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Abstract

We define a stably free ideal domain to be a Noetherian domain whose
left and right ideals ideals are all stably free. Every stably free ideal do-
main is a (possibly noncommutative) Dedekind domain, but the converse
does not hold. The first Weyl algebra over a field of characteristic 0 is
a typical example of stably free ideal domain. Some properties of these
rings are studied. A ring is a principal ideal domain if, and only if it is
both a stably free ideal domain and an Hermite ring.

1 Introduction

In a principal ideal domain (resp. a Dedekind domain), every left or right ideal
is free (resp. projective). An intermediate situation is the one where every left
or right ideal is stably free. A Noetherian domain with this property is called
a stably free ideal domain in what follows. In a Bézout domain, every finitely
generated (f.g.) left or right ideal is free. An Ore domain in which every f.g.
left or right ideal is stably free is called a semistably free ideal domain in what
follows. Stably free ideal domains and semistably free ideal domains are briefly
studied in this paper.

2 Free ideal domains and semistably free ideal

domains

Theorem and Definition 1 Let A be a ring and consider the following con-
ditions.
(i) Every left or right ideal in A is stably-free.
(ii) Every f.g. torsion-free A-module is stably-free.
(iii) Every f.g. left or right ideal in A is stably-free.
(1) If A is a Noetherian domain, then (i)⇔(ii)⇔(iii). If these equivalent con-
ditions hold, A is called a stably-free ideal domain.
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(2) If A is an Ore domain, then (ii)⇔(iii). If these equivalent conditions hold,
A is called a semistably-free ideal domain.

Proof. (1) (ii)⇒(i): Assume that (ii) holds and let I be a left ideal in A. Then
I is a f.g. torsion-free module, therefore it is stably-free.

(i)⇒(ii): Assume that (i) holds and let P be a f.g. torsion-free A-module.
Since every left or right ideal is projective, A is a Dedekind domain. Therefore,
P ∼= An⊕I where I is a left ideal an n is an integer ([5], 5.7.8). Since I is stably-
free, say of rank r ≥ 0, there exists an integer q ≥ 0 such that I⊕Aq ∼= Aq+r.
Therefore, P ⊕ Aq ∼= An+q+r and P is stably-free of rank n + r. (i)⇔(iii) is
clear.

(2) (ii)⇒(iii) is clear.
(iii)⇒(ii): If (iii) holds, A is semihereditary. Let P be a torsion-free left

A-module. Since A is an Ore domain, there exists an integer n > 0 and an
embedding P →֒ An [3]. Therefore, there exists a finite sequence of f.g. left

ideals (Ii)1≤i≤k such that P ∼=
⊕k

i=1
Ii ([4], Thm. (2.29)). For every index

i ∈ {1, ..., k}, Ii is stably-free, therefore there exist non-negative integers qi and
ri such that Ii ⊕Aqi ∼= Aqi+ri . As a consequence,

P ⊕Aq ∼= Aq+r

where q =
∑

1≤i≤k qi and r =
∑

1≤i≤k ri, and P is stably-free.

3 Examples of stably free ideal domains

The examples below involve skew polynomials.

Proposition 2 Let R be a commutative stably free ideal domain.
(1) Assume that R is a Q-algebra and let A = R [X ; δ] where δ is an outer
derivation of R and R has no proper nonzero δ-stable (left or right) ideals.
Then A is a stably free ideal domain.
(2) Let A = R

[

X,X−1;σ
]

where σ is an automorphism of R such that R has
no proper nonzero σ-stable (left or right) ideals and no power of σ is an inner
automorphism of R. Then A is a stably free ideal domain.

Proof. The ring A is simple ([5], 1.8.4/5), therefore it is a noncommutative
Dedekind domain ([5], 7.11.2), thus every left or right ideal of A is projective,
and, moreover, stably free ([5], 12.3.3).

Thus we have the following examples:

1. Let k be a field of characteristic 0. The first Weyl algebra A1 (k) and the
ring A′

1 (k) = k
[

x, x−1
] [

X ; d
dx

]

∼= k [X ]
[

x, x−1;σ
]

with σ (X) = X + 1
([5], 1.8.7) are both stably free ideal domains.

2. Likewise, let k = R or C, let k {x} be the ring of convergent power series
with coefficients in k, and let A1c (k) = k {x}

[

X ; d
dx

]

. This ring is a
stably free ideal domain.
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3. Let Ω be a nonempty open interval of the real line and let R (Ω) be the
largest ring of rational functions analytic in Ω, i.e. R (Ω) = C (x) ∩O (Ω)
where O (Ω) is the ring of all C-valued analytic functions in Ω. The ring
A (Ω) = R (Ω)

[

X ; d
dx

]

is a simple Dedekind domain [2] and, since R (Ω)
is a principal ideal domain, A (Ω) is a stably free ideal domain.

Note that a commutative Dedekind domain which is not a principal ideal
domain is not a stably free ideal domain ([5], 11.1.5).

4 Connection with principal ideal domains,

Bézout domains, and Hermite rings

Proposition 3 (i) A ring is a principal ideal domain if, and only if it is both
a stably free ideal domain and an Hermite ring.
(ii) A ring is a Bézout domain if, and only if it is both a semistably free ideal
domain and an Hermite ring.

Proof. (i): The necessary condition is clear. Let us prove the sufficient
condition. Let A be a stably free ideal domain and let a be a left ideal of
A. This ideal is stably free. If A is Hermite, a is free, and since A is left
Noetherian, it is a principal left ideal domain ([1], Chap. 1, Prop. 2.2).

The proof of (ii) is similar, using ([1], Chap. 1, Prop. 1.7).

5 Localization

Proposition 4 Let A be a stably free ideal domain (resp. a semistably free ideal
domain) and let S be a two-sided denominator set ([5], §2.1). Then S−1A is
a stably free ideal domain (resp. a semistably free ideal domain).

Proof. (1) Let us consider the case of stably free ideal domains. Let A be a
stably free ideal domain. For any left ideal a of S−1A there exists a left ideal
I of A such that a = S−1

I. Since I is stably free, there exist integers q and
r such that I ⊕Aq = Ar, therefore S−1

I ⊕ S−1Aq = S−1Ar, and a is stably
free. The same rationale holds for right ideals, and this proves that S−1A is a
stably free ideal domain.

(2) The case of semistably free ideal domains is similar, considering f.g.
ideals.
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