A phase I/II clinical trial of autologous myoblast transplantation in facioscapulohumeral muscular dystrophy

To cite this version:

HAL Id: hal-02394504
https://hal.archives-ouvertes.fr/hal-02394504
Submitted on 4 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A phase II/II clinical trial of autologous myoblast transplantation in facioscapulohumeral muscular dystrophy

Sabrina Sacconi1,2, Jean-Thomas Vilquin3,4, Serge Colson3, Jonathan Bocquet2, Jacques Ducourt4,5, Jérémie García1, Véronique Tanant1, Emmanuel Salort-Campana6, Pierre Carlier1,2, Jean-Pierre Marolleau1,2, Daniel Skul7, Jérôme Larghero1,2, Claude Desnuelle1,2

1Neuromuscular disease specialized center, Pasteur 2 University Hospital - IRCAN, CNRS UMR 7206/INSERM U1270; 2University of Nice Sophia Antipolis, CHU Université Nice Côte d’Azur; 3UPMC University Paris 06, Inserm UMR1034, CNRS FRE3613; 7Myophagy Research Center, Paris; 4Pitié Salpêtrière Hospital, Paris; 5University of Turin, Laboratory of Human Motoricity; Education and Health, Nice; 6Catholic University of Louvain, Piro med laboratory, UCL 1933, IRCC, CNR, EUA. 2Neuromuscular Disease and ALS specialized center; La Timone University Hospital, AixMarseille University, Marseille; 7Inserm U971, INSERM U1000, CEA, UMR1504, IRMa; 8American University of Beirut, Lebanon; 9Neurosciences Division-Human Genetics, CNRS Research Center-CHRU, Lille; 10Cell Therapy Unit, Cinc, CIC Bioterapeutics, U1380, University Institute of Hematology, APHP Saint Louis Hospital, University Paris Diderot, Sorbonne Paris Cité, Paris.

Introduction

Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is one of the most frequent adult myopathies (1/20,000), with selective involvement of specific groups of muscles: facial, scapular fixator, anterior foreleg muscles, abdominal and humeral muscles. Vastus lateralis (VI) is usually spared clinically until late stages of the disease, and myoblasts grown from VI have similar behaviour in vivo and in vitro than myoblasts from control patients

- Proposal:
 - Transplantation of autologous myoblast from spared muscle (VI) into an affected muscle as the Tibialis anterior (TA) muscle could locally improve the muscle’s regenerative capacities.

Purpose of the study

Primary endpoints: Safety, feasibility
 - Feasibility of cell preparation
 - Safety of intramuscular injections of cells
 - Clinical and biological tolerance of cell transplantation

Secondary endpoints: Follow-up of muscle strength and resistance to fatigue over 2 years
 - Mechanical testing of strength and resistance to fatigue
 - Surface electromyography, MRI and FDG fixation by PET-Scan

Results of Cell Cultures

- Cell culture feasibility
- Cell viability
- Myoblastic differentiation
- Myogenic differentiation
- Cell growth
- Cell proliferation
- Cell viability
- Cell proliferation
- Cell viability

Results of Cell Cultures

- Cell culture feasibility
- Cell viability
- Myoblastic differentiation
- Myogenic differentiation
- Cell growth
- Cell proliferation
- Cell viability
- Cell proliferation
- Cell viability

PET-Scan analysis

- 3-1g of VI muscle harvested under local anaesthesia in Nice Hospital and shipped to the Saint Louis Cell Therapy Laboratory in Paris. Within 24h, biopsy minced, digested, cleaned and cells grown in a myogenic supportive medium. Cells settled and expanded on days 8, 13, 17, 20/21. Phenotypic characterisation (DGRO assay), viability, molecular biological control, endodtes assessed according to classical procedures. Methodologies, products and clinical protocol validated by regulatory agencies.

Discussion and Conclusions

Cell productions were feasible but the quality of the initial muscle biopsy is important. Cell administrations were feasible and clinically well tolerated by all patients but one. The control of cell local delivery may be improved by echographic monitoring. Results show slight increases in twitch response and slight decrease in fatigue in the 3rd group. The combination of cell type (myoblasts) and of the modality (dense multisite injections) may have positively affected the TA muscle, BUT: No clinically significant gain of function perceived by FSHD patients, and no significant changes were noted at MRI and PET-Scan. The local FSHD1 degenerated muscle environment may be detrimental to the stability of the fibres or of the cytokines, and muscle regeneration may have been insufficient, too tranitory, aborted or too unstable.

The slight muscle strength increase may not be clinically significant for FSHD patients, but may improve the quality of life of patients with more advanced muscle loss (e.g. DMD patients) in other indications.

Specific inclusion criteria

- Men and women aged 18-65.
- Clinical manifestations of DMFSH confirmed by molecular diagnosis (D4 repeat).
- Lack of clinical deficit in at least one VI muscle (scored by assay score at least 10% extension, MRC ≥ 5), or absence of abductor pollicis brevis (assessed by MRC).
- Motor deficit of at least one anterior leg (scored by assay score at least 2).
- At least 4T MSK and fatty infiltration in at least one TA muscle (assessed by MRI).
- At least 3 of at least 3 patients selected in a sequential fashion.

Clinical parameters

- Information collected repeatedly from early (D0) to late phases (D60).
- Clinical monitoring: overall wellness, heart rate and pressure, fever, cutaneous status, pain, redness, external.
- Biological monitoring: blood sampling, sedentarism, infection (CIP), CK, myoglobinemia, myoglutamin, creatinemia, ions, uricemia, phosphorhemia, transaminases.

Microbiologic tests

- NRM image
- At inclusion, absence of fatty infiltration in one VI (donor muscle) and the presence of abnormal fatty infiltration in one TA recipient muscle is documented without Gd-DTPA.
- Graded semi-quantitative scale: expressing the ratio of fat signal / skeletal muscle signal obtained by NRM imaging using Gd-DTPA contrast agent and T2 parameterization below 1, 1 to 2 months after exploration to evaluate the inflammatory reaction and the evolution of the volume of fatty infiltration (at middle and upper parts of the thigh of the leg).
- PET-Scan analysis

- 13C-acetate uptake [14C]acetate accumulates in tissues as a function of their metabolic activity, especially in brain, myocardium and skeletal muscle samples.
- Measurements have been done at the level of TA upon standardized exercise before injections, then 3 and 6 months later to quantify the volume of metabolically active muscle tissue.

PET-Scan evolution

No significant changes were noted over the follow-up period.

Acknowledgments

The authors wish to thank the patients and their families for their motivation, together with the several collaborators involved in the set up of this study at multiple levels.