. Reconfiguration problems arise when, given an instance of a problem, we want
to find a step-by-step transformation (called a reconfiguration sequence) between two feasible solutions
such that all intermediate solutions are also feasible. Unfortunately, such a transformation does not
always exist and some solutions may even be frozen, i.e., they can not be modified at all. In this context,
two natural questions arise: (i) When can we ensure that there exists such a transformation? (ii) What
is the complexity of deciding whether a reconfiguration sequence exists?

Interest in combinatorial reconfiguration steadily increased during the last decade. Reconfiguration
of several problems, including COLORING [4, 10, 12], INDEPENDENT SET [6, 7, 23], DOMINATING SET
[17, 24, 27, 32] and SATISFIABILITY [15, 26] have been studied. For an overview of recent results on
reconfiguration problems, the reader is referred to the surveys of van den Heuvel [33] and Nishimura
[30]. In this article, we focus on the reconfiguration of dominating sets.

A dominating set is a set of vertices such that every vertex not in the set has a neighbor in it. One
can represent a dominating set as a set of tokens, where exactly one token is placed on each vertex
that is part of the dominating set. Then, modifying a dominating set corresponds to shifting the tokens
according to some rule, called a reconfiguration rule. In the literature, three kinds of operations have
been mainly studied:

1. Token Addition and Removal (TAR): one can add or remove a token as long as the total number
of tokens does not go beyond a given threshold;

2. Token Jumping (TJ): one can move a token to any vertex of the graph;

3. Token Sliding (TS): one can slide a token along an edge, i.e., one moves a token to a neighbor of
its current location.

One can observe that in the last two models, the size of each solution remains constant at any time,
as opposed to what happens in the TAR model. In this article, we are mostly interested in the Token
Sliding model.

We define the reconfiguration graph for domination, denoted Rk(G) as follows: the vertices of
Rk(G) are the dominating sets of size k and there is an edge between two vertices if and only if one can
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go from the first to the second thanks to the reconfiguration rule that we consider (token sliding in our
case). Three natural problems can be identified:

1. The reachability problem: given a graph G and two dominating sets Ds and Dt, is there a path
betweenDs andDt inRk(G)? In other words, does there exist a reconfiguration sequence between
Ds and Dt?

2. The connectivity problem: given a graph G, is the reconfiguration graphRk(G) connected?

3. The shortest path problem: given a graph G, two dominating sets Ds and Dt and an integer `, is the
distance inRk(G) betweenDs andDt at most `? In other words, does there exist a reconfiguration
sequence between Ds and Dt of length at most `?

In this article, we focus on the reachability version and we will denote this problem by DSRTS for
short. We adopt the same notation for VERTEX COVER RECONFIGURATION and INDEPENDENT SET
RECONFIGURATION (the reachability question under the token sliding rule) and denote these two prob-
lems by VCRTS and ISRTS, respectively.

Related results. The reconfiguration of dominating sets has been mainly studied under the Token Ad-
dition and Removal model. Haas and Seyffarth gave sufficient conditions to guarantee the connectivity
of the reconfiguration graph according to k, the cardinality threshold of dominating sets [16]. More
precisely, they proved that Rn−1(G) (where n is the number of vertices of G) is connected if G has at
least two independent edges. This value can be lowered to Γ+1 (where Γ is the maximum size of a
minimal dominating set) if the input graph G is chordal or bipartite. Suzuki et al. [32] showed that
this result cannot be generalized to any graph since they constructed an infinite family of graphs for
whichRΓ+1(G) is not connected. On the positive side, they proved thatRn−µ(G) is connected if G has
a matching of size µ+ 1.

Haddadan et al. [17] studied the complexity of the reconfiguration of dominating sets under the
token addition and removal rule from a graph classes perspective. They proved that the reachability
problem is PSPACE-complete, even if the input graph is a split graph, a bipartite graph, has bounded
bandwidth or is planar with maximum degree six. On the other hand, they gave linear-time algorithms
for trees, interval graphs or cographs.

Mouawad et al. [27] studied the parameterized complexity of DOMINATING SET RECONFIGURATION
under token addition and removal. They proved that this problem is W[2]-hard when parameterized
by k + `, where k is the threshold and ` the length of the reconfiguration sequence. As a positive result,
Lokshtanov et al. [24] gave a fixed-parameter algorithm with respect to k for graphs excluding Kd,d as
a subgraph, for any constant d.

The third author also considered this problem (still in the TAR model) through the lens of an opti-
mization variant (see Blanché et al. [3]) as recently introduced by Ito et al. for independent sets [20].

To the best of our knowledge, the reconfiguration of dominating sets under TS has only been studied
from a structural perspective. Fricke et al. [13] introduced the concept of γ-graph which corresponds to
the reconfiguration graph Rγ(G) under the token sliding rule. In particular, they proved that Rγ(G) is
connected and bipartite if G is a tree. For a more complete overview, the reader is referred to [28].

Our contribution. In this article, we are interested in the reachability question of dominating sets
reconfiguration under token sliding. This reconfiguration rule has already been studied for various
reconfiguration problems but not for dominating sets, to the best of the authors’ knowledge.

We tackle this problem with a complexity perspective according to several graph classes: in Section
3, we prove for instance that DSRTS is PSPACE-complete for split graphs or bipartite graphs. Note that
the reductions used in the proofs of Theorems 5 and 6 are identical to the ones of [17], which are quite
standard (see, e.g., [2]). Our reduction to prove the PSPACE-completeness of DSRTS for split graphs
is similar but not identical to the one of [17], as we reduced from DSRTJ and not from VERTEX COVER
CONFIGURATION.

In Section 4, we show that this problem can be solved in polynomial time on other graph classes
such as cographs or dually chordal graphs (the formal definitions of these two graph classes is given in
Subsections 4.1 and 4.2, respectively). Note that our result for cographs is a consequence of Theorem 7
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Figure 1: Our results: the frontier between PSPACE-completeness and tractability.

which is more general (see the discussion in Subsection 4.1). Note also that our result on dually chordal
graphs generalizes the ones of [17] for trees and interval graphs since the class of dually chordal graphs
is a superclass of both interval graphs and trees as discussed in Subsection 4.2.

Figure 1 gives an overview of our results where A→ B means that the class B is properly included
in the class A.

2 Preliminaries

This section is devoted to some basic definitions of graph theory used in this article, followed by a more
formal introduction of the problem we are interested in.

Each graph G = (V,E) considered is simple (i.e., G is undirected and has no multiple edges or
loops) where V represents the vertex set of G and E its edge set. We denote by n = |V | and m = |E|
the number of vertices and edges of G. The eccentricity of a vertex u denoted by ε(u) is the maximum
distance between u and any other vertex. For a subset of vertices S ⊆ V , we denote by G[S] the
subgraph induced by S. For a vertex u ∈ V , we denote by NG(u) its open neighborhood, i.e., the set
{v | uv ∈ E} and by NG[u] its closed neighborhood, i.e. the set NG(u)∪{u}. For a subset of vertices S ⊆ V ,
we define the closed neighborhood of S as the union of the closed neighborhood of the vertices in S,
i.e., NG[S] =

⋃
u∈S NG[u].

Let G1 and G2 be two graphs. We recall two basic binary operations on graphs: the disjoint union
and the join operations. The disjoint union G1 ∪ G2 of two graphs on disjoint vertex sets is the graph
with vertex set V (G1 ∪ G2) = V (G1) ∪ V (G2) and edge set E(G1 ∪ G2) = E(G1) ∪ E(G2). The join
operation can be obtained from the disjoint union by adding all possible edges between G1 and G2.
More formally, the join of G1 and G2 denoted by G1 +G2 is the following graph:

• V (G1 +G2) = V (G1) ∪ V (G2);

• E(G1 +G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}.

A dominating set for a graph G = (V,E) is a subset of vertices D ⊆ V such that N [D] = V , i.e., each
vertex either belongs to D or has a neighbor in D. For a graph G, we denote by γ(G) the domination
number of G defined as the minimum size of a dominating set. Let G be a graph and D a dominating
set of G. We say that u is a private neighbor of v (with respect to D) if u 6∈ D and v is the only neighbor
of u in D. Therefore, a dominating set is inclusion-wise minimal if and only if each of its vertices has a
private neighbor.

Our problem. In the token sliding model, a natural question is whether we should authorize more
than one token to be placed on a vertex during the reconfiguration sequence. Here is an example where
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(b) D1
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(c) D2 (d) D3 = Dt

Figure 2: Example of TS-sequence from Ds to Dt.

it makes a difference: consider the star graph Sn on n + 1 vertices and two dominating sets D1 and
D2 of Sn of size k, with k ∈ [2, n − 1]. Any dominating set of that size necessarily contains the central
vertex. To reconfigure D1 into D2, we are forced to move a token from one leaf to another, which can
only be done by going through the central vertex which already contains a token. Given such artificially
negative examples, we choose to allow the superposition of tokens on a vertex. Note that this question
did not arise in previous papers considering the token sliding model, to the best of our knowledge.
Indeed, for problems like independent set, there can be no question of superposing two tokens, as two
tokens cannot be adjacent in the first place. In the aforementioned paper considering token sliding
for dominating sets, they exclusively consider that model in the case of minimum dominating sets: if
superposition was an option, there would be a smaller dominating set, which is impossible.

Let G be a graph, Ds and Dt be two dominating sets of G of same size k. We say that Ds is recon-
figurable into Dt by token sliding if there exists a sequence S = 〈D0 = Ds, D1, . . . , D`−1, D` = Dt〉 that
satisfies the two following properties:

• each Di is a multiset of size k that is a dominating set of G;

• there exists an edge uv such thatDi+1 = Di\{u}∪{v}, i.e., we slide the token placed on the vertex

u along the edge uv. We denote this move by u TS
 v.

We call such a sequence a TS-sequence and we denote this property by Ds
TS
 Dt. We also say that

(G,Ds, Dt) is a yes-instance for the DSRTS problem.
We also introduce the two following notation, where Ds and Dt are two dominating sets of G of size

k.

• Ds
TAR
! Dt: one can reconfigure Ds into Dt under the TAR model; each intermediate solution is of

size at most k + 1;

• Ds
TJ
! Dt: one can reconfigure Ds into Dt under the TJ model; each intermediate solution is of

size exactly k.

A useful observation is that each reconfiguration sequence (and thus in particular a TS-sequence) is

reversible: if Ds
TS
 Dt holds, then Dt

TS
 Ds holds too. We thus denote this relation by Ds

TS
! Dt. Figure

2 gives an example of a TS-sequence.
We are now ready to define properly the DOMINATING SET RECONFIGURATION problem under

token sliding.

DSRTS

Instance: A graph G = (V,E) and two dominating sets Ds and Dt of cardinality k of G.

Question: Is there a TS-sequence between Ds and Dt, i.e., does Ds
TS
! Dt hold?

We end this section by the following observation, showing that being reconfigurable is not a mono-
tone property.
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Figure 3: Graph G3.

Theorem 1. For every ` ≥ 3, there exists a graph G` where, for every k < `, every dominating set of size k can
be reconfigured into any other, while there are two dominating sets of size ` that cannot be reconfigured one into
the other.

Proof. We first prove the statement for k = 2. For every integer ` > 2, we define the graph G` such that
G` contains exactly one dominating set of size γ(G) = 2 but for which the dominating sets of size ` are
not reconfigurable. To constructG`, we first create ` pairs of triangles {(Gi1, Gi2), . . . , (G`1, G

`
2)} such that

Gi1 and Gi2 share exactly one vertex wi. Moreover, let all the Gi1’s share a vertex u and all the Gi2’s share
a vertex v (see Figure 3 for G3 as an example). Note that we have γ(G`) = 2 since {u, v} is a dominating
set and G` does not contain a universal vertex (i.e., a vertex adjacent to all the other vertices).

Consider the dominating set Ds = {w1, . . . , w`}. It is a dominating set of G` of size `. By token
sliding, Ds cannot be reconfigured into any other dominating set of size `. Indeed, in Ds we cannot
move any wi in a triangle because it would leave the other triangle of the pair (Gi1, G

i
2) not dominated.

Note that any set of ` vertices containing u and v is a dominating set of G`, hence the existence of two
dominating sets of size ` as desired.

Consider now k < `. Any dominating set of G` on fewer than ` vertices contains both u and v.
Indeed, if for instance u is not in the dominating set, then ` extra vertices are necessary to dominate
the triangles Gi1. Therefore, any dominating set D of G` on k vertices contains both u and v. The other
vertices are therefore not necessary for domination purposes, and we can slide them around as desired,
superposing them with u and v arbitrarily. There are many dominating sets on k vertices, but they all
contain u and v and can be trivially reconfigured one into another.

3 PSPACE-completeness

In this section, we study the complexity of DSRTS in the general case. We show that this problem is
PSPACE-complete, even when restricted to split graphs, bipartite graphs or bounded treewidth graphs.
Let us first recall the following result from Haddadan et al. [17], stating the complexity of the reconfig-
uration problem for the TAR model.

Theorem 2 ([17]). Let G be a graph and Ds, Dt be two dominating sets of G of size k. Deciding whether
Ds

TAR
! Dt is PSPACE-complete.

Note that the problem remains PSPACE-complete, even if the input graph is a planar graph with
maximum degree 6, has bounded bandwidth, is bipartite or is a split graph as pointed out previously.
Let us now show that the TJ and TAR rules are equivalent under some constraints. Note that a similar
proof can be found in [16].

Lemma 3. Let G be a graph and Ds and Dt be two dominating sets of G of size k. We have Ds
TAR
! Dt if and

only if Ds
TJ
! Dt.

Proof. The proof is an adaptation of the Theorem 1 of Kamiński et al. [21].
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Figure 4: Example for the reduction of Theorem 4.

(⇐) Suppose first Ds
TJ
! Dt, and let S be a TJ-sequence that reconfigures Ds into Dt. This sequence

corresponds to a sequence of moves u TJ
 v. We construct a TAR-sequence by replacing each atomic

move u TJ
 v with two moves of the TAR model: we first add v and then delete u. By first adding v, we

preserve the domination property. Besides, since we immediately delete u after the addition of v, each
intermediate solution is of size at most k + 1, as desired.

(⇒) For the other direction, let S′ be a TAR-sequence that reconfigures Ds into Dt. Note that since
|Ds| = |Dt| = k, S′ is of even length. Moreover, by hypothesis, S′ does not contain a configuration of
size more than k + 1. If all the configurations of S′ are of size k or k + 1, this means that S′ corresponds
to an alternation of an addition of a token on some vertex v immediately followed by the deletion of
a token on a vertex u. Therefore, to get a TJ-sequence, we simply replace each of these subsequences

by a move u TJ
 v. Suppose now that S′ contains some configuration of size less than k and consider a

configuration, let us say Di, of smallest size. Since Di is a configuration of smallest size, this means that
it has been obtained from Di−1 by the deletion of some vertex x. We also know that the configuration
Di+1 is obtained from Di by the addition of some vertex y. If x = y, then these two steps are redundant
and can simply be ignored. Otherwise, observe that if we first add y and then delete x, the new sequence
is still valid. If all the configurations are of size k or k + 1, we immediately obtain a TJ-sequence.
Otherwise, we can repeat this process until this is the case.

As a corollary of Theorem 2 and Lemma 3, we obtain that deciding whether two dominating sets of
size k of a graphG can be reconfigured under the token jumping model is a PSPACE-complete problem.
We are now ready to prove Theorem 4.

Theorem 4. DSRTS is PSPACE-complete on split graphs.

Proof. First, note that the problem is in PSPACE [19]. We give a polynomial-time reduction from DSRTJ,
which is PSPACE-complete as discussed above. Let G = (V,E) be a graph with V (G) = {v1, . . . , vn}.
We construct the corresponding split graph G′ as follows:

• V (G′) = V1 ∪ V2 where V1 = {v1, . . . , vn} and V2 = {w1, . . . , wn};

• E(G′) = {uv | u, v ∈ V1} ∪ {viwj | vj ∈ NG[vi]}, i.e., we add all possible edges in V1 so that V1

forms a clique. We also add an edge between a vertex vi ∈ V1 and a vertex wj ∈ V2 if and only if
the corresponding vertex vj in the original graph G belongs to the closed neighborhood of vi in G.

Observe that G′ is a split graph since V1 forms a clique and V2 an independent set (see Figure 4 for
an example). To a set of vertices of G, we associate the corresponding vertices of V1 in G′. By definition
of G′, any dominating set D of G is also a dominating set for G′: indeed, a vertex vi ∈ V1 dominates
all the vertices in V1 (since it is a clique) and all the vertices in V2 that correspond to vertices in its
closed neighborhood in G. That D dominates G allows us to conclude that the corresponding set also
dominates V2. Hence, D is also a dominating set of G′.

6



Let (G, Ds, Dt) be an instance of DSRTJ; we reduce this instance to the instance of DSRTS (G′, Ds, Dt).

This reduction can be done in quadratic time. Now, we need to prove that Ds
TS
! Dt if and only if there

is a reconfiguration sequence between Ds and Dt in G′ using the token jumping model.
(⇐) Consider a TJ-sequence in G, and translate it to G′. All intermediate sets still are dominating

sets, and since all pairs of vertices are joined by an edge in V1, this sequence is a valid TS-sequence in
G′.

(⇒) We now prove the other direction. Let 〈D0 = Ds, . . . , Dp = Dt〉 be a TS-sequence in G′. First,
observe that any dominating D′ of G′ such that D′ ⊆ V1 corresponds to a dominating set of G. Indeed,
any vertex wj ∈ V2 is dominated by a vertex vi ∈ V1 and by construction of G′, vivj ∈ E(G). Hence,
vj is dominated by vi and thus D′ is also a dominating set of G. Hence, if the sequence does not use
vertices in V2, we immediately obtain a TJ-sequence in G from Ds to Dt, as the token jumping model
does not require adjacency. Suppose on the other hand that the sequence goes through some vertices

in V2. Since all vertices are initially in V1, there is a subsequence that contains a move vi
TS
 wj . Since

wj /∈ V1, there exists a later step where the token on wj is moved to an adjacent vertex vk in V1 (since
V2 is independent). However, wj does not dominate any vertex in V2 (since V2 is a stable set) and thus

N [wj ] ⊆ N [vk]. Therefore, we simply replace these two moves by a single move vi
TS
 vk. We can thus

assume that the reconfiguration sequence only uses vertices in V1. The conclusion follows.

Next, we prove that DSRTS is PSPACE-complete on bipartite graphs. We use a reduction from the
VERTEX COVER RECONFIGURATION problem under token sliding (or VCRTS for short). Recall that a
vertex cover is a set of vertices such that every edge has an endpoint in the set. The complement of a
vertex cover is an independent set whose reconfiguration is known to be PSPACE-complete on planar
graphs of maximum degree 3 [18, 5] or on bounded bandwidth graphs [34]. Hence, VCRTS is PSPACE-
complete, even when restricted to these two classes.

Theorem 5. DSRTS is PSPACE-complete on bipartite graphs.

Proof. We give a polynomial-time reduction from VCRTS. This is an adaptation of the well-known
reduction from VERTEX COVER to DOMINATING SET [14]. Let G = (V,E) be a graph. We construct
the corresponding bipartite graph G′ = (V1 ] V2, E

′) as follows: for each edge uv ∈ E, add u and v
to V1 and a new vertex zuv of degree two to V2 that is adjacent to exactly u and v. Note that E′ does
not contain the edge uv so that V1 induces an independent set. Finally, add to V2 a vertex x adjacent
to all the vertices in V1 and attach to x a degree-one vertex y which is added to V1 (see Figure 5 for an
example). Formally, the graph G′ is the following:

• V (G′) = V1 ∪ V2 where V1 = V (G) ∪ {y} and V2 = {zuv | uv ∈ E} ∪ {x};

• E′ = {uzuv and zuvv | u, v ∈ V1 and zuv ∈ V2} ∪ {xv | v ∈ V1} ∪ {xy}.

Observe that G′ is bipartite and the reduction can be done in polynomial time. We now prove that
the vertex covers of G of size k are reconfigurable if and only if the dominating sets of G′ of size k + 1
are. Let (G,Cs, Ct) be an instance for the VCRTS problem. We define the corresponding instance for the

a

e

d c

b

(a) G

b e

a

x

zaezab

zbc

zcd
c d

zde

y

(b) G′

Figure 5: Example for the reduction of Theorem 5.
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DSRTS problem as (G′, Cs ∪{x}, Ct ∪{x}). Since Cs is a vertex cover of G, for every edge uv ∈ E(G) we
have {u, v} ∩Cs 6= ∅ and thus the vertices u, v, zuv are dominated by Cs in G′. Now x dominates both x
and y, so Ds = Cs ∪ {x} is a dominating set of G′, and by the same argument, so is Dt = Ct ∪ {x}. Since
VCRTS and DSRTS both employ the same reconfiguration rule, we simply denote by u  v (instead of

u
TS
 v) a move of a reconfiguration sequence between Cs and Ct (respectively Ds and Dt).

(⇒) We start with the only if direction. First, it immediately follows from the definition of Ds and
Dt that Ds \ {x} = Cs and Dt \ {x} = Ct. Let us assume that (G,Cs, Ct) is a yes-instance for the VCRTS
problem. Then, there exists a reconfiguration sequence S using the token sliding model between Cs
and Ct. One can construct a sequence S′ for G′ by replacing a move u  v (where uv ∈ E(G)) of S
into two moves: u  zuv followed by zuv  v. We need to prove that the domination property is
preserved at every step. First, observe that each intermediate solution contains x, so each move of the
form zuv  v is safe because u is still dominated by x and zuv by v. Therefore, the only risk is to leave
some vertex zwu non dominated after a move u zuv . In that case, this implies that w does not belong
to the solution, which in turn means that the edges wu and uv are covered only by u. Therefore, the
move u v of the sequence S is not valid (because the edge wu is no longer covered), a contradiction.
Therefore, (G′, Ds, Dt) is a yes-instance for the DSRTS problem.

(⇐) It remains to prove the if direction. Suppose that (G′, Ds, Dt) is a yes-instance for the DSRTS
problem. Then, there exists a reconfiguration sequence S′ = 〈Ds, . . . , Dt〉 in G′. First, observe that at
each step, y needs to be dominated and thus either x or y belongs to each solution. Moreover, initially,
Ds does not contain y. We can ignore all moves of the form x  y (each such move will be eventually
followed by a move y  x), and assume that x contains at least one token in each solution. Therefore,
the only vertices whose domination is not immediate by the existence of a token on x are the vertices
of the form zuv , i.e., the vertices that correspond to the edges of G. Recall that Ds = Cs ∪ {x}, so every
vertex in Ds \ {x} belongs to V (G′) ∩ V (G). We consider in turn the two other possible moves u  v,
where u ∈ V (G)∩V (G′) (i.e., u corresponds to a vertex of the original graph G), and v either belongs to
V (G′) \V (G) or v = x. We focus on the next operation (which may not be consecutive) that touches the
vertex v. Suppose first that v ∈ V (G′) \ V (G), i.e., v corresponds to a vertex zuu′ for some vertex u′ ∈
NG[u]. If the next move that touches zuu′ is zuu′  u, these two operations can be ignored. Otherwise,
since zuu′ has degree two, the next operation that touches zuu′ is zuu′  u′. Moreover, we claim that
we can assume that zuu′  v is the operation that immediately follows the move u  zuu′ . Indeed,
NG′ [zuu′ ] ⊆ NG′ [u] so if a dominating set D contains zuu′ , D′ = (D \ {zuu′}) ∪ {u′} is also a dominating
set ofG′. So one can assume that in S′, if we have a move u zuu′ , it will be immediately followed by a
move zuu′  u′. In that case, one can replace these two moves by u u′ in a reconfiguration sequence
from Cs to Ct. Let us now consider the other possible move: u  x. If the next move that touches x is
x  u, we again simply ignore these two steps. Let Di be the dominating set of S′ to which the move
u x is applied. Recall that when a token is moved from a vertex a to a vertex zab (for some neighbor
b of a), it is followed by zab  b. Therefore, we know that Di does not contain any vertex of the form
zuv . So for every edge uu′ incident to u, Di+1 must contain u (this is possible if u has at least two tokens
in Di) or u′ in order to dominate zuu′ . Hence, Ci+1 = Di+1 \ {x} is a vertex cover of G. If the next move
that touches x is x u′, one can safely replace these two moves u x and x u′ by d moves where d
is the distance between u and u′ in G.

Therefore, one can obtain from S′ a TS-sequence that reconfigures Cs into Ct and thus (G,Cs, Ct) is
a yes-instance for VCRTS, as desired. This concludes the proof of Theorem 5.

Next, we prove that DSRTS is PSPACE-complete on planar graphs of maximum degree 6 and bounded
bandwidth graphs. Recall that a graph has bandwidth at most k if there exists a numbering ` of the ver-
tices with distinct integers between 1 and n (where n is the number of vertices of the graph) such that
adjacent vertices must have labels at distance at most k (i.e., for every edge uv ∈ E, |`(u)− `(v)| ≤ k).

Theorem 6. DSRTS is PSPACE-complete on planar graphs of maximum degree 6 and bounded bandwidth
graphs.

Proof. First, recall that VCRTS is PSPACE-complete on planar graphs of maximum degree 3 [18, 5] and
on bounded bandwidth graphs [34]. The proof for dominating sets reconfiguration under TAR on planar
graphs from [17] works also here since VCRTS is PSPACE-complete on planar graphs. We use the well-
known reduction mentioned in Theorem 5, which is the following: start with a copy of the original
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graph G and for each edge uv, add a vertex zuv of degree two adjacent to u and v. Let G′ be the
resulting graph, and note that the planarity property of G′ is preserved.

Let G be a graph whose bandwidth is bounded by some constant k. Since a vertex can have at most
k neighbors of lower label and k neighbors of higher label, this implies that the maximum degree of G
is bounded by 2k. We use this observation to prove that the graph G′ obtained from the reduction has
its bandwidth bounded by k · (k + 1). We explain how to obtain a labeling `′ of G′ from ` that satisfies
the bandwidth property. The underlying idea is to leave k free values between any two vertices labeled
consecutively in the original labeling (i.e., vertices u and v such that `(v) = `(u) + 1) in order to label
the vertices in V (G′) \ V (G).

More precisely, for all i > 1, we relabel the vertex labeled i in ` with the label 1 + (i − 1) · (k + 1)
in `′. Let u and v be two adjacent vertices of G with `(u) < `(v), then `(v) − `(u) ≤ k and thus
`′(v)−`′(u) ≤ k ·(k+1). Moreover, we label the new vertex zuv with label `′(u)+(`(v)−`(u)), which lies
between `′(u)+1 and `′(u)+k by the bandwidth hypothesis. We also have `′(v)−`′(zuv) < k ·(k+1), and
the bandwidth condition is satisfied. So the difference between the labels of any two adjacent vertices
in G′ is at most k · (k + 1).

Observe however that not all vertices have k neighbors of higher label in G, and thus the labeling
`′ does not use consecutive values. To fix this, we just relabel the graph with values between 1 and
|V (G′)|, maintaining the ordering of `′. The new labeling `′′ obtained does not increase the distance
from `′, and thus satisfies the bandwidth condition, as required.

Böttcher et al. observed that the pathwidth and thus the treewidth of a graph are bounded by its
bandwidth [9]. Therefore, we immediately get from Theorem 6 that DSRTS is PSPACE-complete for
bounded pathwidth and bounded treewidth graphs.

4 Polynomial-time algorithms

In this section, we focus on graph classes for which DSRTS can be solved in polynomial time. A natural
way to solve this problem is to distinguish a special dominating set (that we call canonical) and then
show that each dominating set can be reconfigured into this special one [17]. The canonical dominating
set is not part of the original instance, so it is crucial to be able to compute it in polynomial time if we
aim to compute the reconfiguration sequence in polynomial time. However, this is not an issue if we
are only interested in the decision problem. We emphasize the fact that this canonical dominating set
must be uniquely defined, i.e., the set of vertices that hold a token as well as the number of tokens on
each of these vertices must be fixed.

4.1 Joins and cographs

In this section, we prove the following theorem, that is of special interest for the case of cographs. Recall
that the domination number of a join G1 + G2 is always at most two, since taking a vertex from each
operand of the join dominates the whole graph.

Theorem 7. Let G1 and G2 be two graphs, and Ds and Dt be two dominating sets of G1 + G2 of the same
size. The dominating set Ds can be reconfigured into Dt by token sliding if and only if one of the three following
conditions holds:

(i) |Ds| = |Dt| ≥ 3,

(ii) the domination number of G1 or of G2 is at most two,

(iii) both G1 and G2 are connected.

Proof. We first show that if none of these conditions hold, then (G1 + G2, Ds, Dt) is a no-instance. Let
G1 and G2 be two graphs with γ(G1) > 2 and γ(G2) > 2, and assume without loss of generality that G1

is not connected, say with two components C1 and C2. Note that γ(G1 + G2) = 2 since neither G1 nor
G2 has a universal vertex.

Let Ds = {u, v} and Dt = {w, v} be two minimum dominating sets of G with u ∈ C1, w ∈ C2 and
v ∈ V (G2). We prove that Ds can not be reconfigured into Dt. Since G1 is not connected, there is no
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path between u and w in G[V1]. Therefore, the only way to reach w from u is to go through V (G2). But
since γ(G2) > 2 no pair of vertices in G2 can dominate G2, and thus no move from V (G1) to V (G2) is
possible.

We now prove that each of the above conditions is sufficient for the dominating sets to be reconfig-
ured.

Condition (i) Suppose |Ds| = |Dt| ≥ 3. Recall that picking a vertex of G1 and one of G2 always forms
a dominating set of G1 + G2. We infer that it is always possible to make one move from Ds to reach a
configuration with tokens in both G1 and G2, then from such position tokens can be slid freely in their
part, until reaching Dt with a last move.

We assume now that |Ds| = |Dt| ≤ 2.

Condition (ii) For the case when G1 or G2 has domination number at most two, we consider different
cases depending on whether a graph has domination number one or not.

Case 1. If γ(G1) = 1 or γ(G2) = 1: then G1 + G2 contains a universal vertex. Then, from Ds, one can
place a token on this vertex, reconfigure other possible tokens freely, then move that token to reach Dt.

Case 2. If γ(G1) = 2 and γ(G2) = 2. Assume without loss of generality that γ(G1) = 2. Note that
in this case, γ(G1 + G2) = 2, let Ds = {v1, v2}. We define an arbitrary canonical dominating set C by
taking a vertex (e.g., of smallest index) in each of G1 and G2; we denote these vertices u1 ∈ V (G1) and
u2 ∈ V (G2). Recall that each reconfiguration sequence is reversible. Hence, it is sufficient to prove that
both Ds and Dt can been transformed into C. We only show this statement for Ds; the proof for Dt

follows by symmetry.
Suppose first that v1 and v2 belong to the same original graph, say v1, v2 ∈ V (G1). We show how

to reconfigure Ds into C in at most two steps. First, observe that since C is a dominating set of G,
u1 ∈ N [{v1, v2}], say u1 belongs to N [v1]. Our first step is to slide the token from v2 to u2, along the
corresponding edge of the join. Then, by our observation that u1 ∈ N [v1], we can slide if necessary the
token from v1 to u1.

Suppose now that v1 and v2 belong respectively to V (G1) and V (G2). Since γ(G1) = 2, let {w1, w2}
be a dominating set of G1 and thus of G1 +G2 (it can be computed naively in cubic time. It dominates
v1 so assume without loss of generality that v1w1 is an edge. First moving the token from v1 to w1 (if
v1 6= w1) and then from v2 to w2, at most two steps permit us to reconfigure Ds into {w1, w2}, which we
can then reconfigure into C by the above argument.

Condition (iii) Suppose finally that γ(G1) ≥ 3 and γ(G2) ≥ 3 but bothG1 andG2 are connected. Then
γ(G1 + G2) = 2 and the minimum dominating sets of G1 + G2 are exactly the sets containing a vertex
in G1 and a vertex in G2. Let Ds = {v1, v2} and Dt = {w1, w2} with v1, w1 ∈ V (G1) and v2, w2 ∈ V (G2).
Since G1 is connected, there exists a path from v1 to w1 in G[V (G1)]. Moving the token along this path,
we always keep a dominating set by the above observation. Doing similarly along a path from v2 to w2,
we have a reconfiguration sequence from Ds to Dt.

We now consider the special case of cographs. Recall that the family of cographs can be defined as
the family of graphs with no induced P4, or equivalently by the following recursive definition:

• K1 is a cograph;

• for G1 and G2 any two cographs, the disjoint union G1 ∪G2 is a cograph;

• for G1 and G2 any two cographs, the join G1 +G2 is a cograph.

Brandelt and Mulder gave in [1] an alternative characterization of cographs: G is a cograph if and
only if G is the disjoint union of distance-hereditary graphs with diameter at most two. Note that
computing a minimum dominating set in distance-hereditary graphs is linear-time solvable [29]. Hence,
we can compute the domination number of a cograph in linear time as well.

By the previous theorem, we infer that if a cograph is constructed as a join of two cographs, the
case is polynomial-time decidable. The case when G = K1, is straightforward. If G = G1 ∪ G2 is the
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Figure 6: A dually chordal graph.

disjoint union of two cographs, then for two dominating sets Ds and Dt, deciding whether Ds
TS
! Dt is

equivalent to deciding whether Ds ∩ V (G1)
TS
! Dt ∩ V (G1) in G1, and Ds ∩ V (G2)

TS
! Dt ∩ V (G2) in

G2, which can be done inductively by induction. As a consequence, we obtain the following:

Theorem 8. There is a polynomial-time algorithm deciding DSRTS in cographs.

4.2 Dually chordal graphs

Let G = (V,E) be a graph with V = {v1, v2, . . . , vn}. We denote by Gi the graph G[{vi, vi+1, . . . , vn}].
A maximum neighbor of a vertex u is a vertex v ∈ N [u] such that we have N [w] ⊆ N [v] for every vertex
w ∈ N [u]. In other words, v contains in its closed neighborhood every vertex at distance at most two
from u. A maximum neighborhood ordering (or mno for short) is an ordering of the vertices in such a
way that vi has a maximum neighbor in the graph Gi. A graph is dually chordal if it has a maximum
neighborhood ordering. This ordering can be computed in linear time [8]. Moreover, the mno computed
by this algorithm is such that for every vertex vi (with i < n), v′is maximum neighbor is different from
vi (for connected graphs). An alternative proof of a similar statement for not necessarily connected
graphs can be found in [11]. In the following, we always assume that an mno is associated with a
function mn : V −→ V that associates with each vertex a maximum neighbor.

Note that a dually chordal graph is not necessarily chordal. Figure 6 gives an example of a graph
which is dually chordal but not chordal, since it contains an induced cycle on four vertices. The label
inside each vertex corresponds to its rank in the ordering, and its maximum neighbor is the endpoint
of its single outgoing edge (note that v8’s maximum neighbor is itself). Moreover, observe that any
tree T is a dually chordal graph: root the tree in some vertex and orient all edges toward the root; any
numbering keeping allGi connected is an mno where arcs point towards the vertex maximum neighbor.

Link with interval graphs. An interval graph is the intersection graph of a family of intervals on the
real line. In other words, let {I1, I2, . . . , In} be a set of intervals. Each interval I can be represented by
its extremities `(I), r(I) with `(I) ≤ r(I) ∈ R. We call these values respectively the `-value and r-value
(for left and right). The corresponding interval graph G = (V,E) is the following:

• V = {I1, I2, . . . , In};

• IiIj ∈ E ⇔ Ii ∩ Ij 6= ∅, i.e., `(Ij) ≤ r(Ii) and `(Ii) ≤ r(Ij).

Let G = (V,E) be an interval graph. For convenience, we denote by vi the vertex related to the
interval Ii. We now order the vertices of G with respect to their r-values, i.e., vi < vj if and only if
r(Ii) < r(Ij) (or r(Ii) = r(Ij) and `(Ii) < `(Ij)). Then, we get the following useful property:

Observation 9. Let vi and vj be two vertices of G such that vi < vj . If vivj ∈ E, then for any vk such that
vi < vk < vj , we have vkvj ∈ E.

Proof. Since vi < vk < vj , we have r(Ii) ≤ r(Ik) ≤ r(Ij). Since vivj is an edge, `(Ij) ≤ r(Ii). Thus, we
get that `(Ij) ≤ r(Ik). Adding that `(Ik) ≤ r(Ik) ≤ r(Ij), the conclusion follows.

Observation 10. Interval graphs are dually chordal graphs.
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Figure 7: Interval graph and its maximum neighborhood ordering.

Proof. To see this observation, we prove that the ordering described above is an mno. For every vertex
vi, we show that its neighbor of maximum index vj in the ordering is a maximum neighbor. Indeed,
consider any neighbor vk of vi in Gi. By definition of vj , we have vi < vk ≤ vj , and vk is adjacent to vj .
Moreover, any other neighbor v` > vi of vk either satisfies vi < v` < vj or vk < vj < v`. In both cases,
Observation 9 concludes the proof.

An example of the construction used above on an interval graph is given in Figure 7 where the
maximum neighbor of Ii is its only out-neighbor (the endpoint of the only directed edge incident to Ii).

Computing the canonical dominating set. Let G be a dually chordal graph, whose vertices are or-
dered by an mno. Let C = {c1, c2, . . . , ck} be a dominating set of G and T = {t1, t2, . . . , tk} a set of
vertices, both sets in increasing order according to the mno. We say that C is a triggered dominating set
with triggering vertices T if and only if:

(i) ci = mn(ti) for all 1 ≤ i ≤ k,

(ii) following the mno, ti is the least vertex not in N [c1, . . . , ci−1], for all 1 ≤ i ≤ k.

It is known that the MINIMUM DOMINATING SET problem is linear-time solvable on dually chordal
graphs [8]. In our case, we give another algorithm to compute a triggered dominating set, that will
serve as a canonical dominating set.

Observe that an mno is associated with exactly one triggered dominating set. The following algo-
rithm, called MDS, is strongly inspired by the classical algorithm for computing minimum dominating
sets in trees [25]. It takes as input a dually chordal graph G = (V,E) with an mno and computes a
triggered dominating set C of size γ(G) and its corresponding set of triggering vertices T in running
time O(|V |+ |E|).

Lemma 11 is devoted to proving the correctness of the algorithm MDS.

Lemma 11. Given a dually chordal graph G = (V,E), the algorithm MDS computes a triggered dominating set
of G of order γ(G) in time O(|V |+ |E|).

Proof. The fact that C is a triggered dominating set with triggering vertices T is a direct consequence of
the construction of the algorithm. Statement (i) comes from line 5 of the algorithm, while statement (ii)
simply comes from the fact that we deal with the vertices in increasing order in the loop of line 3. Still
we need to prove that this dominating set is of size γ(G).

A labeled graph is a graph whose vertices are labeled FREE, REQUIRED or BOUNDED, such that a
vertex is labeled FREE if and only if it is adjacent to a vertex labeled REQUIRED and it is not labeled
REQUIRED. Observe that the algorithm MDS maintains all along a labeled graph. In a labeled graph,
we define a labeled dominating set a set of vertices containing all the vertices labeled REQUIRED and
dominating all vertices labeled BOUNDED. The labeled domination number is the minimum size of a
labeled dominating set. We show that the algorithm MDS keeps the labeled domination number of the
graph invariant. At the beginning, when all the vertices are labeled BOUNDED, the labeled domination
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Algorithm 1 MDS

Require: A dually chordal graph G with an mno.
Ensure: A minimum triggered dominating set C and its set of triggering vertices T .

1: Mark all vertices BOUNDED
2: C ← ∅
3: for all i from 1 to n do
4: if vi is labeled BOUNDED then
5: label mn(vi) with REQUIRED
6: Add vi to the set of triggering vertices T
7: for all u ∈ N [mn(vi)] do
8: if u is not labeled REQUIRED then
9: Label u with FREE

10: end if
11: end for
12: end if
13: if vi is labeled REQUIRED then
14: C ← C ∪ {vi}
15: end if
16: end for
17: return C and T

number of the graph is exactly its domination number. This will allow us to conclude that the set of
vertices marked REQUIRED at the end forms a minimum dominating set of G, of order γ(G).

Let S be a minimum labeled dominating set of a labeled graph G, and let vi be the minimum vertex
in the mno that is labeled BOUNDED. Let w be the maximum neighbor of vi in Gi. If w ∈ S, then
S is also a minimum labeled dominating set of the graph G where w is labeled REQUIRED and all
its neighbors previously labeled BOUNDED are labeled FREE, so the algorithm does not change the
labeled domination number of G. Otherwise, say vj is the vertex that dominates vi in S. Since vi is
marked BOUNDED, vj is not marked REQUIRED. If j ≥ i, then by the maximum neighbor property,
w is adjacent to all the neighbors of vj that are in Gi, so w dominates all neighbors of vj that are still
marked BOUNDED. Thus we can replace vj by w in S and keep a minimum labeled dominating set of
G. This concludes the case j ≥ i. Suppose now j < i. Consider vk the maximum neighbor of vj in
Gj . Observe that since no vertex less than vi is BOUNDED, by the maximum neighbor definition, vk
dominates any BOUNDED vertex adjacent to vj . Thus, we can again replace vj by vk in S and keep a
minimum dominating set. We can iterate until the vertex dominating vi in S is no less than vi, and
then refer to the above argument, used when j ≥ i. This concludes the proof that the algorithm MDS
keeps the labeled domination number of the graph invariant, and thus that it produces a minimum
dominating set of G.

For the time complexity of the algorithm, observe that the algorithm visits every vertex at most once
in the main loop, and it visits the neighborhoods of each vertex at most once when it possibly labels it
REQUIRED. So the complexity is upper bounded by

∑
v∈V O(1 + |N(v)|) = O(|V |+ |E|).

The reconfiguration algorithm. We show how to use the canonical triggered dominating set C com-
puted by the MDS algorithm in order to reconfigure two dominating sets of a dually chordal graph. To
do that, we provide an algorithm called DUALLY-CHORDAL-RECONF that modifies any dominating set
D of a dually chordal graph in such a way that C ⊆ D. The idea of this algorithm is to pick one vertex
in D that dominates the triggering vertex ti (from the output of algorithm MDS) and to replace it by

the corresponding vertex ci of C. Recall that the notation u TS
 v is used for sliding the token along the

edge uv.

Lemma 12. Given a dually chordal graph G = (V,E) and a dominating set D, DUALLY-CHORDAL-RECONF
modifies D with respect to the token sliding model in such a way that C ⊆ D in O(|V |) time, where C is the
canonical triggered dominating set computed by the MDS algorithm.
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Algorithm 2 DUALLY-CHORDAL-RECONF

Require: A dually chordal graph G = (V,E), a minimum dominating set D of G
1: Compute an mno for G
2: (C, T )← MDS(G).
3: for i from 1 to γ(G) do
4: Let xi be the least vertex of D ∩N [ti]
5: if xici ∈ E then
6: xi

TS
 ci

7: else
8: yi ← mn(xi)

9: xi
TS
 yi

10: yi
TS
 ci

11: end if
12: end for

Proof. Let T = (t1, t2, . . . , tγ) andC = {c1, c2, . . . , cγ} be the output of algorithm MDS, with ci = mn(ti).
We denote by Ci = {c1, . . . , ci} the set of i first vertices of C according to the mno.

In order to prove the correctness of the algorithm, we need to prove that the two following con-
straints are satisfied:

(i) each move is valid with respect to the token sliding model;

(ii) every intermediate set is a dominating set of G. (Note that this ensures the existence of the xi of
line 4.)

We prove these two properties by induction on the index i (0 < i ≤ γ). For some i > 0, assume that
the algorithm reconfigured properly D into Di−1 = (D \ {x1, . . . , xi−1}) ∪ {c1, . . . , ci−1} . We explain
how to extend this up to rank i. By definition, ti is the least vertex which is not dominated byN [Ci−1] =
N [{c1, . . . , ci−1}]. Let xi be the least vertex dominating ti in D. Observe that xi /∈ {c1, . . . , ci−1} since
ti is the triggering vertex of ci. To simplify notation, we denote by G′ the subgraph of G induced by
vertices larger than ti in the mno (i.e., the subgraph Gj where j is the index of ti in the mno). Note that
since Ci−1 ⊂ Di−1, all vertices in G \G′ are dominated. We consider two cases:

Case 1. xi is adjacent to ci. Observe first that this case occurs whenever xi ≥ ti in the mno (where
xi ∈ NG′ [ti] ⊆ NG′ [ci]). In that case, the algorithm executes line 6 and the token sliding constraint (i)
is satisfied. Now, since ci = mn(ti) and xi is adjacent to ti, NG′ [xi] ⊆ NG′ [ci], and constraint (ii) is also
satisfied. The conclusion follows from the fact that all vertices in G \G′ are dominated.

Case 2. xi is not adjacent to ci. This is possibly the case when xi < ti in the mno. The algorithm then first
reconfigures xi into its maximum neighbor yi, which is adjacent to xi and dominates all neighbors of xi
that might not be dominated yet by {c1, . . . , ci−1}, satisfying constraint (ii). Moreover, xi is adjacent to ti
and xi < ti in the mno, so yi, as the maximum neighbor of xi, must be adjacent to ti and all its neighbors
in G′, among which there is ci. So the next move to ci satisfies the token sliding constraint (i). Also,
since yi is adjacent to ti and ci is the maximum neighbor of ti, NG′(yi) ⊆ NG′ [ci], and constraint (ii) is
also satisfied. This concludes the proof.

Theorem 13. DSRTS can be solved in quadratic time on dually chordal graphs.

Proof. Let G = (V,E) be a dually chordal graph and Ds, Dt be two dominating sets of G of size k (i.e.,
(G,Ds, Dt) is an instance of the DSRTS problem). Assume that G is connected (otherwise we proceed
independently for each connected component, checking first that the number of tokens on each compo-
nent fit). We explain how to reconfigure Ds into Dt in at most quadratic time.

First, we compute in linear time the canonical dominating set C of G with the algorithm MDS. By
Lemma 12, one can transform Ds and Dt in such a way that both contain C. This can be done in linear
time (with respect to the order of G) since we move at most γ(G) tokens and each move requires at
most two steps. If k = γ(G), we are done. Otherwise, choose a vertex v of minimum eccentricity
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and move all the remaining tokens by a shortest path to v. Therefore, the total time complexity is
O(|V |+ |E|) +O(|V |) +O((k − γ(G)) · ε(v)), which is at most quadratic (when k = Ω(n)).

Observe that when k is close to γ, the algorithm is linear. However, when the number of extra
tokens is large (i.e., is linear in n), the quadratic overhead may be necessary. Indeed, consider a path on
n vertices Pn. The minimum eccentricity of Pn is that of the middle vertex v which is bn/2c. Therefore, if
all the extra tokens are on an extremity of the path, the time needed to move all of them to v is quadratic.
Since a path is a dually chordal graph, the conclusion follows.

5 Open questions

In all of our polynomial results presented in Section 4, computing a minimum dominating set can
be done in polynomial or even linear time on the graph classes considered. Therefore, a challenging
question is the following: does there exist a graph class for which computing a minimum dominating
set is NP-complete but DSRTS can be solved in polynomial time? As a result of Theorem 13, we get
that DSRTS is polynomial-time solvable on interval graphs. Recall that a circle graph is the intersection
graph set of chords of a circle. The DOMINATING SET PROBLEM has been shown to be NP-complete on
this graph class [22]. Hence, we ask the following question:

Question 1. What is the complexity of DSRTS on circle graphs?

If the answer is positive, note that it would generalize our result on cographs. A circular-arc graph
is the intersection graph of a set of arcs on the circle. Even if computing a minimum dominating set
can be computed in linear time on circular-arc graphs [31], we are interested in the complexity of the
reconfiguration version under token sliding. More precisely, we ask for the following:

Question 2. Is DSRTS polynomial-time solvable on circular-arc graphs?

Besides, we found polynomial-time algorithms for cographs and dually chordal graphs but the un-
derlying reconfiguration sequence is most likely not optimal. Indeed, it may be possible that the short-
est path in Rk(G) between the two given solutions does not go through the canonical dominating set.
Therefore, can we bound the diameter of the reconfiguration graph? In other words, what is the max-
imum length of a shortest reconfiguration sequence between any pair of dominating sets? Moreover,
what is the complexity of finding the optimal solution, i.e., the shortest reconfiguration sequence be-
tween two dominating sets on cographs or dually chordal graphs? Is it polynomial-time solvable, as
the reachability variant studied here? Or does it become harder?
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