C. Trapnell, B. A. Williams, and G. Pertea, Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation, Nature Biotechnology, vol.28, issue.5, pp.511-515, 2010.

M. Shao and C. Kingsford, Accurate assembly of transcripts through phase-preserving graph decomposition, Nature Biotechnology, vol.35, issue.12, pp.1167-1169, 2017.

M. Guttman, M. Garber, and J. Z. Levin, Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs, Nature Biotechnology, vol.28, issue.5, pp.503-510, 2010.

M. Pertea, G. M. Pertea, and C. M. Antonescu, StringTie enables improved reconstruction of a transcriptome from RNA-seq reads, Nature Biotechnology, vol.33, issue.3, pp.290-295, 2015.

M. H. Schulz, D. R. Zerbino, and M. Vingron, Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels, Bioinformatics, vol.28, issue.8, pp.1086-1092, 2012.

Y. Xie, G. Wu, and J. Tang, SOAPdenovo-trans: de novo transcriptome assembly with short RNA-seq reads, Bioinformatics, vol.30, issue.12, pp.1660-1666, 2014.

G. Robertson, J. Schein, and R. Chiu, De novo assembly and analysis of RNA-seq data, Nature Methods, vol.7, issue.11, pp.909-912, 2010.

M. G. Grabherr, B. J. Haas, and M. Yassour, Full-length transcriptome assembly from RNA-seq data without a reference genome, Nature Biotechnology, vol.29, issue.7, pp.644-652, 2011.

B. J. Haas and M. C. Zody, Advancing RNA-seq analysis, Nature Biotechnology, vol.28, issue.5, pp.421-423, 2010.

J. A. Martin and Z. Wang, Next-generation transcriptome assembly, Nature Reviews Genetics, vol.12, issue.10, pp.671-682, 2011.

S. Fu, Y. Ma, and H. Yao, IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing, Bioinformatics, vol.34, issue.13, pp.2168-2176, 2018.

F. J. Sedlazeck, H. Lee, and C. A. Darby, Piercing the dark matter: bioinformatics of long-range sequencing and mapping, Nature Reviews Genetics, vol.19, issue.6, pp.329-346, 2018.

B. Wang, E. Tseng, and M. Regulski, Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing, Nature Communications, vol.7, p.11708, 2016.

J. Li, Y. Harata-lee, and M. D. Denton, Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis, Cell Discovery, vol.3, p.17031, 2017.

J. L. Weirather, P. T. Afshar, and T. A. Clark, Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing, Nucleic Acids Research, vol.43, issue.18, pp.116-116, 2015.

A. Byrne, A. E. Beaudin, and H. E. Olsen, Nanopore longread RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells, Nature Communications, vol.8, p.16027, 2017.

S. Oikonomopoulos, Y. C. Wang, and H. Djambazian, Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations, Scientific Reports, vol.6, issue.1, p.31602, 2016.

K. Sahlin, M. Tomaszkiewicz, and K. D. Makova, Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon, Nature Communications, vol.9, issue.1, p.4601, 2018.

R. E. Workman, A. Tang, and P. S. Tang, Nanopore native RNA sequencing of a human poly(A) transcriptome. bioRxiv, vol.11, p.459529, 2018.

C. Li, K. R. Chng, and E. J. Boey, INC-Seq: accurate single molecule reads using nanopore sequencing, GigaScience, vol.5, issue.1, p.34, 2016.

J. L. Weirather, M. De-cesare, and Y. Wang, Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis, vol.6, p.100, 1000.

I. Sovi?, M. ?iki?, and A. Wilm, Fast and sensitive mapping of nanopore sequencing reads with GraphMap, Nature communications, vol.7, p.11307, 2016.

L. Tong, C. Yang, and P. Y. Wu, Evaluating the impact of sequencing error correction for RNA-seq data with ERCC RNA spike-in controls, IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), vol.2016, p.2016, 2016.

L. Song and L. Florea, Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads, GigaScience, vol.4, issue.1, p.48, 2015.

K. F. Au, J. G. Underwood, and L. Lee, Improving PacBio long read accuracy by short read alignment, PLoS ONE, vol.7, issue.10, p.46679, 2012.

S. Koren, M. C. Schatz, and B. P. Walenz, Hybrid error correction and de novo assembly of single-molecule sequencing reads, Nature Biotechnology, vol.30, issue.7, pp.693-700, 2012.

E. Bao and L. Lan, HALC: High throughput algorithm for long read error correction, BMC Bioinformatics, vol.18, issue.1, p.204, 2017.

L. Salmela and E. Rivals, LoRDEC: accurate and efficient long read error correction, Bioinformatics, vol.30, issue.24, pp.3506-3514, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01100451

M. A. Madoui, S. Engelen, and C. Cruaud, Genome assembly using Nanopore-guided long and error-free DNA reads, BMC genomics, vol.16, issue.1, p.327, 2015.

T. Hackl, R. Hedrich, and J. Schultz, proovread : large-scale highaccuracy PacBio correction through iterative short read consensus, Bioinformatics, vol.30, issue.21, pp.3004-3011, 2014.

S. Koren, B. P. Walenz, and K. Berlin, Canu: scalable and accurate long-read assembly via adaptive <i>k</i> -mer weighting and repeat separation, Genome Research, vol.27, issue.5, p.2017

G. Tischler and E. W. Myers, Non Hybrid Long Read Consensus Using Local De Bruijn Graph Assembly. bioRxiv, vol.2, p.2017

L. Salmela, R. Walve, and E. Rivals, Accurate self-correction of errors in long reads using de Bruijn graphs, Bioinformatics, vol.33, issue.6, p.321, 2016.
URL : https://hal.archives-ouvertes.fr/lirmm-01385006

C. L. Xiao, Y. Chen, and S. Q. Xie, MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads, Nature Methods, vol.14, issue.11, p.2017

C. S. Chin, D. H. Alexander, and P. Marks, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nature Methods, vol.10, issue.6, pp.563-569, 2013.

N. J. Loman, J. Quick, and J. T. Simpson, A complete bacterial genome assembled de novo using only nanopore sequencing data, Nature Methods, vol.12, issue.8, pp.733-735, 2015.

C. S. Chin, P. Peluso, and F. J. Sedlazeck, Phased diploid genome assembly with single-molecule real-time sequencing, Nature Methods, vol.13, issue.12, p.2016

R. Hu, G. Sun, and X. Sun, LSCplus: a fast solution for improving long read accuracy by short read alignment, BMC bioinformatics, vol.17, issue.1, p.451, 2016.

P. Morisse, T. Lecroq, and A. Lefebvre, Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph, Bioinformatics, vol.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01894850

O. Choudhury, A. Chakrabarty, and S. J. Emrich, HECIL: A Hybrid Error Correction Algorithm for Long Reads with Iterative Learning, Scientific Reports, vol.8, issue.1, p.9936, 2018.

M. Kchouk and M. Elloumi, Efficient Hybrid De Novo Error Correction and Assembly for Long Reads, 27th International Workshop on Database and Expert Systems Applications (DEXA), vol.9, p.2016, 2016.

G. Miclotte, M. Heydari, and P. Demeester, Jabba: hybrid error correction for long sequencing reads, Algorithms for Molecular Biology, vol.11, issue.1, p.10, 2016.

S. Goodwin, J. Gurtowski, and S. Ethe-sayers, Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome, Genome research, vol.25, issue.11, pp.1750-1756, 2015.

R. Vaser, I. Sovi?, and N. Nagarajan, Fast and accurate de novo genome assembly from long uncorrected reads, Genome research, vol.27, issue.5, pp.737-746, 2017.

S. La, E. Haghshenas, and C. Chauve, LRCstats, a tool for evaluating long reads correction methods, Bioinformatics, vol.33, issue.22, p.2017

C. Marchet, P. Morisse, and L. Lecompte, Elector: Evaluator for long reads correction methods, BioRxiv, p.512889, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02371117

L. Bouri and D. Lavenier, Evaluation of long read error correction software
URL : https://hal.archives-ouvertes.fr/hal-01463694

. Genscale, , 2017.

S. Fu, A. Wang, and K. F. Au, A comparative evaluation of hybrid error correction methods for error-prone long reads, Genome biology, vol.20, issue.1, p.26, 2019.

K. Kri?anovi?, A. Echchiki, and J. Roux, Evaluation of tools for long read RNA-seq splice-aware alignment, Bioinformatics, vol.34, issue.5, pp.748-754, 2018.

W. Kaisers, J. Ptok, and H. Schwender, Validation of Splicing Events in Transcriptome Sequencing Data, International journal of molecular sciences, vol.18, issue.6, p.2017

T. D. Wu and C. K. Watanabe, GMAP: a genomic mapping and alignment program for mRNA and EST sequences, Bioinformatics, vol.21, issue.9, pp.1859-1875, 2005.

H. Li, Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics, vol.34, issue.18, pp.3094-3100, 2018.

N. J. Loman and A. R. Quinlan, Poretools: a toolkit for analyzing nanopore sequence data, Bioinformatics, vol.30, issue.23, pp.3399-3401, 2014.

W. J. Kent, BLAT-the BLAST-like alignment tool, Genome Research, vol.12, issue.4, pp.656-664, 2002.

R. Mott, EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA, Bioinformatics, vol.13, issue.4, pp.477-478, 1997.

J. T. Robinson, H. Thorvaldsdóttir, and W. Winckler, Integrative genomics viewer, Nature Biotechnology, vol.29, issue.1, pp.24-26, 2011.

H. Thorvaldsdottir, J. T. Robinson, and J. P. Mesirov, Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration, Briefings in Bioinformatics, vol.14, issue.2, pp.178-192, 2012.

M. K. Sakharkar, V. T. Chow, and P. Kangueane, Distributions of exons and introns in the human genome, In silico biology, vol.4, issue.4, pp.387-93, 2004.

M. Zhao, W. P. Lee, and E. P. Garrison, SSW Library: An SIMD Smith-Waterman C/C++ Library for Use in Genomic Applications, PLoS ONE, vol.8, issue.12, p.82138, 2013.