
RELATIONAL POLY-KLUMPENHOUWER NETWORKS FOR

TRANSFORMATIONAL AND VOICE-LEADING ANALYSIS

ALEXANDRE POPOFF, MORENO ANDREATTA, AND ANDRÉE EHRESMANN

Abstract. In the field of transformational music theory, which emphasizes the possible

transformations between musical objects, Klumpenhouwer networks (K-Nets) constitute

a useful framework with connections in both group theory and graph theory. Recent
attempts at formalizing K-Nets in their most general form have evidenced a deeper

connection with category theory [7, 8, 9]. These formalizations use diagrams in sets, i.e.
functors C → Sets where C is often a small category, providing a general framework for

the known group or monoid actions on musical objects. However, following the work of

Douthett and Cohn, transformational music theory has also relied on the use of relations
between sets of the musical elements. Thus, K-Net formalizations have to be further

extended to take this aspect into account. This work proposes a new framework called

relational PK-Nets, an extension of our previous work on Poly-Klumpenhouwer networks
(PK-Nets), in which we consider diagrams in Rel rather than Sets. We illustrate the

potential of relational PK-Nets with selected examples, by analyzing pop music and

revisiting the work of Douthett and Cohn.

1. From K-Nets and PK-Nets to relational PK-Nets

We begin this section by recalling the definition of a Poly-Klumpenhouwer Network (PK-
Net), and then discuss about its limitations as a motivation for introducing relational PK-
Nets.

1.1. The categorical formalization of Poly-Klumpenhouwer Networks (PK-Nets).
Following the work of Lewin [1, 2], transformational music theory has progressively shifted
the music-theoretical and analytical focus from the “object-oriented” musical content to
the operational musical process. As such, transformations between musical elements are
emphasized. In the original framework of Lewin, the set of transformations often form
a group, with a corresponding group action on the set of musical objects. Within this
framework, Klumpenhouwer Networks (henceforth K-nets) have stressed the deep synergy
between set-theoretical and transformational approaches thanks to their anchoring in both
group and graph theory, as observed by many scholars [3]. We recall that a K-Net is
informally defined as a labelled graph, wherein the labels of the vertices belong to the set
of pitch classes, whereas arrows are labelled with possible transformations between these
pitch classes. An example of a K-Net is given in Figure 1. Klumpenhouwer networks allow
one to conveniently visualize at once the musical elements and the possible transformations
between them.

Following David Lewin’s [4] and Henry Klumpenhouwer’s [5] original group-theoretical
description, theoretical studies have mostly focused until now on the underlying algebraic
methods related to the automorphisms of the T/I group or of the more general T/M affine

2010 Mathematics Subject Classification. 00A65.
Key words and phrases. Transformational music theory, Klumpenhouwer network, relations, category the-

ory.
1



2 ALEXANDRE POPOFF, MORENO ANDREATTA, AND ANDRÉE EHRESMANN
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Figure 1. A Klumpenhouwer network (K-Net) describing a major triad.
The arrows are labelled with specific transformations in the T/I group
relating the pitch classes.

group [4], [6]. Following the very first attempt by Mazzola and Andreatta at formalizing
K-nets in a more general categorical setting as limits of diagrams within framework of deno-
tators [7], we have recently proposed a categorical construction, called Poly-Klumpenhouwer
Networks (henceforth PK-nets), which generalizes the notion of K-nets in various ways [8, 9].

We begin by recalling the definition of a PK-Net, introduced first in [8].

Definition 1. Let C be a category, and S a functor from C to the category Sets. Let ∆ be
a small category and R a functor from ∆ to Sets with non-void values. A PK-net of form
R and of support S is a 4-tuple (R,S, F, φ), in which

• F is a functor from ∆ to C,

• and φ is a natural transformation from R to SF .

A PK-net (R,S, F, φ) can be summed up by the following diagram. We detail below the
importance of each element of this diagram with respect to transformational music analysis.

∆ C

Sets

F

SR

φ

The category C and the functor S : C → Sets represent the context of the analysis.
Traditional transformational music theory commonly relies on a group acting on a given set
of objects: the T/I group acting on the set of the twelve pitch classes, the same T/I group
acting simply transitively on the set of the 24 major and minor triads, or the PLR group
acting simply transitively on the same set, to name a few examples. From a categorical
point of view, the data of a group and its action on a set is equivalent to the data of a
functor from a single-object category with invertible morphisms to the category of sets.
However, this situation can be further generalized by considering any category C along
with a functor S : C → Sets. The morphisms of the category C are therefore the musical
transformations of interest. For example, Noll [10] has studied previously a monoid of eight
elements and its action on the set of the twelve pitch classes: this can be considered as a
single-object category C with eight non-invertible morphisms along with its corresponding
functor S : C→ Sets, where the image of the only object of C is the set of the twelve pitch
classes.

The category ∆ serves as the abstract skeleton of the PK-Net: as such, its objects and
morphisms are abstract entities, which are labelled by mean of the functor F from ∆ to the
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category C. By explicitly separating the categories ∆ and C, we allow for the same PK-
Net skeleton to be interpreted in different contexts. For example, a given category C may
describe the relationships between pitch classes, while another category C′ may describe the
relationships between time-spans [2]. Different functors F : ∆→ C or F ′ : ∆→ C′ will then
label the arrows of ∆ differently with transformations from C or C′, depending on whether
the PK-Net describes pitch-classes or time-spans. Two PK-Nets may actually be related by
different kinds of morphisms of PK-Nets, which have been described previously [8, 9].

Note that the objects of ∆ do not represent the actual musical elements of a PK-Net:
these are introduced by the functor R from ∆ to Sets. This functor sends each object of ∆ to
an actual set, which may contain more than a single element, and whose elements abstractly
represent the musical objects of study. However, these elements are not yet labelled. In the
same way the morphisms of ∆ represent abstract relationships which are given a concrete
meaning by the functor F , these elements are labelled by the natural transformation φ.
The elements in the image of S represent musical entities on which the category C acts,
and one would therefore need a way to connect the elements in the image of R with those
in the image of S. However, one cannot simply consider a collection of functions between
the images of R and the images of S in order to label the musical objects in the PK-Net.
Indeed, one must make sure that two elements in the images of R which are related by a
function R(f) (with f being a morphism of ∆) actually correspond to two elements in the
images of S related by the function SF (f). The purpose of the natural transformation φ is
thus to ensure the coherence of the whole diagram.

While PK-Nets have been so far defined in Sets, there is a priori no restriction on the
category that should be used. For example, the approach of Mazzola and Andreatta in [7]
uses modules and categories of presheaves. As noticed in [8], PK-Nets could also be defined
in such categories. Alternatively, the purpose of this paper is to consider relational PK-Nets
in which the category Sets of sets and functions between them is replaced by the category
Rel of sets and binary relations between them. The reasons for doing so are detailed in the
next sections.

1.2. Limitations of PK-Nets. The definition of PK-Nets introduced above leads to musi-
cal networks of greater generality than traditional Klumpenhouwer networks, as was shown
previously in [8, 9]. In particular, it allows one to study networks of sets of different cardi-
nalities, not necessarily limited to singletons. We recall here a prototypical example showing
how a dominant seventh chord may be obtained from the transformation of an underlying
major chord, with an added seventh.

Example 1. Let C be the T/I group, considered as a single-object category, and consider its
natural action on the set Z12 of the twelve pitch classes (with the usual semi-tone encoding),
which defines a functor S : T/I → Sets. Let ∆ define the order of the ordinal number 2,
i.e. the category with two objects X and Y and precisely one morphism f : X → Y , and
consider the functor F : ∆→ T/I which sends f to T4.

Consider now a functor R : ∆ → Sets such that R(X) = {x1, x2, x3} and R(Y ) =
{y1, y2, y3, y4}, and such that R(f)(xi) = yi, for 1 ≤ i ≤ 3. Consider the natural transfor-
mation φ such that φX(x1) = C, φX(x2) = E, φX(x3) = G, and φY (y1) = E, φY (y2) = G],
φY (y3) = B, and φY (y4) = D. Then (R,S, F, φ) is a PK-net of form R and support S
which describes the transposition of the C major triad to the E major triad subset of the
dominant seventh E7 chord.

However, one specific limitation of this approach appears quickly: whereas transfor-
mations between sets of increasing cardinalities can easily be modeled in this framework,
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transformations between sets of decreasing cardinalities sometimes cannot. Consider for
example a PK-Net (R,S, F, φ) with a category ∆ with at least two objects X and Y and
a morphism f : X → Y between them, a functor R : C → Sets such that |R(X)| > 1 and
|R(Y )| > 1, and a group C with a functor S : C→ Sets. Consider two elements x1 and x2

of R(X), an element y of R(Y ), and assume that we have R(f)(x1) = R(f)(x2) = y. By
definition of the PK-Net, we must have SF (f)(φX(x1)) = SF (f)(φX(x2)) = φY (y), and
since C is a group this imposes φX(x1) = φX(x2), i.e. the two musical objects x1 and x2

must have the same labels.
As an example, there is no possibility to define a PK-Net showing the inverse transfor-

mation from a dominant seventh E7 chord to a C major triad. If one tries to define a new
PK-Net (R′, S, F ′, φ′) such that F ′(f) = T8, R′(X) = {x1, x2, x3, x4}, R′(Y ) = {y1, y2, y3},
and with a natural transformation φ′ such that φ′X(x1) = E, φ′X(x2) = G], φ

′
X(x3) = B,

and φ′Y (y1) = C, φY (y2) = E, φY (y3) = G, then one quickly sees that no function R′(f)
can exist which would satisfy the requirement that φ′ is a natural transformation from R to
SF ′, since all the elements constituting the seventh chord have different labels in Z12.

In a possible way to resolve this problem, and from the point of view that the E7 dominant
seventh chord consists of an E major chord with an added D note, we would intuitively like
to “forget” about the D and consider only the transformation of x1, x2, and x3 in R(X)
to y1, y2, and y3 respectively in R′(Y ). In other words, we would like to consider partial
functions between sets, instead of ordinary ones. In order to do so, one must abandon the
category Sets and choose a category which makes it possible to consider such morphisms.
This simple example motivates the introduction in this paper of relational PK-Nets based
on the category Rel of sets and binary relations between them. Although there also exists a
category Par whose objects are sets and morphisms are partial functions between them, the
use of Rel includes the case of partial functions as well as even more general applications,
as will be seen in the next sections.

1.3. The use of relations in transformational music theory. The use of relations be-
tween musical objects figures prominently in the recent literature on music theory. Perhaps
one of the most compelling examples is the work of Douthett and Cohn on parsimonious
voice-leading and its subsequent formalization in the form of parsimonious graphs [11, 12].
In order to formalize the notion of parsimony, Douthett introduced in [11] the Pm,n relation
between two pc-sets, the definition of which we recall here. We recall that a pitch class set
(pc-set) is a set in Z12 (which encodes the different pitch classes with the usual semitone
encoding).

Definition 2. Let O = {xk, 0 ≤ k ≤ l} and O′ = {yk, 0 ≤ k ≤ l} be two pc-sets of equal
cardinality l. We say that O and O′ are Pm,n-related if there exists a set Z = {zk, 0 ≤
k ≤ m + n − 1} and a bijection τ : O → O′ such that we have O − O′ = Z, τ(xi) = yi if
xi ∈ O ∩O′, and

• τ(xi) = zi ± 1 if 0 ≤ i ≤ m− 1, and
• τ(xi) = zi ± 2 if m ≤ i ≤ m+ n− 1.

In other words, if O′ is Pm,n-related to O, m pitch-classes in O move by a semi-tone,
while n pitch-classes move by a whole tone, the rest of the pitch classes being identical. Note
that Pm,n is a symmetric relation. From this definition, Douthett defines a parsimonious
graph for a Pm,n relation on a set H of pc-sets as the graph whose set of vertices is H and
whose set of edges is the set {(O,O′) | O ∈ H,O′ ∈ H,OPm,nO

′}. A notable example is
the “Cube Dance” graph, which is the parsimonious graph for the P1,0 relation (i.e. the
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Figure 2. Douthett’s “Cube Dance” graph as the parsimonious graph for
the P1,0 relation on the set of the 24 major and minor triads and the four
augmented triads.

voice-leading relation between chords resulting from the ascending or descending movement
of a single pitch class by a semitone) on the set H of 28 elements containing the 24 major
and minor triads as well as the four augmented triads. This graph is represented on Figure
2. One should note that this graph contains the subgraphs defined on the set H by the neo-
Riemannian operations L and P viewed as relations. Indeed, given O and O′ in H such that
O′ = L(O) or O′ = P (O), one can immediately verify by definition of these neo-Riemannian
operations that we have OP1,0O

′. This subgraph is called “HexaCycles” by Douthett. The
Cube Dance adds to “HexaCycles” the possible relations between the augmented triads and
the hexatonic cycles, which, as commented by Douthett, “serve as the couplings between
hexatonic cycles and function nicely as a way of modulating between hexatonic sets”.

Douthett also introduced the “Weitzmann’s Waltz” graph, which corresponds to the
parsimonious graph for the P2,0 relation (i.e. the voice-leading relation between chords
resulting from the ascending or descending movement of two pitch classes by a semitone)
on the set H of 28 elements containing the 24 major and minor triads as well as the four
augmented triads. This graph is represented on Figure 3.

Whereas relations can be described as graphs, which can then be used for musical appli-
cations, transformational analysis using relations is however trickier to define than in the
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Figure 3. Douthett’s “Weitzmann’s Waltz” graph as the parsimonious
graph for the P2,0 relation on the set of the 24 major and minor triads and
the four augmented triads.

case of groups and group actions. In the framework of Lewin, the image of a given x by the
group action of an element g of a group G is determined unambiguously. Hence, one can
speak about “applying the operation g to the musical element x”, or speaking about “the
image of the musical element x by the operation g”. Assume instead that, given a relation
R between two sets X and Y and an element x of X, there exists multiple y in Y such
that we have xRy. How can then one define “the image of the musical element x under the
relation R” ? This question motivates the use of the more general framework of relational
PK-Nets, which we define in the next section.

2. Defining Relational PK-Nets

Before introducing the definition of relational PK-Nets, we recall basic facts about rela-
tions and the associated category Rel.

2.1. The 2-category Rel. We first recall some basic definitions about relations.

Definition 3. Let X and Y be two sets. A binary relation R between X and Y is a subset
of the cartesian product X × Y . We say that y ∈ Y is related to x ∈ X by R, which is
notated as xRy, if (x, y) ∈ R.

Definition 4. Let R be a relation between two sets X and Y . We say that R is left-total
if, for all x in X, there exists at least one y in Y such that we have xRy.

Definition 5. Let X and Y be two sets, and R and R′ be two relations between them. The
relation R is said to be included in R′ if xRy implies xR′y, for all pairs (x, y) ∈ X × Y .

Relations can be composed according to the definition below.

Definition 6. Let X, Y , and Z be sets, R be a relation between X and Y , and R′ be a
relation between Y and Z. The composition of R′ and R is the relation R′′ = R′ ◦R defined
by the pairs (x, z) with x ∈ X and z ∈ Z such that there exists at least one y ∈ Y such that
xRy, and yR′z.
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By the definition below, sets and binary relations between them form a 2-category.

Definition 7. The 2-category Rel is the category which has

• sets as objects,

• relations as 1-morphisms between them, and

• inclusion as 2-morphisms between relations.

Notice that the definition of relations includes the particular case of functions between
sets: if R is a relation between two sets X and Y , then R is a function if, given an element
x in X, there exists exactly one y in Y such that we have xRy. As a consequence, the
category Sets of sets and functions between them is a subcategory of Rel. Notice also that
the definition of relations also includes the case of partial functions between sets: if R is
a relation between two sets X and Y , it may be possible that, given an element x in X,
there exists no y in Y such that we have xRy. Hence, the category Par of sets and partial
functions between them is also a subcategory of Rel.

Since Rel is a 2-category, the usual notion of a functor to Rel may be replaced by
the notion of a lax functor to Rel in order to take into account the 2-morphisms between
relations. This notion is defined more precisely below.

Definition 8. Let C be a 1-category. A lax functor F from C to Rel is the data of a map

• which sends each object X of C to an object F (X) of Rel, and

• which sends each morphism f : X → Y of C to a relation F (f) : F (X) → F (Y )
of Rel, such that for each pair (f, g) of composable morphisms f : X → Y and
g : Y → Z the image relation F (g)F (f) is included in F (gf).

A lax functor will be called a 1-functor (coinciding with the usual notion of functor
between 1-categories) when F (g)F (f) = F (gf).

Given two lax functors F and G to Rel, the usual notion of a natural transformation
η between F and G has to be replaced by that of a lax natural transformation, which we
define below.

Definition 9. Let C be a 1-category, and let F and G be two lax functors from C to Rel.
A lax natural transformation η between F and G is the data of a collection of relations
{ηX : F (X) → G(X)} for all objects X of C, such that, for any morphism f : X → Y , the
relation ηY F (f) is included in the relation G(f)ηX .

Finally, there exists a notion of inclusion of lax natural transformations, which we define
precisely below.

Definition 10. Let C be a 1-category, let F and G be two lax functors from C to Rel, and
let η and η′ be two lax natural transformation between F and G. We say that η is included
in η′ if, for any object X of C, the component ηX is included in the component η′X .

2.2. Relational PK-Nets. With the previous definitions in mind, we now give the formal
definition of a relational PK-Net.

Definition 11. Let C be a small 1-category, and S a lax functor from C to the category
Rel. Let ∆ be a small 1-category and R a lax functor from ∆ to Rel with non-void values.
A relational PK-net of form R and of support S is a 4-tuple (R,S, F, φ), in which

• F is a functor from ∆ to C,

• and φ is a lax natural transformation from R to SF , such that, for any object X of
∆, the component φX is left-total.
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The definition given above is almost similar to that of a PK-Net in Sets, but the speci-
ficities of the 2-category Rel impose slight adjustments. The first one is the requirement
that the functor R shall be a lax functor to Rel instead of a 1-functor. To see why this is
the case, let X, Y , and Z be objects of ∆, and let f : X → Y , g : Y → Z, and h : X → Z
be morphisms between them, with h = gf . Relations are more general than functions:
given the relation R(f) between the sets R(X) and R(Y ), it is possible that, for a given
element x in R(X) there exists multiple elements y in R(Y ) such that we have xR(f)y, or
even none at all. To be consistent, we require that, given x in R(X) and z in R(Z), we
have that xR(g) ◦R(f)z implies xR(h)z. However, we do not require the strict equality of
relations, as it gives more flexibility over the possible relations with the elements of R(Y ).
The first example below will clarify this notion in the case of the analysis of sets of varying
cardinalities, in particular for triads and seventh chords. Note that the same logic requires
that S shall be a lax functor to Rel as well.

The second adjustment corresponds to the requirement that φ shall be a lax natural
transformation from R to SF instead of an ordinary one. Let us recall the role of the
functor S and the natural tranformation φ in the case of PK-Nets in Sets. The lax functor
S defines the context of the analysis: for any objects e and e′ of C and a morphism f : e→ e′

between them, the sets S(e) and S(e′) represent all the possible musical entities of interest
and the function S(f) represents a transformation between them. Given a set of unnamed
musical objects R(X) (with X being an object of the category ∆), the component φX of
the natural transformation φ is a function which “names” these objects by their images in
SF (X). In the case of relational PK-Nets, since S(f) is a relation instead of a function, it
is possible that an element of S(e) may be related to more than one element of S(e′), or
even none. However, the relations between the actual musical objects under study in the
images of the lax functor R may not cover the range of possibilities offered by the relations
in the image of SF . Thus, we use a lax natural transformation φ instead of an ordinary
one, such that the images by φ of the relations given through R be included in those given
through SF . Informally speaking, the lax natural transformation φ “selects” a restricted
range of related elements among the possibilities given by the functor SF . In addition, we
require that each component of φ be left-total, so that all musical objects are “named” in the
images of the functor SF . All the constitutive elements of a relational PK-Net (R,S, Fφ)
are summed-up in the diagram of Figure 4. In addition, different examples in Section 3 of
this paper will clarify this notion.

We now give a simple example to illustrate the advantages of relational PK-Nets, in the
case of transformations between sets of varying cardinalities.

Example 2. Let C be the T/I group, considered as a single-object category, and consider its
natural action on the set Z12 of the twelve pitch classes (with the usual semi-tone encoding),
which defines a functor S : T/I → Rel. Let ∆ be the category with three objects X, Y , and
Z and precisely three morphisms f : X → Y , g : Y → Z, and h : X → Z, with h = gf .
Consider the functor F : ∆→ T/I which sends f to I3, g to I5, and h to T2.

Consider now a lax functor R : ∆→ Rel such that we have

• R(X) = {x1, x2, x3, x4}, R(Y ) = {y1, y2, y3}, and R(Z) = {z1, z2, z3, z4}, and

• the relation R(f) is such that xiR(f)yi, for 1 ≤ i ≤ 3, the relation R(g) is such that
yiR(f)zi, for 1 ≤ i ≤ 3, and the relation R(h) is such that xiR(f)zi, for 1 ≤ i ≤ 4.

Consider the left-total lax natural transformation φ such that

• φX(x1) = C, φX(x2) = E, φX(x3) = G, φX(x4) = G, and

• φY (y1) = E[, φY (y2) = B, φY (y3) = G], and
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Figure 4. Diagram showing the constitutive elements of a simple rela-
tional PK-Net (R,S, F, φ).

• φZ(z1) = D, φZ(z2) = F], φZ(z3) = A, φZ(z4) = C.

Then (R,S, F, φ) is a relational PK-net of form R and support S which describes the T2

transposition of the dominant seventh C7 chord to the dominant seventh D7 chord and the
successive I3 and I5 inversions of its underlying C major triad.

This simple example is of particular interest as it shows the advantage of relational PK-
Nets over the usual PK-Nets in Sets to describe transformations between sets of decreasing
cardinalities. Here, the relation R(f) is a partial function from R(X) to R(Y ) which “for-
gets” the element x4, allowing us to describe the transformation of the major triad on which
the initial seventh chord is built. The requirement that R be a lax functor appears clearly:
the composite relation R(g) ◦ R(f) only relates the first three elements x1, x2, and x3 of
R(X) to the first three elements z1, z2, and z3 of R(Z) (i.e. the underlying major triads),
whereas the relation R(h) = R(gf) relates all four elements, i.e. it describes the full trans-
formation of the seventh chord by the T2 transposition. We thus require that the relation
R(g) ◦R(f) be included in R(h).

Relational PK-Nets of form R can be transformed by the mean of PK-homographies,
whose definition is as follows.

Definition 12. A PK-homography (N, ν) : K → K ′ from a relational PK-Net K = (R,S, F, φ)
to a second relational PK-Net K ′ = (R,S′, F ′, φ′) consists of a functor N : C → C′ and a
left-total lax natural transformation ν : SF → S′F ′ such that F ′ = NF and the composite
lax natural transformation ν◦φ is included in φ′. A PK-homography is called a PK-isography
if N is an isomorphism and ν is an equivalence.

There exists a notion of inclusion of PK-homographies, defined as follows.
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Definition 13. Let (N, ν) : K → K ′ and (N ′, ν′) : K → K ′ be PK-homographies from a
relational PK-Net K = (R,S, F, φ) to a second relational PK-Net K ′ = (R,S′, F ′, φ′). We
say that (N, ν) is included in (N ′, ν′) if ν is included in ν′.

For a given lax functor R : ∆ → Rel, relational PK-Nets with fixed functor R form a
2-category RelPKNR, which is defined as follows.

Definition 14. For a given lax functor R : ∆ → Rel, the 2-category RelPKNR has
the relational PK-Nets of form R as objects, PK-homographies (N, ν) between them as 1-
morphisms, and inclusion of PK-homographies as 2-morphisms.

3. Relational PK-Nets in monoids of parsimonious relations

In this section, we revisit the work of Douthett about parsimonious relations, and show
how we can define proper relational PK-Nets for transformational music analysis on major,
minor, and augmented triads. We begin by defining a new monoid of parsimonious relations
originating from the Cube Dance.

3.1. The MUPL monoid. As discussed in Section 1.3, the Cube Dance graph presented in
Figure 2 results from the HexaCycles graph to which the vertices and edges corresponding to
the four augmented triads and their P1,0 relation to major and minor triads have been added.
The HexaCycles graph itself results from the neo-riemannian operations L and P viewed
as relations on the set of the 24 major and minor triads. We formalize the construction of
the CubeDance graph by defining three different relations on the 28-elements set of the 24
major and minor triads and the four augmented triads. We adopt here the usual semi-tone
encoding of pitch-classes with C = 0, and we notate a major chord by nM and a minor
chord by nm, where n is the root pitch class of the chord, with 0 ≤ n ≤ 11. For the four
augmented triads, we adopt the following notation: A[aug = 0aug, Faug = 1aug, Daug = 2aug,
and Baug = 3aug. All arithmetic operations are understood modulo 12, unless otherwise
indicated.

Definition 15. Let H be the set of the 24 major and minor triads and the four augmented
triads, i.e. H = {nM , 0 ≤ n ≤ 11} ∪ {nm, 0 ≤ n ≤ 11} ∪ {naug, 0 ≤ n ≤ 3}. We define the
following relations over H.

• The relation P is the symmetric relation such that we have nMPnm for 0 ≤ n ≤ 11,
and naugPnaug for 0 ≤ n ≤ 3. This is the relational analogue of the neo-Riemannian
P operation (not to be confused with the Pm,n relations).

• The relation L is the symmetric relation such that we have nML(n + 4)m for 0 ≤
n ≤ 11, and naugLnaug for 0 ≤ n ≤ 3. This is the relational analogue of the
neo-Riemannian L operation.

• The relation U is the symmetric relation such that we have nMU(n (mod 4))aug for
0 ≤ n ≤ 11, and nmU((n+ 3) (mod 4))aug for 0 ≤ n ≤ 11.

We are now interested in the monoid MUPL generated by the relations U , P, and L
under the composition of relations introduced in Section 2.1. The structure of this monoid
can be determined by hand through an exhaustive enumeration, or more simply with any
computational algebra software, such as GAP [13].
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Proposition 1. The monoid MUPL generated by the relations U , P, and L has for presen-
tation

MUPL = 〈U ,P,L | P2 = L2 = e, LPL = PLP, U3 = U ,
UP = UL, PU = LU , U2PU2 = PU2PU2P,
(UP)2U2 = P(UP)2U2P, U2(PU)2 = PU2(PU)2P〉

and contains 40 elements.

The Cayley graph of this monoid is presented on Figure 5. The only inversible elements
of the MUPL monoid belong to the set {e,L,P,LP,PL,LPL}, which forms a subgroup in
MUPL isomorphic to the dihedral group D6 generated by the neo-Riemannian operations P
and L.

In view of building PK-isographies between relational PK-Nets on MUPL, the next propo-
sition establishes the structure of the automorphism group of the MUPL monoid.

Proposition 2. The automorphism group of the MUPL monoid is isomorphic to D6 × Z2.

Proof. Any automorphism N of the MUPL monoid is entirely determined by the image of
its generators. Since L and P are the only inversible generators, their images belong to the
D6 subgroup {e,L,P,LP,PL,LPL} and induce an isomorphism of this subgroup. From
known results about dihedral groups, we have Aut(D6) ' D6, and the images are given by
N(P) = (PL)m+nL, and N(L) = (PL)nL, with m ∈ {−1, 1} and n ∈ {0, 1, 2}.

This defines a homomorphism Φ from Aut(MUPL) to D6 which associates to any auto-
morphism N of MUPL the automorphism of D6 induced by the images of L and P.

The kernel of Φ consists of the subgroup of Aut(MUPL) formed by the automorphisms
N such that N(L) = L and N(P) = P. It is thus uniquely determined by the possible
images of the remaining generator U by N . An exhaustive computer search shows that
only N(U) = U and N(U) = PUP yield valid automorphisms, i.e. N(U) = PkUPk, with
k ∈ {0, 1} considered as the additive cyclic group Z2. Thus Aut(MUPL) is an extension of
Z2 by D6, and any automorphism N is uniquely determined by the pair (g, k) where g is an
element of Aut(D6), and k is an element of Z2.

Let N1 = (g1, k1) and N2 = (g2, k2) be two automorphisms of the MUPL monoid and
consider N = N2N1 = (g, k). From the discussion above, we have g = g2g1. The image of
the generator U by N is

N(U) = N2(Pk1UPk1),

which is equal to

N(U) = ((PL)m2+n2L)k1Pk2UPk2((PL)m2+n2L)k1 .

Since we have PU = LU and UP = UL, all the terms P in this last equation can be replaced
by L, and since L2 = e, this yields

N(U) = Lk1+k2ULk1+k2 .

Hence, we have N = N2N1 = (g, k) = (g2g1, k2 + k1), thus proving that Aut(MUPL) is
isomorphic to D6 × Z2. �

We now illustrate the possibilities offered by the MUPL monoid for transformational
analysis using relational PK-Nets. Figure 6(a) shows a reduction of the opening chord
progression of the song Take A Bow by the English rock band Muse. This progression
proceeds by semitone changes from a major chord to an augmented chord to a minor chord.
At this point, the minor chord evolves to a major chord on the same root, i.e. the two
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Figure 5. The Cayley graph of the monoid MUPL generated by the rela-
tions U , P, and L. The relations L and P are involutions, and are repre-
sented as arrowless dashed and dotted lines.

chords are related by the neo-Riemannian operation P . The same process is then applied
five times till the middle of the song (only the first twelve chords are presented in Figure
6(a)).

A first transformational analysis of this progression can be realized as follows. We focus
here on the first four chords, since the progression further proceeds identically. The data of
the monoid MUPL and the relations over H of its elements defines a functor S : MUPL →
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(a)

DM Daug Gm
U U

GM Baug Cm
P U U

CM Caug Fm

P

U U
FM Faug B[mP U U

(b)

DM

Daug

Gm

U

U

U2

GM

Baug

Cm

U

U

U2(N = Id, Fν)

CM

Caug

Fm

U

U

U2(N = Id, Fν)

FM

Faug

B[m

U

U

U2(N = Id, Fν)

(c)

Figure 6. (a) Reduction of the opening progression of Take A Bow from
Muse (the first twelve chords are represented here). (b) First transforma-
tional analysis in the MUPL monoid showing the sequential regularity of
the progression. (b) Second transformational analysis in the MUPL monoid
showing the successive transformations of the initial three-chord cell by the
homography (N = Id, Fν) with ν(nM ) = (n+ 5)M , ν(nm) = (n+ 5)m, and
ν(naug) = (n+ 1 (mod 4))aug.

Rel. Let ∆ define the order of the ordinal number 4 (whose objects are labelled Xi,
with 0 ≤ i ≤ 3), and let R be the functor from ∆ to Rel which sends the objects Xi

of ∆ to singletons {xi}. Let F be the functor from ∆ to MUPL which sends the non-
trivial morphisms f0,1 : X0 → X1 and f1,2 : X1 → X2 of ∆ to U in UPL, and the non-
trivial morphism f2,3 : X2 → X3 of ∆ to P in UPL. Finally, let φ be the left-total lax
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natural transformation which sends x0 to DM , x1 to Daug, x2 to Gm, and x3 to GM . Then
(R,S, F, φ) is a relational PK-Net describing the opening progression of Figure (a). This
PK-Net (and its extension to the remaining chords) is shown in a simplified way, by directly
labelling the arrows between the chords with the elements of MUPL. Given two chords on the
left and right side of a labelled arrow between them, one should remain aware that this does
not mean that the chord on the right is the unique image of the chord by the given element
of MUPL. From a relational point-of-view, as discussed in Section 2.2, one should consider
instead the chord on the right to be related to the one on the left by the element of MUPL,
among the possibly larger range of possibilities given by the functor S : MUPL → Rel. For
example, given the chord Daug, there exists six chords y (namely DM , F]M , B[M , E[m,
Bm, and Gm) such that we have DaugUy. Here, the left-total lax natural transformation φ
allows us to select precisely one chord, Gm, to explain the given chord progression.

This relational PK-Net shows the regularity of the chord progression, but does not clearly
evidence the progression by fifths of the initial three-chord cell. We propose now a second
transformational analysis based on a specific PK-Net isography and its iterated application
on a relational PK-Net describing this initial cell.

Let ∆ define the order of the ordinal number 3 (whose objects are labelled Xi, with
0 ≤ i ≤ 2), and let R be the functor from ∆ to Rel which sends the objects Xi of ∆
to singletons {xi}. Let F be the functor from ∆ to MUPL which sends the non-trivial
morphisms f0,1 : X0 → X1 and f1,2 : X1 → X2 of ∆ to U in UPL. Finally, let φ be
the left-total lax natural transformation which sends x0 to DM , x1 to Daug, x2 to Gm.
Then (R,S, F, φ) is a relational PK-Net describing the initial three-chord cell of Figure (a).
Consider now the identity functor N = Id on MUPL, along with the left-total lax natural
transformation ν : S → S defined on the set of the major, minor, and augmented triads by
ν(nM ) = (n+ 5)M , ν(nm) = (n+ 5)m, and ν(naug) = (n+ 1 (mod 4))aug. By applying the
PK-isography (N,Fν) on (R,S, F, φ), one obtains a second relational PK-Net (R,S, F, φ′)
such that φ′ sends x0 to GM , x1 to Baug, x2 to Cm, thus describing the progression by fifth
of the initial cell. The successive chords are given by the iterated application of the same
PK-isography (N,Fν).

3.2. The MS , MT , and MST monoids. In the previous monoid of parsimonious relations,
we distinguished the subrelations U , P, and L included in the P1,0 relation in order to
differentiate the contributions of the neo-Riemannian operations P and L, and the relation
U which bridges the hexatonic system via the augmented triads. However, we could also
consider Douthett’s P1,0 relation as a whole, to focus on the parsimonious voice-leading
between chords by semitone displacement.

For clarity of notation, we rename the P1,0 relation as S and we recall its definition on
the set of major, minor, and augmented triads.

Definition 16. Let H be the set of the 24 major and minor triads and the four augmented
triads, i.e. H = {nM , 0 ≤ n ≤ 11} ∪ {nm, 0 ≤ n ≤ 11} ∪ {naug, 0 ≤ n ≤ 3}. The S relation
over H is defined as the symmetric relation such that we have

• nMSnm, nMS(n+ 4)m, and nMS(n (mod 4))aug for 0 ≤ n ≤ 11, and

• nmSnM , nmS(n+ 8)M , and nmS((n+ 3) (mod 4))aug for 0 ≤ n ≤ 11.

We are now interested in the monoid generated by the relation S, under the composition
of relations introduced in Section 2.1. The structure of this monoid can easily be determined
by hand or with a computer.
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Figure 7. A possible path for the progression from A major to F] major
by successive semitone displacement. The labels above the arrows indicate
that the chord on the right is related to the chord on the left by the S
relation. The corresponding semitone displacements are indicated by the
curved violet arrows.

Proposition 3. The monoid MS generated by the relation S has for presentation

MS = 〈S | S7 = S5〉.

As a quick application of this monoid, consider the following example. The data of the
monoid MS and the relations over H of its elements defines a functor S : MS → Rel. Let
∆ define the order of the ordinal number 2, i.e. the category with only two objects X
and Y and only one non-trivial morphism F : X → Y between them, and let R be the
functor from ∆ to Rel which sends the objects X and Y of ∆ to the singletons {x} and
{y}. Let C be the MP1,0

-monoid with the above-defined functor S : MS → Rel. Finally,
let φ be the left-total lax natural transformation which sends x to AM , and y to F]M .
We are interested in the possible functors F such that (R,S, F, φ) is a relational PK-Net
describing the relation between AM and F]M . A rapid verification through the elements of

MS yields that only F (f) = S3 and F (f) = S5 yield valid choices for F . Observe that these
relations correspond to the first two shortest distances between AM and F]M in the Cube
Dance of Figure 2. A possible path for the progression from AM to F]M by three successive
semitone displacements is given in Figure 7, which shows the successive relations AMSFaug,
FaugSB[m, and B[mSF]m.
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Figure 8. The Cayley graph of the monoid generated by the relations S
and T .

As introduced in Section 1.3, Douthett also studied the parsimonious graph induced by
the P2,0 relation on the set of major, minor, and augmented triads (the “Weitzmann’s
Waltz” graph shown in Figure 3). The P2,0 relation relates two pitch-class sets if one can
be obtained from the other by the displacement of two pitch-classes by a semitone each,
which includes both the case of the parallel displacement of these pitch classes, as well as
their contrary movement.

As before, we rename the P2,0 relation as T for clarity of notation, and we recall its
specific definition on the set of major, minor, and augmented triads.

Definition 17. Let H be the set of the 24 major and minor triads and the four augmented
triads, i.e. H = {nM , 0 ≤ n ≤ 11} ∪ {nm, 0 ≤ n ≤ 11} ∪ {naug, 0 ≤ n ≤ 3}. The T relation
over H is defined as the symmetric relation such that we have

• nMT (n + 4)M , nMT (n + 8)M , nMT (n + 1)m, nMT (n + 5)m, and nMT ((n + 3)
(mod 4))aug for 0 ≤ n ≤ 11, and

• nmT (n+4)m, nmT (n+8)m, nmT (n+11)M , nmT (n+7)M , and nmT (n (mod 4))aug
for 0 ≤ n ≤ 11.

As before, the structure of the monoid MT generated by the relation T can easily be
determined.

Proposition 4. The monoid MT generated by the relation T has for presentation

MT = 〈T | T 4 = T 3〉.

Transformational analysis using relational PK-Nets can be performed in the context of
the monoid MT , but it should be noticed that given two chords x and y there may not
always exist a relation R in MT such that xRy. Therefore, it may be interesting to combine
both the S and the T relations in order to describe the relations between chords by a series
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Figure 9. Transformational analysis of the progression A major to F] ma-
jor in the context of the MST monoid. The semitone changes are indicated
by the violet arrows.

of one or two pitch class movements by semitones. We are thus interested in the structure
of the monoid MST generated by the relations S and T .

Proposition 5. The monoid MST generated by the relations S, and T has for presentation

MST = 〈S, T | T S = ST , S3 = ST , T 4 = T 3, T S2 = T 2, ST 3 = ST 2〉,
and contains eight elements.

The Cayley graph of this monoid is represented on Figure 8. As a quick application of
this monoid, consider the above mentionned example for the relation between AM and F]M
and let C be the new monoid MST . An enumeration of the elements of this monoid yields
that only F (f) = T S and F (f) = ST 2 yield valid choices for F . A possible path for the
progression from AM to F]M is shown in Figure 9, which shows the successive relations
AMSFaug and FaugT F]m.

4. Conclusions

We have presented in this work a new framework, called relational PK-Nets, in which we
consider diagrams in Rel rather than Sets as an extension of our previous work on PK-Nets.
We have shown how relational PK-Nets capture both the group-theoretical approach and
the relational approach of transformational music theory. In particular, we have revisited
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the parsimonious relations Pm,n of Douthett by studying the structure of monoids based on
the P1,0 or P2,0 relations (or subrelations of these), and their corresponding functors to Rel
relating major, minor, and augmented triads. Further perspectives of relational PK-Nets
include their integration for computational music theory, providing a way for the systematic
analysis of music scores.
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