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Abstract
Homotopy type theory is an extension of type theory that
enables synthetic reasoning about spaces and homotopy the-
ory. This has led to elegant computer formalizations of mul-
tiple classical results fromhomotopy theory. However,many
proofs are still surprisingly complicated to formalize. One
reason for this is the axiomatic treatment of univalence and
higher inductive types which complicates synthetic reason-
ing as many intermediate steps, that could hold simply by
computation, require explicit arguments. Cubical type the-
ory offers a solution to this in the form of a new type theory
with native support for both univalence and higher induc-
tive types. In this paper we show how the recent cubical
extension of Agda can be used to formalize some of the ma-
jor results of homotopy type theory in a direct and elegant
manner.
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1 Introduction
Homotopy type theory (HoTT) is a new foundation that
has emerged from recently discovered connections between
type theory and homotopy theory [27]. These foundations
are based on the observation that the inductively defined
equality types in type theory behave like paths in homo-
topy theory. On the one hand, HoTT provides type theory
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with extensionality principles that were previously not typ-
ically available, including function and propositional exten-
sionality (pointwise equal functions and logically equiva-
lent propositions are equal). These principles follow from a
more general extensionality principle called univalence.This
principle was originally proposed by Vladimir Voevodsky in
the form of his celebrated univalence axiom [31] that can be
consistently assumed in type theory [17]. On the other hand,
HoTT providesmethods for reasoning formally about homo-
topical notions in a synthetic manner. This is made possible
through higher inductive types (HITs) that allow spaces to be
directly represented as types with nontrivial equality/path
constructors.

In recent years HoTT has been developed axiomatically
using various proof assistants. Indeed, all of the major proof
assistants based on type theory have HoTT libraries: HoTT-
Agda [7], Coq-HoTT [4], Lean-HoTT [29], UniMath [33].
Many impressive results can be found in these libraries, for
example, the formalization of computations of many homo-
topy groups of spheres [5, 18, 19], the Seifert-van Kampen
theorem [15], Blakers-Massey theorem [14] and Serre’s spec-
tral sequence [28]. However, despite these successes some
constructions have turned out to be surprisingly difficult.
An example of this is the proof that the torus is equivalent
to the product of two circles: the first version required an im-
pressive amount of complicated path algebra, worked out by
Sojakova [25]. The proof was later simplified by Licata and
Brunerie [20] using cubical ideas, but it was still highly non-
trivial. The main reason for the difficulties in formalizing
this proof is the complicated path algebra arising from the
fact that many equalities do not hold definitionally. These
problems can be traced back to univalence and HITs being
axiomatically added in HoTT; in particular, the computation
rules for the higher constructors of HITs are typically pos-
tulated and do not hold definitionally.

These issues have been resolved in a uniform way by the
recent invention of cubical type theories [2, 3, 12]. This is
a family of type theories with native support for all of the
notions of HoTT, in particular univalence and HITs. The
fundamental idea underlying cubical type theory is to take
the homotopical intuitions from HoTT seriously and incor-
porate them in the judgmental framework of the type the-
ory. As these homotopical notions are built into the theory,
they have computational meaning, which simplifies many
proofs. Indeed, many proofs that involve complicated path
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algebra in HoTT may simply be proved by reflexivity in cu-
bical type theory. For instance, the proof that the torus is
equivalent to the product of two circles is trivial to prove in
cubical type theory using pattern matching and reflexivity
as shown in section 3.

There are multiple variations and implementations of cu-
bical type theory—the original formulation of Cohen et al.
[12] used an interval endowed with the structure of a De
Morgan algebrawhile the more recent cartesian cubical type
theories use an interval with less structure [2, 3]. All of the
results in this paper have been formalized1 using the recent
cubical extension [30] of the Agda proof assistant [1] that
is based on the De Morgan variation of cubical type theory.
However, despite some technical differences between the
underlying theories, all of the proofs could be carried with
similar complexity in a system based on cartesian cubical
type theory, like redtt [26].

While the proofs in cubical type theory often resemble
the original HoTT proofs some work is typically required
to make them more “cubical” in order to take full advan-
tage of the cubical primitives. In particular, the use of path-
induction that is ubiquitous in HoTT is kept to a minimum,
and one typically instead uses the more elementary opera-
tions of cubical type theory such as transport and compo-
sition. This results in a new way of mechanizing synthetic
homotopy theory, leading to (arguably) more direct and el-
egant proofs that closely resemble the homotopical argu-
ments.

Contributions/Outline The main goal of this paper is to
show the practical gains of using a system with native sup-
port for univalence and higher inductive types for formal-
izing synthetic homotopy theory. We exemplify this by for-
malizing the following results from HoTT:

• The equivalence of the torus and two circles together
with the computation of their respective fundamental
groups (section 3).

• The equivalence between direct definitions of low di-
mensional spheres, and alternative definitions using
iterated suspensions (section 4.1).

• Definition of pushout together with a direct proof of
the “3 × 3 lemma” (section 4.2).

• Definition of the join of two types and a proof that it is
associative (section 4.3). Using this we get two proofs,
one inspired by HoTT and a new direct cubical proof,
that S3 is equivalent to the join of two circles.

• Definitions of the Hopf fibration and a proof that its
total space is S3 (section 5).

The paper ends with some discussions of future work and
a comparison with related work in the HoTT libraries of the
major proof assistants based on type theory (section 6).

1The developments can be found in the agda/cubical library located at:
https://github.com/agda/cubical

2 Cubical Agda
The cubical type theory that Cubical Agda is based on is
heavily inspired by the one of Cohen et al. [12], more pre-
cisely on the variation outlined by Coquand et al. [13] that is
well-suited for HITs. The goal of this section is to give suffi-
cient background for readers not familiar with cubical type
theory and Cubical Agda to be able to understand the ex-
amples in this paper. Readers who are familiar with Cubical
Agda can hence skip this section and we refer curious read-
ers to the paper of Vezzosi et al. [30] for a comprehensive
technical treatment of all of the features of Cubical Agda.

2.1 The Interval and Path Types
The first addition to make Agda cubical is an interval type
I with endpoints i0 and i1. This plays the role of the real in-
terval [0, 1] ⊂ R in homotopy theory, however in Cubical
Agda this is a purely formal object. A variable i : I repre-
sents a point varying continuously between the two end-
points. The interval is equipped with three basic operations:
minimum (_∧_ : I→ I→ I), maximum (_∨_ : I→ I→ I) and
reversal (∼_ : I → I). These operations form a De Morgan al-
gebra, that is, a bounded distributive lattice (i0, i1, _∧_, _∨_)
with a De Morgan involution ∼_.

A function out of the interval into one of Agda’s uni-
verses of types (Set ℓ) represents a line between two types.
By iterating this we obtain squares, cubes and hypercubes
of types making Agda inherently cubical. It is often useful
to specify the endpoints of a line, which is done via path
types (we omit the quantification of the universe level ℓ for
readability):

PathP : (A : I → Set ℓ) → A i0 → A i1 → Set ℓ

Paths are introduced by lambda abstractions

λi → 𝑡 : PathP A 𝑡 [i0 / 𝑖] 𝑡 [i1 / 𝑖]

provided that 𝑡 : 𝐴 𝑖 for 𝑖 : I. Given p : PathP A a0 a1 we
can apply it to r : I and obtain p r : A r. Also, we always
have that p i0 reduces to 𝑎0 and p i1 reduces to 𝑎1.

The PathP types should be thought of as representing het-
erogeneous equalities since the two endpoints are in differ-
ent types; this is similar to the dependent paths in HoTT [27,
Sect. 6.2]. We define the type of non-dependent paths/equal-
ities in terms of PathP as follows:

_≡_ : {A : Set ℓ} → A → A→ Set ℓ
_≡_ {A = A} x y = PathP (λ _ → A) x y

The syntax {A = 𝐴} tells Agda to bind the hidden argument
A (first A) to a variable𝐴 (second𝐴) that can be used on the
right hand side of the definition. Viewing equalities as paths
allows us to reason about equality; for instance, the constant
path represents a proof of reflexivity.

refl : {x : A} → x ≡ x
refl {x = x} = λ i→ x

https://github.com/agda/cubical
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Path types also let us prove new things that are not prov-
able in standard Agda. For example, function extensionality,
stating that pointwise equal functions are equal themselves,
has a very simple proof:
funExt : {f g : A → B} → ((x : A) → f x ≡ g x) → f ≡ g
funExt p i x = p x i

The proof of function extensionality for dependent and
𝑛-ary functions is equally direct. Since funExt is a definable
notion in Cubical Agda it has computational content: it sim-
ply swaps the arguments to p.

We can also use the basic operations on I to construct var-
ious useful operations, for example the reversal of a path is
defined using ∼_ and represents the fact that ≡ is symmetric.
_⁻¹ : {x y : A} → x ≡ y → y ≡ x
p ⁻¹ = λ i → p (~ i)

2.2 Transport and Composition
One of the key operations with type theoretic equality is
transport: given an equality/path between types we get a
function between these types. In Cubical Agda this is de-
fined using another primitive called transp. However, for
the examples in this paper the transport function suffices.
transport : A ≡ B→ A → B
transport p a = transp (λ i→ p i) i0 a

The substitution principle is an instance of transport.
subst : (B : A → Set ℓ) {x y : A} → x ≡ y → B x → B y
subst B p b = transport (λ i→ B (p i)) b

This function invokes transportwith a proof that the family
𝐵 respects the equality 𝑝:

𝜆 𝑖 → 𝐵 (𝑝 𝑖) : 𝐵 𝑥 ≡ 𝐵 𝑦

By combining the transport and minimum operations we
can define an induction principle for paths that resemble
the eliminator for Martin-Löf’s inductively defined identity
types [21].
J : {x : A} (P : ∀ y → x ≡ y → Set ℓ) (d : P x refl)

{y : A} (p : x ≡ y) → P y p
J P d p = transport (λ i→ P (p i) (λ j → p (i ∧ j))) d

However, an important difference between the cubical
path types and Martin-Löf’s identity types (and the path
types in HoTT) is that cubical path types do not behave like
inductive types. In particular, the above definition does not
definitionally satisfy the computation rule when applied to
refl. Nevertheless, we can still prove that it holds up to a
path:
JRefl : {x : A} (P : ∀ y → x ≡ y→ Set ℓ) (d : P x refl) →

J P d refl ≡ d

This is a subtle, but important difference between cubical
type theory and HoTT. Readers familiar with HoTT might

be worried that the failure of this equality holding defini-
tionally complicates many proofs, however in our experi-
ence this is rarely the case because many proofs that re-
quire path induction in HoTT can be proved in more di-
rect ways using cubical primitives. Furthermore, for closed
terms (potentially depending on interval variables) the lack
of this definitional equality in cubical type theory does not
affect canonicity, in particular any closed term of type nat-
ural numbers is definitionally equal to a numeral as proved
by Huber [16].

Cubical Agda also has a primitive operation for compos-
ing paths and, more generally, for composing higher dimen-
sional cubes. This operation is called homogeneous composi-
tion and to describe it we need to be able to write partially
specified 𝑛-dimensional cubes, i.e., cubes where some faces
are missing. For this Cubical Agda has partial cubical types,
written Partial r A. The idea is that Partial r A is the type of
cubes in A that are only defined when (r = i1) holds. For ex-
ample, Partial (i ∨ ∼ i) A is a type that is only defined when
i is i1 or i0 (this means that it corresponds to the two end-
points of a line). Elements of these partial cubical types are
introduced using pattern matching lambdas. For this pur-
pose Cubical Agda supports a new form of patterns, here
(i = i1) and (i = i0), that specify the cases of a partial ele-
ment:

partialBool : ∀ i→ Partial (i ∨ ~ i) Bool
partialBool i = λ { (i = i1) → true ; (i = i0) → false }

The term partialBool should be thought of as a boolean
depending on iwith different values when i is i1 and when i
is i0. This is only defined on the two endpoints of I and there
is no way to extend this partial type to a regular dependent
boolean, since true is not equal to false.

Cubical Agda also has cubical subtypes as in Cohen et al.
[12]; given A : Set ℓ , r : I and u : Partial r A we can form the
type A [ r ↦ u ]. A term v of this type is a term of type
A that is definitionally equal to u when (r = i1) is satisfied.
Any term u : A can be seen as a term of type A [ r ↦ u ]
that agrees with itself when (r = i1):

inS : {r : I} (a : A) → A [ r↦ (λ _→ a) ]

We can also forget that a partial element agrees with u
when (r = i1):

outS : {r : I} {u : Partial r A} → A [ r↦ u ] → A

These two operations are inverse to each other whenwell-
typed. Using this cubical infrastructure we can now give the
type of the homogeneous composition operation.

hcomp : {r : I} (u : I → Partial r A) (u₀ : A [ r ↦ u i0 ]) → A

When calling hcomp {r = r} u u₀, Cubical Agda makes
sure that u₀ agrees with u i0 on r; this is specified in the
type of u₀. The idea is that u₀ is the base and u specifies the
sides of an open box where the side opposite of u₀ is missing.
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The hcomp operation then gives us the missing side. For
example binary composition of paths can be written as:
_∙_ : {x y z : A} → x ≡ y → y ≡ z → x ≡ z
_∙_ {x = x} p q i = hcomp {r = i ∨ ~ i}

(λ j → λ { (i = i0) → x
; (i = i1) → q j })

(inS (p i))

Pictorially we are given p : x ≡ y and q : y ≡ z, and the
composite of the two paths is obtained by computing the
dashed top of the following square.

𝑗

𝑖

x z

x y

x q j

inS (p i)

By composing paths and higher cubes using hcomp, we
can reason about equalities/paths in a very directway, avoid-
ing the use of path induction.

2.3 Higher Inductive Types
The fact that Cubical Agda has native support for HITs
means that we can define the circle HIT using an Agda data
declaration.
data S¹ : Set where
base : S¹
loop : base ≡ base

This is a type with a point constructor base and a nontriv-
ial equality/path constructor loop connecting base to itself
as shown in the drawing below.

base•
loop

Functions out of HITs are written using normal Agda pat-
tern matching equations. The following function wraps the
circle twice around itself, by composing the loop construc-
tor with itself:
double : S¹ → S¹
double base = base
double (loop i) = (loop ∙ loop) i

The second case defines a definitional equality, while in
HoTT this would have had to be defined using the postu-
lated recursion principle for the circle. This means that in
HoTT double applied to loop would not reduce automati-
cally, but a proof of equality would instead have to be ap-
plied manually. This leads to rather bureaucratic proofs as
one then has to handle these explicit applications of the com-
putation rule when reasoning about double. Furthermore,

this is not very natural if one wants to use HITs for pro-
gramming.

In order for the circle to be the free type generated by
base and loop it also needs to have elements of the form
loop · loop as in the above definition of double. In general,
for HITs hcomp (𝜆 𝑖 → 𝜆 { (𝑟 = i1) → 𝑢}) 𝑢0 only reduces
to u[i1 / i] when 𝑟 is i1, and is to be considered a canoni-
cal element otherwise. The circle hence has constructors of
the form hcomp 𝑢 𝑢0 in addition to base and loop. When
typechecking definitions like the one for double, Cubical
Agda checks that the boundary of all cases are correct, in
particular that the defining equation

double (loop i) = (loop · loop) i
agrees with double base when i is i0 or i1.

2.4 Glue Types and Univalence
The final extension of Cubical Agda relevant for this pa-
per are the Glue types of Cohen et al. [12] that let us give
computational content to univalence. Given that a type in
cubical type theory represents a higher dimensional cube,
Glue types let us construct a cube where some sides have
been replaced by equivalent types.

There are many ways to define the notion of “equivalence
of types” in HoTT; Cubical Agda uses the definition that
two types are equivalent if there is a function between them
with “contractible fibers” following the terminology of Vo-
evodsky [32] and the HoTT book [27]. Spelled out, a map
𝑓 : 𝐴 → 𝐵 is an equivalence if the preimage of any point
in B is a singleton type. We write A ≃ B if there is a chosen
equivalence 𝑓 : 𝐴 → 𝐵 betweenA and B. A key result is that
isomorphisms, in the sense of a section-retraction pair of
functions, give rise to equivalences. In particular, the iden-
tity function is an equivalence: idEquiv A : A ≃ A.

The Glue types take a partial family of types A that are
equivalent to the base type B. These types are then “glued”
onto B and the equivalence data gets packaged up into a new
type.

Glue : (B : Set ℓ) {r : I} →
Partial r (Σ[ A ∈ Set ℓ ] (A ≃ B)) → Set ℓ

These types are introduced using the glue constructor and
eliminated using the unglue operation. Examples of this will
be discussed in the proof of theorem 5.2. Using Glue types
we can turn an equivalence of types into a path:

ua : {A B : Set ℓ} → A ≃ B → A ≡ B
ua {A = A} {B = B} e i =
Glue B (λ { (i = i0) → (A , e) ; (i = i1) → (B , idEquiv B) })

The idea is that we glue A onto B when i is i0 using e and
B onto itself when i is i1 using the identity equivalence. The
term ua e is a path from A to B as the Glue type reduces
when the face conditions are satisfied—when i is i0 this re-
duces to A and when i is i1 it reduces to B. Pictorially we
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can describe ua e as the dashed top line in:

A B

B B

e ≃ ≃ idEquiv B

B

This lets us prove the standard formulation of the univa-
lence axiom, however, for all of the examples in this paper
the ua function suffices.

3 The Circle and Torus
We already gave the definition of the circle as a HIT in sec-
tion 2.3. To define the torus as a datatype in Cubical Agda
we write the following:

data Torus : Set where
point : Torus
line1 : point ≡ point
line2 : point ≡ point
square : PathP (λ i→ line1 i ≡ line1 i) line2 line2

The idea is that the Torus has a base point with two non-
trivial path constructors connecting it to itself and a square
relating the two paths. This square can be illustrated by:

𝑖

𝑗

point point

point point

square

line1

line2 line2

line1

The type of the square constructor captures this by iden-
tifying line2 with itself over line1. In order to see that this
represents a torus imagine square being made of a piece of
paper that is folded so that the opposite sides are matched
up. The proof that the Torus type is equivalent to two cir-
cles in Cubical Agda was given by Vezzosi et al. [30, Sec-
tion 2.4.1], but we recall it here for completeness. We first
write a function from the torus to two circles using pattern
matching.

t2c : Torus → S¹ × S¹
t2c point = (base , base)
t2c (line1 i) = (loop i , base)
t2c (line2 j) = (base , loop j)
t2c (square i j) = (loop i , loop j)

To prove that this is an equivalence we need to define its
inverse c2t : S¹ × S¹ → Torus. This function is also defined
by pattern matching in the obvious way. Proving that the
two maps cancel is then simply done by pattern matching
with refl in all cases.

c2t-t2c : (t : Torus) → c2t (t2c t) ≡ t
c2t-t2c point = refl
c2t-t2c (line1 _) = refl
c2t-t2c (line2 _) = refl
c2t-t2c (square _ _) = refl

The converse, t2c-c2t : (p : S¹ × S¹) → t2c (c2t p) ≡ p, is
equally trivial to prove. We can then package this up as an
equality using isoToPathwhich combines uawith the proof
that any isomorphism is an equivalence.

Torus≡S¹×S¹ : Torus ≡ S¹ × S¹
Torus≡S¹×S¹ = isoToPath (iso t2c c2t t2c-c2t c2t-t2c)

The simplicity of this cubical proof relies on the compu-
tation rules for all constructors of HITs holding definition-
ally in Cubical Agda. In HoTT the computation rules for
the higher constructors would have to be postulated which
means that they do not hold definitionally. This is exactly
what makes the proofs of c2t-t2c and t2c-c2t surprisingly
nontrivial in HoTT.

3.1 The Loop Spaces of the Circle and Torus
The loop spaces of the circle and torus are defined as follows:

ΩS¹ : Set
ΩS¹ = base ≡ base

ΩTorus : Set
ΩTorus = point ≡ point

The goal of this section is to prove that ΩS¹ is equiva-
lent to the integers. This proof is a cubical adaptation of the
proof of Licata and Shulman [18]. We can then combine this
with the above equivalence between the torus and two cir-
cles to also compute the loop space of the torus. Note that
we are computing loop spaces and not fundamental groups.
However, as the fundamental group is defined as the set-
truncation of the loop space and these loop spaces are both
sets, we get that they coincide with the fundamental groups.

The first step in computing the loop space of the circle
is to define a function computing “winding numbers”, i.e.
the net number of times an element of ΩS¹ goes around the
circle clockwise. To do this we first prove that the successor
function on the integers, Int, is an equivalence (its inverse is
the predecessor function). By applying uawe then get a non-
trivial equality/path from Int to Int that we call sucPathInt.
Using this we can define:

helix : S¹ → Set
helix base = Int
helix (loop i) = sucPathInt i

winding : ΩS¹ → Int
winding p = subst helix p (pos 0)
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Applying the winding function to an element of ΩS¹ will
compute its winding number. For example, we can compute
the winding numbers +3 and −1 as follows:
_ : winding (loop ∙ loop ∙ loop) ≡ pos 3
_ = refl

_ : winding (loop ⁻¹ ∙ loop ∙ loop ⁻¹) ≡ negsuc 0
_ = refl

The term negsuc n represents the number−(𝑛+1), so that
negsuc 0 is indeed −1. Note that none of these examples
would have reduced to a numeral in HoTT as they would
have been stuck on transporting along ua. The proofs of
these would hence not be proved by refl, but rather by man-
ually rewriting with the postulated computation rules for
univalence.

In order to prove that ΩS¹ ≡ Intwe just have to define an
inverse function to winding. This is easily done via pattern
matching.
loopn : Int → ΩS¹
loopn (pos zero) = refl
loopn (pos (suc n)) = loopn (pos n) ∙ loop
loopn (negsuc zero) = loop ⁻¹
loopn (negsuc (suc n)) = loopn (negsuc n) ∙ loop ⁻¹

It is then easy to prove that the winding number of an
𝑛-fold loop is 𝑛.
winding-loopn : (n : Int) → winding (loopn n) ≡ n
winding-loopn (pos zero) = refl
winding-loopn (pos (suc n)) i =
sucInt (winding-loopn (pos n) i)

winding-loopn (negsuc zero) = refl
winding-loopn (negsuc (suc n)) i =
predInt (winding-loopn (negsuc n) i)

Note that we parameterize by i in the second and fourth
case of winding-loopn. The reason for this is that we are
constructing an element of ≡, i.e. a function out of I. This
use of interval variables hence lets us inline cong/ap.

However, when trying to prove the other composition
one quickly realizes that it is not as easy as there is no direct
induction principle for ΩS¹. Luckily there is an ingenious
solution to this offered by HoTT in the form of the encode-
decode method [27, Section 8.9].The trick is to generalize the
loopn and winding functions as follows:
encode : ∀ x → base ≡ x → helix x
encode x p = subst helix p (pos 0)

decode : (x : S¹) → helix x → base ≡ x
decode base = loopn
decode (loop i) = {- ... -}

Note that decode base is loopn and that encode base is
winding definitionally.The loop case of decode is a bit longer

to define and we omit it due to space constraints. However,
it is fairly direct to define using the cubical primitives and
we refer the interested reader to the formalization.Themain
reason for generalizing the functions as above is that we can
now use path induction to prove the following:
decodeEncode : (x : S¹) (p : base ≡ x) →

decode x (encode x p) ≡ p
decodeEncode x p =
J (λ y q→ decode y (encode y q) ≡ q) (λ x → refl) p

The special case decodeEncode base proves the desired
composition, i.e. that loopn (winding x) ≡ x for all x : ΩS¹.
We may then package this up to get the desired equality:
ΩS¹≡Int : ΩS¹ ≡ Int
ΩS¹≡Int = isoToPath (iso winding loopn

winding-loopn
(decodeEncode base))

By combining this result with the equality between the
torus and two circles we obtain:
ΩTorus≡Int×Int : ΩTorus ≡ Int × Int

It is now possible to transport along this equality to com-
pute winding numbers on the torus. However, this will not
result in the most efficient function possible and we can eas-
ily write a more direct function for computing these num-
bers as follows.
windingTorus : ΩTorus → Int × Int
windingTorus l = ( winding (λ i→ t2c (l i) .fst)

, winding (λ i→ t2c (l i) .snd))

Just likewinding this function also computes as expected:
_ : windingTorus (line1 ∙ line2) ≡ (pos 1 , pos 1)
_ = refl

_ : windingTorus (line1 ⁻¹ ∙ line2 ∙ line1) ≡ (pos 0 , pos 1)
_ = refl

4 Suspension, Spheres and Pushouts
In this section we discuss various results about spheres, cul-
minating in two proofs that the 3-dimensional sphere is equal
to the join of two circles — a result that we will need when
computing the total space of the Hopf fibration later on. On
the way to this result we introduce the pushout and join
HITs. We also prove some useful results about these, includ-
ing the “3 × 3 lemma” for pushouts and associativity of the
join.

4.1 Suspension
The suspension of a type A is built from two distinguished
points north and south, along with a path from north to
south for every point ofA (and a homotopy square for every
path in A, etc.):
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data Susp (A : Set) : Set where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south

The suspension of a type 𝐴 is depicted below.

𝐴

Susp

𝐴

•
north

•
south

merid a

In this drawing 𝐴 is a circle, in which case the suspen-
sion is a sphere. This generalizes well, and we can define
the higher spheres as iterated suspensions starting from the
booleans.

_-sphere : ℕ→ Set
(0)-sphere = Bool
(suc n)-sphere = Susp ((n)-sphere)

Wemay now prove that our initial definition for the circle
is equal to the suspension of the booleans.

Lemma 4.1. The (1)-sphere is equal to the circle S¹.

Proof. We will prove this by constructing an isomorphism
and then converting it to an equality using univalence. We
first define a map from (1)-sphere to S¹ in the following way,
collapsing merid false to base:

s2c : (1)-sphere → S¹
s2c north = base
s2c south = base
s2c (merid false i) = base
s2c (merid true i) = loop i

In the other direction, we use composition to go around
the (1)-sphere in one go.

c2s : S¹ → (1)-sphere
c2s base = north
c2s (loop i) = (merid true ∙ merid false ⁻¹) i

To construct the first canceling homotopy, we have to
find a homotopy between s2c (c2s loop) = loop ∙ refl and loop.
This is proved in one of the lemmas in the cubical library
that says that refl is the right unit for _∙_.

s2c-c2s : (x : S¹) → s2c (c2s x) ≡ x
s2c-c2s base = refl
s2c-c2s (loop i) j = rUnit loop (~ j) i

The second homotopy is slightly more involved. After go-
ing back and forth, merid false has been collapsed to the
north pole, whilemerid true has been stretched to go around
the whole circle. As such, we need to move the south pole
back into place alongmerid false, and deform the twomerid-
ians accordingly:

c2s-s2c : (x : (1)-sphere) → c2s (s2c x) ≡ x
c2s-s2c north j = north
c2s-s2c south j = merid false j
c2s-s2c (merid false i) j = h1 i j
c2s-s2c (merid true i) j = h2 i j

We need h1 to be a homotopy from the constant path at
north to the original path merid false, such that the restric-
tion to (i = i1) matches merid false j and the restriction to
(i = i0) matches north. This is easily achieved using _∧_:

h1 : I → I → (1)-sphere
h1 i j = merid false (i ∧ j)

On the other hand, h2 has to be a homotopy from
merid true ∙ merid false ⁻¹ tomerid true, with the same con-
dition on the restrictions to (i = i0) and (i = i1). We can do
that using hcomp to paste several homotopies together:

h2 : I → I → (1)-sphere
h2 i j = hcomp (λ k → λ { (i = i0) → north

; (i = i1) → merid false (j ∨ ~ k)
; (j = i1) → merid true i })

(merid true i)

Thecomposition can be pictured as follows, showing both
the outer edge constraints and the inner faces we used:

north
merid
false

( 𝑗 ∨ ~𝑘)

merid
true 𝑖

merid
true 𝑖

merid true 𝑖

m
er
id

fa
ls
e
𝑗

no
rt
h

(merid true ∙ merid false ⁻¹) 𝑖

𝑖

𝑗

𝑘

The (j = i0) face of the open cube matches the square
used to define the composition merid true ∙ merid false ⁻¹
— this breaks the composition into refl, merid true, and
merid false ⁻¹ on the inner edges. Thus, we use the (i = i1)
face to retract the merid false ⁻¹ part into the south pole,
using a connection. The other faces are just constant in di-
rections j and k. From there, hcomp provides us with the
front face of the cube, which is the homotopy we need.

This completes the definition of c2s-s2c, providing us
with an isomorphism than can be converted into an equality
with ua. □
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Inspired by the direct definition of S¹ we can also give
direct definitions of some higher spheres, for example S² and
S³ are defined as follows.

data S² : Set where
base₂ : S²
surf₂ : PathP (λ i→ base₂ ≡ base₂) refl refl

data S³ : Set where
base₃ : S³
surf₃ : PathP (λ j →PathP (λ i→ base₃ ≡ base₃) refl refl)

refl refl

As expected we can prove that these are equal to the defi-
nitions using iterated suspensions. The proof of this lemma
is very similar to the one of lemma 4.1 so we omit it.

Lemma 4.2. The (2)-sphere is equal to S² and the (3)-sphere
is equal to S³.

One might wonder if we can also give a direct definition
of S𝑛 in a similar fashion and prove that it is equal to the
(n-1)-sphere. However, it is currently not possible to write
the higher constructor corresponding to surfₙ in Cubical
Agda as this kind of HIT is not supported by any of the
proposed schemas for cubical HITs [10, 13]. Interestingly it
is in fact possible to postulate this HIT in HoTT or cubical
type theory, and prove properties about it — for instance
Licata and Brunerie [19] prove that 𝜋𝑛 (S𝑛) = Z using this
direct definition.

4.2 Pushouts and the 3 × 3 Lemma
Suppose we are given a span of types:

B A C
f g

Then the homotopical pushout of this span is a type that
contains both a copy of B and a copy of C, and a path identi-
fying f a and g a for every a in A. It can be defined as a HIT
in the following way.

data Pushout {A B C : Set} (f : A→ B) (g : A → C) : Set where
inl : B →Pushout f g
inr : C →Pushout f g
push : (a : A) → inl (f a) ≡ inr (g a)

Ageneric homotopical pushout is illustrated below: it con-
sists of an embedded copy of B and C, and a copy of A × I
whose ends have been identified with corresponding points
in B and C according to f and g.

push a•
inl (f a)

•
inr (g a)

B

A

C

Pushouts can be used to construct various classical ob-
jects such as suspensions, joins andmanymore—hence their
importance. For instance, the suspension of a type 𝐴 is the
homotopical pushout of the following span:

1 A 1

where 1 is the inductive type with only one constructor, and
the arrows are the unique maps to 1.

Pushouts are often nested, and when dealing with them a
fact known as the 3×3 lemma comes in very handy. Suppose
we are given a double span of types

A00 A20 A40

A02 A22 A42

A04 A24 A44

f10 f30

f12 f32

f14 f34

f01

f03

f21

f23

f41

f43

H11 H31

H13 H33

where the Hij are homotopies ensuring the commutativity
of the diagram: for instance,H11 is of type f10 ∘ f21 ≡ f01 ∘ f12.

Then, there are two canonical ways to build a type from
this diagram out of pushouts. Indeed, one can start by taking
the pushouts of the three rows, to get the following (vertical)
span

A□0 A□2 A□4
f□1 f□3

(1)
in which we write A□0, A□2 and A□4 for the three pushouts
of the rows. The maps between them, f□1 and f□3, are then
defined using pattern matching.

f□1 : A□2 → A□0
f□1 (inl a) = inl (f01 a)
f□1 (inr a) = inr (f41 a)
f□1 (push a j) =
hcomp (λ i → λ { (j = i0) → inl (H11 a (~ i))

; (j = i1) → inr (H31 a (~ i)) })
(push (f21 a) j)

Finally, we write A□○ for the pushout of the span in (1).
Similarly, we could have started by taking the pushout of
the columns and then computed the pushout A○□ of the re-
sulting “vertical” span. The 3 × 3 lemma for pushouts then
states that the results of these two constructions are equal.

Lemma 4.3. (3 × 3 lemma) The two pushouts A□○ and A○□
are equal.

Proof. In order to prove this we construct an isomorphism
via pattern matching and apply univalence. To define a map
A□○ → A○□, we will first need maps for the two sides of
our pushout span:
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A□0-A○□ : A□0 → A○□
A□0-A○□ (inl x) = inl (inl x)
A□0-A○□ (inr x) = inr (inl x)
A□0-A○□ (push a i) = push (inl a) i

The map A□4-A○□ is defined analogously. Using these
maps we can define one of the main maps:

A□○-A○□ : A□○→ A○□
A□○-A○□ (inl x) = A□0-A○□ x
A□○-A○□ (inr x) = A□4-A○□ x
A□○-A○□ (push (inl x) i) = inl (push x i)
A□○-A○□ (push (inr x) i) = inr (push x i)
A□○-A○□ (push (push a j) i) = filler a j i

Note how we did not define a map A□2-A○□ to handle the
push case, but instead proceeded via nested pattern match-
ing. The reason is that when Agda checks boundary con-
straints, it does not perform 𝜂-expansion on its own so we
have to force it in the function definition.

Most cases boil down to swapping the constructors, but
this straightforward strategy will not be sufficient to han-
dle the last case (which has been temporarily called filler).
Indeed, we need to construct a square inside A○□ with a
prescribed boundary. To do this, the most natural guess
would be push (push𝑎 𝑖) 𝑗 , but its boundary for 𝑖 = i0 is
push (inl (f21𝑎)) 𝑗 , which is not definitionally equal to the
prescribed A□0-A○□(f□1 (push𝑎 𝑗)). In order to fix this, we
will use hcomp to glue the four squares 𝑠1–𝑠4 around our
candidate in order to ensure it matches the dashed bound-
ary:

inl (push (f12𝑎) 𝑖)

inr (push (f32𝑎) 𝑖)

A□0-A○□
(f□1 (push𝑎 𝑗))

A□4-A○□
(f□3 (push𝑎 𝑗))

s3

s1 s2

s4

s5

𝑖

𝑗

To do this we hence need to construct the squares 𝑠1–𝑠5,
in this order.

To construct 𝑠1, we unfold f□1 (push𝑎 𝑗) on the left side,
obtaining a composition of three paths. But functions com-
mute with hcomp’s up to a homotopy, so A□0-A○□ applied
to the composition is homotopic to the composition of the
images of the paths. That is, we can find a square with the
following boundary:

A□0-A○□ (push (f21𝑎) 𝑗)

A□0-A○□ (hcomp ...)

A□0-A○□
(inl (H11𝑎 (~𝑖)))

A□0-A○□
(inl (H31𝑎 (~𝑖)))

𝑗

𝑖

Once rotated counter-clockwise, we can use this square for
𝑠1 and the analogue for 𝑠2. After simplifying the applica-
tions of A□0-A○□, we are left with the following boundary:

inl (push (f12𝑎) 𝑖)

inr (push (f32𝑎) 𝑖)

push (inl (f21𝑎)) 𝑗

inl (inl (H11𝑎 𝑗))

inr (inl (H31𝑎 𝑗))

push (inr (f21𝑎)) 𝑗

inl (inr (H13𝑎 𝑗))

inr (inr (H33𝑎 𝑗))

s3

s4

s5

𝑖

𝑗

Just like before, we can use the functoriality of inl to get
a square with the following boundary:

inl (push (f12𝑎) 𝑖)

inl (f1□ (push𝑎 𝑖))
= inl (hcomp ...)

inl (inl (H11𝑎 𝑗)) inl (inr (H13𝑎 𝑗))

𝑖

𝑗

We use this square for 𝑠3 and the appropriate analogue for
𝑠4. The only square left to construct now is

inl (f1□ (push𝑎 𝑖))

inr (f3□ (push𝑎 𝑖))

push (inl (f21𝑎)) 𝑗 push (inr (f21𝑎)) 𝑗s5

𝑖

𝑗

which we can fill with push (push𝑎 𝑖) 𝑗 . By combining these
five squares using hcomp we obtain the definition of filler,
and thus of our first map.

The opposite direction, A○□ → A□○, is the same up to a
transposition of the 3 × 3 span. The proofs that these maps
cancel are also similar, but the central fillers are more dif-
ficult to illustrate as they require one more dimension. We
refer the interested reader to the formalization. By combin-
ing all of this we obtain the desired equality between A□○
and A○□. □

The formal proof of the 3× 3 lemma is under 200 lines of
code (LOC) in Cubical Agda. The corresponding result in
HoTT-Agda is about 3000 LOC.2 These numbers should of
course be taken with a grain of salt as those files are not self-
contained and rely on other results in the library. Regardless
of this we still believe that it indicates the complexity of the
involved path algebra in the HoTT proof compared to the
cubical one.

2This number has been calculated by counting the number of lines (ex-
cluding comments) in: https://github.com/HoTT/HoTT-Agda/tree/master/
theorems/homotopy/3x3

https://github.com/HoTT/HoTT-Agda/tree/master/theorems/homotopy/3x3
https://github.com/HoTT/HoTT-Agda/tree/master/theorems/homotopy/3x3
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4.3 The Join and S³
Another interesting example of a pushout is the join. The
main importance of this HIT in this paper is that it gives
us another characterization of S³ as the join of two circles
which will be useful when proving that the total space of
the Hopf fibration is S³. However, this construction also has
many other interesting uses in HoTT as explored by Rijke
[23].

The join of two types A and B is built from one copy of A,
one copy of B, and a path from every 𝑎 : 𝐴 to every 𝑏 : 𝐵.

data Join (A : Set) (B : Set) : Set where
inl : A → Join A B
inr : B → Join A B
push : ∀ a b → inl a ≡ inr b

It is easy to see that Join 𝐴 𝐵 can alternatively be defined
as the pushout of the following span—the inductive defini-
tions only differ by currying.

𝐴 𝐴 × 𝐵 𝐵
fst snd

We now proceed by proving a few lemmas relating joins
and spheres.

Lemma 4.4. Join Bool 𝐴 ≡ Susp 𝐴.

Proof. In Join Bool A the two points inr true and inr false
play the role of north and south, with a path connecting
them to every point inl a. □

The proof of the following result is taken from Brunerie
[5, Proposition 1.8.6], as such we will only sketch it here.

Lemma 4.5. Join is associative:

Join 𝐴 (Join 𝐵 𝐶) ≡ Join (Join 𝐴 𝐵) 𝐶

Proof. One starts by applying the 3× 3 lemma to the follow-
ing diagram.

A A × B B

A × C A × B × C B × C

A × C A × C C

All of the arrows in the diagram are the obvious projec-
tions, and the homotopies are refl’s. One can then show that
A□○ ≡ Join (Join 𝐴 𝐵) 𝐶 , and that A○□ ≡ Join 𝐴 (Join 𝐵 𝐶),
which implies the desired result. □

We now have all of the ingredients to relate S³ and the
Join of two circles.

Lemma 4.6. Join S¹ S¹ ≡ S³

Proof. This is a composition of equalities we already proved.

Join S¹ S¹ ≡ Join (Susp Bool) S¹ (4.1)
≡ Join (Join Bool Bool) S¹ (4.4)
≡ Join Bool (Join Bool S¹) (4.5)
≡ Susp (Susp S¹) (4.4)
≡ S³ □

The above proof is an elegant application of the 3 × 3
lemma, but it results in rather complicated maps between
Join S¹ S¹ and S³. Evan Cavallo has found a more direct cu-
bical proof that Join S¹ S¹ ≡ S³ by simply defining the maps
directly and proving that they cancel.3 We have ported his
proof to Cubical Agda and the resulting proof is very short
(∼ 60 LOC). However, the proofs that the maps cancel re-
quire a 5-dimensional(!) composition making it rather diffi-
cult to visualize.

5 The Hopf Fibration
In this section we define the Hopf fibration: Hopf : S² →
Set. It is a fibration over the sphere whose fibers are equal
to S¹ and whose total space is equal to S³. It is a very useful
construction that allows one to compute homotopical prop-
erties of S³ from the properties of S² and S¹.

We begin by motivating the definition using some geome-
try while keeping in mind that we are actually working syn-
thetically. Since the two hemispheres of S² are contractible,
the fibration is trivial on each and the important datum is
how to glue the fibers at the equator. Therefore, we have to
pick an equivalence S¹ → S¹ at every point of the equator.
Since the equator is equal to S¹, it amounts to defining a
map S¹ → S¹ → S¹. A natural choice is the binary product
we get on S¹ when seeing it as the set of unitary complex
numbers:

𝑒2𝑖𝜋𝜃 · 𝑒2𝑖𝜋𝜑 = 𝑒2𝑖𝜋 (𝜃+𝜑)

This is defined in Cubical Agda as follows:

rot : S¹ → S¹ → S¹
rot base y = y
rot (loop j) base = loop j
rot (loop j) (loop k) =
hcomp (λ l → λ { (k = i0) → loop (j ∨ ~ l)

; (k = i1) → loop (j ∧ l)
; (j = i0) → loop (k ∨ ~ l)
; (j = i1) → loop (k ∧ l)} ) base

The final case can be illustrated by the following diagram,
where we only annotated the edges and reduced the (con-
stant) central face to a tiny square:

3For details see the redtt proof at:
https://github.com/RedPRL/redtt/blob/master/library/cool/s3-to-join.red

https://github.com/RedPRL/redtt/blob/master/library/cool/s3-to-join.red
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loop 𝑗

loop 𝑗
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(~𝑙
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p 𝑙

base

base

𝑗

𝑗

𝑙

Indeed, our intuition from the complex numbers tells us
that rot (loop 𝑗) (loop 𝑘) is analogous to 𝑒2𝑖𝜋 ( 𝑗+𝑘) . So it is
only natural that the 𝑗 + 𝑘 = 1 diagonal is constant at base,
and the 𝑗 = 𝑘 diagonal follows loop twice.

This results in a binary operation on S¹, that we often
write as _*_ instead of rot. We can even get a complete
(higher) abelian group structure on S¹, with an inverse op-
eration that we call inv.

Lemma 5.1. For every x : S¹we have an equivalence rotEquiv
x : S¹ ≃ S¹ given by rot x.

Proof. The inverse is induced by path reversal. □

We now define the Hopf fibration using Susp S¹ (which is
equivalent to S² by lemma 4.2) as our base space, usingGlue
to glue the fibers as discussed above. However, we have to
depart slightly from the topological intuition as there is no
actual equator in Susp S¹. As instead, we use rot to glue the
fibers around the north pole, and the identity to glue them
around the south pole:

Hopf : Susp S¹ → Set
Hopf north = S¹
Hopf south = S¹
Hopf (merid x i) = ua (rotEquiv x) i

In fact, we could have directly defined the Hopf fibration
for S² by gluing on the identity equivalence on three of the
sides of the 2-cell and the rot equivalence on the fourth side.

HopfS² : S² → Set
HopfS² base = S¹
HopfS² (surf i j) =
Glue S¹ (λ { (i = i0) → (S¹ , idEquiv S¹)

; (i = i1) → (S¹ , idEquiv S¹)
; (j = i0) → (S¹ , idEquiv S¹)
; (j = i1) → (S¹ , rotEquiv (loop i)) } )

However, it turns out that the version using Susp S¹ is
easier to work with as we have more wiggle room with the
constructors.

We can now form the total space of the Hopf fibration us-
ing a Σ-type: Σ Hopf =

∑
𝑥 :Susp S¹ Hopf 𝑥 . Our main theorem

can be stated as:

Theorem 5.2. The total space of the Hopf fibration is S³, that
is, Σ Hopf ≡ S³.

Proof. By lemma 4.6, which states that S³ ≡ Join S¹ S¹, it suf-
fices to prove that Σ Hopf ≡ Join S¹ S¹. From the topological
intuition of the Hopf fibration, the union of the fibers at the
equator form a torus S¹ × S¹—the first coordinate being the
longitude in S², the second parameterizing the fiber. When
transporting along the meridian merid x, the fiber above
northwill transform into the fiber above the equator accord-
ing to rot x, and the one above south will be transported
to the equator according to the identity. Conversely, trans-
porting fibers from the equator to the north (resp. south)
pole will transform them according to rot (inv x) (resp. the
identity). This informal observation relates Σ Hopf to the
pushout of the following span:

S¹ S¹× S¹ S¹
rot’ 𝜋2

where rot’ (𝑥,𝑦) = inv 𝑥 * 𝑦.
But recall that Join S¹ S¹ is the pushout of the following

span:

S¹ S¹× S¹ S¹
𝜋1 𝜋2

Wewill now describe a span isomorphism (that is, a natu-
ral equivalence between these two spans) and use it as intu-
ition to build a formal isomorphism between the two types.

To go from Join S¹ S¹ to Σ Hopf, we want to mimic the
following natural equivalence:

S¹ S¹× S¹ S¹

S¹ S¹× S¹ S¹
rot’

𝜋2𝜋1

𝜋2

(𝑥, 𝑦) ↦→ (rot’ 𝑥 𝑦, 𝑦)id id

We can use this intuition to construct the following map:

j2h : Join S¹ S¹ → ΣHopf
j2h (inl x) = (north , x)
j2h (inr y) = (south , y)
j2h (push x y i) =
let p : rot’ (x , y) * x ≡ y

p = lem-rot’ x y
in ( merid (rot’ (x , y)) i

, glue (λ { (i = i0) → x ; (i = i1) → y }) (p i))

Here, 𝑥 is the point in the fiber above north,𝑦 is the point
in the fiber above south, and p i is the point in the fiber above
merid (rot’ (𝑥,𝑦)) 𝑖 . However, asHopf (merid (rot’ (𝑥,𝑦)) 𝑖)
is ua (rotEquiv (merid (rot’ (𝑥,𝑦))) 𝑖) which in turn is a
Glue type we need to use the glue constructor to package it
up into a well-typed term. The term lem-rot’ x y proves that
rot’ (𝑥 , 𝑦) * x ≡ y, that is, inv 𝑥 * 𝑦 * 𝑥 ≡ 𝑦. This equality is
clearly true and we prove it by induction on x and y.
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Conversely, to go from Σ Hopf to Join S¹ S¹, we use the
following natural isomorphism:

S¹ S¹× S¹ S¹

S¹ S¹× S¹ S¹

rot’ 𝜋2

𝜋1 𝜋2

(𝑥, 𝑦) ↦→ (rot’ 𝑥 𝑦, 𝑦)id id

To do this we need to map out of aGlue type.This is made
possible through the unglue primitive inCubical Agda. Given
y : ua (rotEquiv x) 𝑖 the term unglue (i ∨ ∼ i) y is an element
of S¹ that is x * y when i is i0 and y when i is i1. Using this
we can write the inverse map.

h2j : ΣHopf → Join S¹ S¹
h2j (north , y) = inl y
h2j (south , y) = inr y
h2j (merid x i , y) =
hcomp (λ j → λ { (i = i0) → inl (lem-rot-inv x y j)

; (i = i1) → inr y })
(push (unglue (i ∨ ~ i) y * inv x)

(unglue (i ∨ ~ i) y) i)

The lemma lem-rot-inv proves that 𝑥 * 𝑦 * inv 𝑥 ≡ 𝑦 for
all x, y : S¹. This hence defines the second map. Proving that
they cancel requires some rather involved path algebra, and
we refer the interested reader to the formalization. □

This hence concludes our direct cubical proof that Hopf
is indeed the Hopf fibration.

6 Conclusions and Future Work
We have in this paper shown how some of the main results
in synthetic homotopy theory can be formalized in cubical
type theory. We have used a variation of cubical type the-
ory implemented by the Cubical Agda system, however
it would have been possible to formalize all of these exam-
ples with comparable complexity in other cubical systems.
Indeed, many of these examples have also been formalized
in the redtt system [26] and in the precursor of Cubical
Agda called cubicaltt [11].

One might wonder to what extent the lack of reversals
and connections in redtt, which is based on cartesian cu-
bical type theory [2, 3], affects the length of proofs. In our
experience the lack of this additional structure on the inter-
val is often made up for by the more powerful composition
operations of cartesian cubical type theory. For instance, the
direct proof that Join S¹ S¹ ≡ S³ is of more or less exactly the
same complexity as the Cubical Agda proof. However, in
order to draw any definite conclusions more experiments
are necessary.

The results in this paper have also been formalized in the
various HoTT libraries available in the major proof assis-
tants based on type theory: HoTT-Agda [7], Coq-HoTT
[4], Lean-HoTT [29].4 It is very difficult to make an accu-
rate quantitative comparison of the complexity between the
formalized results as they have been performed in different
systems based on different type theories. However, it is in-
teresting to note that all of these HoTT libraries contain cu-
bical sublibraries for conveniently reasoning about squares
and cubes inspired by the work of Licata and Brunerie [20].
In a cubical system like Cubical Agda we do not need to
write such a library as the cubical primitives provide us with
it for free.

Despite the difficulty of comparing the complexity of for-
mal proofs between different systems we have made some
estimates of the size of some of the proofs (in terms of lines
of code) in table 1.5 Some of the libraries contain multiple
proofs of the relevant results and in such caseswe picked the
one that most closely resemble the cubical proof. We only
include those examples where we can make reasonably ac-
curate estimates of the proof size, but the numbers in the
table should still be taken with a large grain of salt as they
do not count self-contained proofs and many of the results
rely on cubical sublibraries that are not necessary in Cu-
bical Agda. The line count also involve relevant comments
and we haven’t counted the definitions of the involved HITs.
The length and style of proofs also vary quite a bit between
the various systems in general, for instance, both Coq and
Lean proofs are written using tactics while Agda proofs are
typically not.

Table 1. Results in the HoTT libraries

Agda Coq Lean Cubical
Ω(S1) = Z 90 160 80 50
T = S1 × S1 150 150 - 25
3 × 3 lemma 3000 - - 200

Join assoc. via 3 × 3 320 - - 240
Join assoc. direct 210 - 230 90

The table indicates that not too much is gained in the
proof that the loop space of the circle is the integers by do-
ing it cubically, while the proof that the torus is equivalent
to two circles is about 6 times longer in HoTT-Agda and
Coq-HoTT compared to the cubical proof presented here.
The major difference is for the 3 × 3 lemma for pushouts
where the HoTT-Agda proof is about 15 times longer than
4We omit the UniMath library as it does not focus on synthetic homotopy
theory.
5The numbers in the table have been computed from the master branches
of the following libraries on 2019-12-16:
https://github.com/HoTT/HoTT-Agda
https://github.com/HoTT/HoTT/
https://github.com/leanprover/lean2/tree/master/hott

https://github.com/HoTT/HoTT-Agda
https://github.com/HoTT/HoTT/
https://github.com/leanprover/lean2/tree/master/hott
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the cubical proof. This result is not yet formalized in Coq-
HoTT and Lean-HoTT, however a Coq-HoTT formaliza-
tion is currently underway. The HoTT-Agda library has
two proofs that Join is associative. The longer one, 320 lines,
is more or less the same as the one we discussed in this pa-
per and relies on the 3×3 lemma for pushouts. There is very
little gain from the cubical machinery in this proof as it is
simply a matter of reorganizing data so that we can apply
an already proved result. The other HoTT-Agda and Lean-
HoTT proofs are more direct and construct the maps in an
ingenious way following Cavallo [9, Theorem 4.21]. Evan
Cavallo has recently proved this result directly in Cubical
Agda as well, leading to a proof in only 90 lines of code.

Another interesting observation is that when working in
a cubical system we often state the theorems as paths while
in HoTT one often instead just uses equivalences. These are
of course equivalent by univalence, but by invoking the uni-
valence axiom inHoTT one hides the computational content
of these equivalencesmaking themharder toworkwith. In a
cubical systemwhere univalence has computational content
this is not the case and it is in fact often more convenient
to convert the equivalences into paths using univalence as
we may then use the cubical primitives to manipulate them.
This indicates that cubical type theorymight be better suited
for doing univalent mathematics than HoTT.

A crucial property when doing synthetic mathematics is
the existence of interesting models of the theory. Ideally
we would like to be able to interpret all of the results in
this paper in topological spaces or even any (Grothendieck)
∞-topos. Currently these questions have not been fully re-
solved for the various cubical type theories that have been
considered. In fact, it has been shown that the standardmodel
of Cubical Agda is not equivalent6 to spaces [24]. However,
if one drops the reversal operation (∼_) from Cubical Agda
any internal result about homotopy groups of spheres corre-
sponds to a result about the homotopy groups of spheres in
spaces.7 Furthermore, there has been recent progress on an
“equivariant” cubical set model that is equivalent to spaces
[22]. We are hence very optimistic that these issues will be
resolved in the near future. Furthermore, as soon as a sat-
isfactory cubical type theory with a model in spaces has
been developed we expect it to be straightforward to adapt
the formalizations in this paper to that theory. Indeed, the
main features that we rely on—computational univalence
and higher inductive types with definitional computation
rules for all constructors—should also be satisfied by that
cubical type theory.

6By “equivalent” we mean that the notion of fibration in the cubical set
model gives rise to a model structure that is Quillen equivalent to the
Quillen model structure on spaces.
7For further details and discussions about this result see: https://groups.
google.com/forum/#!topic/homotopytypetheory/imPb56IqxOI

Future work Some results have so far been out of reach
for conventional HoTT because of the complexity of the
involved path algebra. An example of this is the symmet-
ric monoidal structure of the smash product HIT [6, 28]. It
might be possible to make progress on this using cubical
type theory as the path algebra should be more manageable.
This would be a very interesting direction for future work.8

Another interesting possibility offered by cubical type the-
ory comes from the fact that the theory is constructive and
hence satisfies the existence property. This means that we
should be able towrite down existence statements (expressed
using Σ-types) and extract witnesses automatically. An ex-
ample of this is the so called “Brunerie number” : a concrete
synthetic definition of 𝑛 ∈ Z such that 𝜋4 (S3) = Z/𝑛Z [5].
We have formalized this construction in Cubical Agda, but
have so far not been able to compute this numeral due to
the computational complexity of the involved constructions.
However, it may be more feasible to use Cubical Agda for
computing other simpler topological invariants like coho-
mology groups [8, 9].
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