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Abstract 
Quantifying the amount and content of information transfer between neural populations is            

crucial to understand brain dynamics and cognitive functions. Most data-driven methods exploit            

the notion of Wiener-Granger causality, a statistical concept based on temporal prediction.            

Transfer Entropy and Directed Information formalise this notion by means of information            

theoretical quantities and can capture any (linear and nonlinear) time-lagged conditional           

dependencies, thus quantifying the amount of information flow between neural signals.           

Nevertheless, none of these metrics can reveal what type of information is exchanged. To              

address this issue, we developed a new measure called Feature-specific Information Transfer            

(FIT) that is able to quantify both the amount and content of information transfer between               

neuronal signals. We tested the novel metric on simulated data and showed that it successfully               

captures feature-specific information transfer in different communication scenarios including         

feedforward communication, external confounding inputs and synergistic interactions. Moreover,         

the FIT measure displayed sensitivity to modulations in temporal parameters of information            

transfer and signal-to-noise ratios, and correctly inferred the directionality of transfer between            

signals. We then tested FIT’s ability to track feature-specific information flow from            

neurophysiological data. First, we analysed human electroencephalographic data acquired         

during a face detection task and confirmed current hypotheses suggesting that information            

about the presence of an eye in a face image flows from the contralateral to the ipsilateral                 

hemisphere with respect to the position of the eye. Second, we analysed multi-unit activity data               

recorded from thalamus and cortex of rat’s brain, and showed that the FIT measure successfully               

detected bottom-up information transfer about visual or somatosensory stimuli in the           

corresponding neural pathway. Third, we analysed cortical high-gamma activity estimated from           

human magnetoencephalographic data during visuomotor mapping, and confirmed the notion          

that visuomotor-related information flows from superior parietal to premotor areas. Altogether           

our work suggests that the FIT measure has the potential to uncover previously hidden              

feature-specific information transfer from neural data and provide a better understanding of            

brain communication. 

2 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/758128doi: bioRxiv preprint first posted online Sep. 8, 2019; 

http://dx.doi.org/10.1101/758128


Introduction 
Cognitive functions arise from the dynamic coordination of neural activity over large-scale            

networks ​(Bressler and Menon, 2010; Varela et al., 2001; von der Malsburg et al., 2010)​.               

Tracking how neural populations and brain regions interact and exchange information is            

therefore crucial for modern neuroscience. To quantify the degree of interaction, functional            

connectivity (FC) measures include various forms of statistical dependencies between neural           

signals, such as linear correlation and Granger causality measures ​(Bressler and Seth, 2011;             

Brovelli et al., 2004; Ding et al., 2006; Granger, 1980; Seth et al., 2015)​. Transfer Entropy                

(Schreiber, 2000) and Directed Information ​(Massey, 1990) represent the most general           

model-free measures of Wiener-Granger causality, and capture any (linear and nonlinear)           

time-lagged conditional dependence between neural signals ​(Vicente et al., 2011; Wibral et al.,             

2014)​. 

Directed Information, however, does not cast light on the information content – i.e., what type               

of information is carried. Ince and collaborators have proposed a conditional (i.e.,            

stimulus-specific) measure of Directed Information (DI), called Directed Feature Information          

(DFI) ​(Ince et al., 2015)​. However, due to its theoretical construction, the DFI can be negative.                

This poses questions regarding its suitability as a measure of feature-specific information            

transfer. In the current paper, we exploit a recent extension of Shannon Information theory,              

called Partial Information Decomposition ​(Williams and Beer, 2010) to develop a novel            

non-negative measure of feature-specific information transfer. The Partial Information         

Decomposition (PID) framework allows to quantify the information that several sources provide            

individually (​unique information), shared (​redundant information) or jointly (​synergistic         

information) about a target variable. Most importantly, these terms are non-negative. Within this             

framework, we propose a novel metric named Feature-specific Information Transfer (FIT), which            

formalizes this notion as a form of information redundancy between the past of the sender and                

the present activity of the receiving node, unique with respect to the past of the receiving node.                 

Here, we investigated the relevance of the proposed approach on simulated data formalizing             

different scenarios of information transfer between two signals. Then, we tested FIT’s ability to              

track feature-specific information flow from neurophysiological data recorded from human          

participants in cognitive settings (EEG and MEG) and from rats (multi-unit activity) during             

multisensory stimulations.  
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Results 
Feature-specific Information Transfer (FIT) 

Feature-specific Information Transfer (FIT) is a model-free measure that quantifies the           

amount of information transfer from a neural signal (i.e., the sender) to a neural signal (i.e.,         X        Y  

the receiver) ​about an experimental variable . Such ​feature ​may represent any experimental      S        

variable under investigation, such as stimulus type, behavioral response or experimental           

condition. The formulation of the FIT exploits latest advances in the field of information theory, in                

particular the Partial Information Decomposition framework ​(Williams and Beer, 2010)​. Within           

this framework, FIT is defined as the ​redundant ​information about shared between the          S     

present of a receiving node and the past of the sending node , which is ​unique (i.e.,    Y t         X t−d      

absent) with respect to the past of the receiver (see Materials and Methods for details         Y t−d        

about the derivation of the FIT measure). 

We performed numerical simulations capturing multiple scenarios of stimulus-specific         

information transfer to test the significance of the FIT measure. We designed three scenarios              

exemplifying prototypical patterns of information transfer that could occur between neural           

populations. The first scenario modeled a feedforward stimulus-specific transfer from to          X   Y  

(Fig. 1A left). As expected, both DI, DFI and FIT captured the transfer and showed a significant                 

peak at 50 msec (Fig. 1A). However, the DFI displayed negative values in the baseline period                

compared to the FIT which, by definition, is non-negative. The biased-corrected versions of the              

information measures showed a similar behavior, as shown in the bottom row in (Fig. 1A). The                

second scenario mimicked a transfer of information that cancelled in (Fig. 1B left). The aim of          Y       

this scenario was to test the ability of different measures to distinguish between             

stimulus-dependent and stimulus-independent information transfer. Since the DI lacks the ability           

to discern stimulus-dependent from stimulus-independent information transfer, as expected, we          

observed a significant increase (Fig. 1B, left panel). However, both the DFI and FIT correctly               

reflected the lack of stimulus-specific transfer (Fig. 1B right panels). In the third scenario (Fig.               

1C), we simulated a condition in which an external confounding signal was injected to the               

receiving node , without passing through the communication channel between and (Fig.  Y         X   Y   

1C, left panel). The DI, both bias-corrected and uncorrected, erroneously indicated an            

information transfer between and . However, neither the DFI nor FIT measures showed a   X   Y           

significant peak. We should note, however, that the DFI, as in Fig. 1B, exhibited significant               
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negative values aligned with the transfer. Overall, these results indicated that the FIT measure              

successfully tracked feature-specific information transfer and, unlike the DFI, it provided           

non-negative estimates.  

 

Figure 1. Three communication scenarios testing for Feature-specific Information Transfer. ​A ​Scheme of a              
simulation scenario representing the most basic transfer of information about S from X to Y without any extra                  
confounders (left panel). On the right, ​all information quantities clearly show a significant peak where the                
communication occurs in their both uncorrected and bias corrected (QE) versions. It is noteworthy though, that peaks                 
of DFI are much smaller in comparison to its surrogates (grey area). ​B. ​Scheme of a simulation scenario representing                   
an information transfer from X to Y that does not convey information about S, though the information is present in X.                     
In the right panel, ​first, DI, both corrected and uncorrected, correctly reflects an information transfer between X and Y.                   
On the contrary, neither the DFI nor FIT show a significant peak. ​C​. Scheme of a simulation scenario representing an                    
information transfer from X to Y that does not convey information about S, though the information is present in X. And                     
an extra source of information about a different stimulus S’ drawn from the same probability distribution as S (left                   
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panel). Whereas the DI shows a increase in information transfer, both the DFI and FIT correctly detect the absence of                    
stimulus-specific information transfer. We should note, however, that the DFI contains significant negative values. 

In order to demonstrate that FIT reflects the amount of stimulus information transfer, rather              

than a global information transfer between neural signals, we performed further numerical            

simulations using the first scenario by varying the noise level (i.e., parameter) and stimulus           α     

amplitudes (i.e., parameter) in the signals. The results showed that DI increases both with  β              

noise and stimulus level (Fig. 2, left panel). As expected, DI does not dissociate between noise                

and amplitude components of the information transfer. On the other hand, the FIT measure              

decreased with increasing noise level (Fig. 2A mid-top panel) and increases with stimulus gain              

(Fig. 2B mid-bottom panel). Such behavior is further exemplified in Fig. 2 (right panels), and               

thus demonstrates the feature-specificity of the FIT measure. 

 
Figure 2. Dependence on noise level and signal amplitude. ​A. ​Dependence on noise level ( coefficient) on DI              α     

(left panel) and FIT (central panel). Whereas the DI increase with noise level, the FIT metric shows a decreasing                   

pattern (central and right panels). ​B​. Dependence on stimulus amplitude ( coefficient) on the DI (left panel) and FTI          β         

(central panel). Both the DI and FIT increase with stimulus amplitude (right panel). 
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In the brain, information transmission between neural populations may display large           

variability in duration and occur at variable delays depending on the neural pathway and              

experimental condition under investigation. We thus performed numerical simulations to study           

the influence of key temporal parameters of information flow on the DI, DFI and FIT measures.                

To do so, we performed simulations using the first scenario (Fig. 1A) and varied: i) the width of                  

the information peaks in signals and (40 and 80 msec); ii) the temporal interval between     X   Y           

peaks (5 and 20 msec); iii) delays with respect to the peak in at which the information             Y      

measures were computed (10, 30 and 50 msec prior to the information peak in ). Please note              Y    

that in all simulations, information transfer peaked at 60 msec. The results showed a sensitivity               

of the DI and DFI with respect to the width of the information peak: the time course of the DI and                     

DFI was narrower for short width values (third row in Fig. 3B) than for long width values (first                  

and second rows in Fig. 3B). However, the DI and DFI measure did not reflect modulations of                 

either the temporal interval between peaks (first versus second row in Fig. 3B) or the delay at                 

which the measures were computed (different colors in Fig. 3B). On the other hand, the FTI                

measure reflected modulation in the delay between the past and present of (different         X     Y   

colors in Fig. 3B right panels). For the shortest delay (10 msec, red curves in Fig. 3B),                 

stimulus-specific information dropped earlier than for longer delays (50 msec, purple curves in             

Fig. 3B, right panels). The dependence on delays was absent for peak widths of 80 msec and                 

peak intervals of 5 and 20 msec (first and second rows of Fig. 3B right panels, respectively).                 

However, a dependence on the temporal interval between peaks was observed - i.e., the time               

courses of the FIT for short width values (third row in Fig. 3B) was narrower than for long width                   

values (first and second rows in Fig. 3B). 
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Figure 3. Dependence on temporal parameters. ​Simulations using the basic transfer scenario ​A. The first row in ​B                  

depicts simulation results for wide information peaks in X and Y (80 msec) and short interval between peaks (5                   

msec); the second row shows simulations with wide information peaks in X and Y (80 msec) and long interval                   

between peaks (20 msec); the third row reflects narrow peaks (40 msec) and short interval between peaks (5 msec).                   

The left column shows the mean activity for X (blue curve) and Y (red curve). The different colors in the 2nd to 4th                       

columns are associated with different delays at which the information measures were computed (10, 30 and 50 msec                  

prior to the information peak in Y). 

We then addressed a key question in neural data analysis which pertains the detection of               

directionality of information transfer between neural populations. To investigate the ability of the             

DI, DFI and FIT measures to detect correct directionality, we performed simulations to test              

directionality sensitivity based on the first scenario with signal peaks width of 80 msec and               

distances between peaks of 5, 15 and 25 msec (different rows in Fig. 4). Figure 4 shows that                  

the DI and DFI did not provide clear directional information when the delay was short with                

respect to the overlap (top row in Fig. 4). However, the FIT clearly demonstrated consistent               

behavior across all parameters, correctly capturing the correct direction of transfer of information             

from X to Y (Fig. 4, right panels). 
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Figure 4. Directionality detection. Information flow analysis from X to Y (blue curves) and from Y to X (red                   
curve).The left column shows the mean activity of X (green curve) and Y (yellow curve). The DI, DFI and FTI                    
measures are displayed in the second, third and fourth columns, respectively. ​A. Short distances between peaks (5                 
msec) and large overlap of neural activity. ​B.​ Intermediate distance (15 msec). ​C.​ Long distance (25 msec).  

To further instigate the robustness of the FIT to noise, we performed additional simulations              

using the first scenario and tested noise levels at the limit of detectability for the DI and DFI                  

measures (Suppl. Fig. 1A). In the high-noise condition, we added a sine wave with a period of                 

200 msec and random phase at each trial to both signals and . The low-noise condition           X   Y     

had a constant value added to both signals, thus decreasing the relative difference between the               

baseline and the peak. Indeed, the results showed that, whereas the DI and DFI could not                

capture the information transfer significantly from the data (Suppl. Fig. 1B, second and third              

columns), the FIT was more robust to noise (Suppl. Fig. 1B, fourth column).  

Then, we investigated how the different measures behave when synergistic effects are            

present. Indeed, the mathematical decomposition of the DFI in different terms of the PID              

framework (Williams & Beer, 2010) shows that the DFI contains several synergistic terms, which              
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may lead to negative values of the measure (please refer to the Supplementary Methods for the                

mathematical proof). We thus designed a scenario (Suppl. Fig. 1C) in which the co-occurrence              

of signal similarity and correlations of opposite sign was injected in the nodes ​(Pola et al., 2003)​.                 

In such scenario, the stimulus-dependent correlations had opposite sign with respect to signal             

similarity and they were orders of magnitude higher than stimulus independent correlations. As             

expected, the DFI yielded significant negative values, while both DI and FIT displayed a              

significant increase (Suppl. Fig. 1C). Therefore, we can conclude that the FIT successfully             

recovered stimulus-specific information transfer even in cases of strong synergistic effects. 

As a last control analysis, we investigated the susceptibility of the different measures to the               

sampling bias, which is known to affect information theoretical measures ​(Panzeri et al., 2007;              

Panzeri and Treves, 1996)​. We tested the behavior of the DI, DFI and FIT on all three scenarios                  

with varying number of samples (Suppl. Fig. 2). The results confirmed that FIT values grow               

quadratically with logarithm of number of samples (Suppl. Fig. 2). This bias can, however, be               

corrected using the quadratic extrapolation procedure introduced in ​(Strong et al., 1998)​. Using             

the correction, we showed that it is possible to obtain reliable values of FIT with approximately a                 

10th of the number of samples. 

Tracking feature-specific information flow from neurophysiological      

data 
We analyzed three datasets to investigate the ability of the FIT measure to track              

feature-specific information flow from neurophysiological data. 

Information transfer during face detection (human EEG) 

Previous work on human face detection has shown that the rising part of the EEG response                

(i.e., the N170 component in the contralateral electrodes, roughly 120-170 ms post-stimulus)            

predominantly reflects the encoding of a single feature: the contralateral eye (Rousselet et al.,              

2014). More recent results (Ince et al., 2016) suggested that information about presence of an               

eye (left or right eye) on a picture is crucial for correct categorization. Eye-related information               

was suggested to flow from the contralateral to the ipsilateral hemisphere with respect to the               

position of the eye (Fig. 5A). Here, we tested whether the FIT measure could detect eye-specific                

information flow between hemispheres by means of analyses of an EEG dataset collected from              

human participants performing a face detection task ​(Rousselet et al., 2014)​. Subjects were             

asked to detect the presence of a face or a random texture while the image was covered by a                   
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bubble mask. The FIT values clearly showed a transfer of information from the right to the left                 

hemisphere about the presence of the left eye in the image (Fig. 5B). The increase in FIT                 

spanned a time interval between approximately 150 to 190 msec after stimulus-onset (Fig. 5B,              

solid lines) and transfer delay of approximately 10 to 50 msec (Fig. 5B and D). Furthermore, we                 

compared all four possible of transfer directions and positions of the eye on the image (i.e., from                 

ipsi to contralateral and vice versa, and left and right eye, respectively). We confirmed that               

information transfer was significant exclusively from contralateral to ipsilateral hemisphere (Fig.           

5C and F). A clear difference in FIT was observed between the expected directional flows: from                

right to left hemispheres for the left eye and from left to right hemisphere for the right eye (Fig.                   

5C). For the condition “left eye” in which a right-to-left transfer was observed, we compared the                

values in the cluster that captured the transfer (referred to as “comm”) to a cluster of the same                  

shape and size, but positioned elsewhere on the timeline with no overlap (“no comm”). In               

addition, we computed the information measures for surrogate values obtained by randomly            

shuffling stimulus values (left-eye visibility). The results showed that FIT values were            

significantly higher in the communication period than those obtained at different time points and              

with respect to surrogates; this was true for both QE corrected and uncorrected FIT (Fig. 5E).                

Finally, we tried to quantify the transfer using DI and DFI and, unlike the FIT, these measures                 

proved to be unable to capture the stimulus-specific transfer (Fig. 5F). 
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Figure 5. FIT and face detection. ​A. Expected information flow patterns. LOT and ROT refer to the Left and Right                    
Occipito-Temporal sensors, respectively. ​B. FIT map (delays versus time) capturing the transfer of information about               
left eye from the right to the left hemisphere. Line plots above and below show mutual information between the given                    
occipito-temporal sensor (either sending or receiving one) and visibility of the left eye. ​C. FIT values averaged across                  
delays for all combinations of transfer direction and eye. ​D Nonparametric statistical test ​(Maris and Oostenveld,                
2007) were used to identify significant clusters of FIT values. The upper plot shows the raw values of FIT and the                     
bottom one displays the cluster that was identified as significant. ​E. FIT values during the transfer period (comm)                  
compared to a cluster of the same shape and size, but positioned elsewhere on the timeline with no overlap (no                    
comm) and surrogate values obtained by random shuffling of the stimulus values (left eye visibility). ​F. Comparison                 
between a given contra to ipsilateral transfer (L – left, R - right) and the two ipsi to contralateral transfers for DI, DFI                       
and FIT and both eyes (LE and RE). 
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Information transfer during multisensory stimulation (rodent MUA) 

In the visual system, sensory information flows from the eye receptors to the primary visual               

cortex (V1) through the Lateral Geniculate Nucleus (LGN) of the thalamus; in somatosensory             

systems, information flows from the whiskers receptors to the primary somatosensory cortex            

(S1) through the Ventral Posteromedial nucleus (VPM) of the thalamus (Fig. 6A). The aim of our                

analyses was to detect the presence of stimulus-specific information transfer from thalamus to             

cortex. In particular, we investigated the ability of our novel measure to characterize the              

properties of neural information flows in two neural circuits: 1) the flow of visual information               

along the pathway from the eyes to the primary visual cortex (V1) through the Lateral               

Geniculate Nucleus (LGN) of the thalamus; 2) the flow of somatosensory information from the              

whiskers receptors to the primary somatosensory cortex (S1) through the Ventral Posteromedial            

nucleus (VPM) of the thalamus. We computed information quantities for all combinations of             

direction of transfer (from LGN to V1, from V1 to LGN, from SPM to VPM and from VPM to                   

SPM). Two stimulation protocols (conditions) were analysed: 1) unimodal visual stimulation           

versus bimodal stimulation (simultaneous visual and tactile); 2) unimodal tactile stimulation           

versus bimodal stimulation (simultaneous visual and tactile). We considered only stimulation           

contralateral to the recording regions. We expected to observe significant FIT values for the              

somatosensory pathway (from VPM to S1) in condition 1, and for the visual pathway (from LGN                

to V1) in condition 2. Information theoretical measures were computed for every subject and              

then we averaged across rats. 

In the somatosensory domain, the DI from the thalamus (VPM) to the cortex (S1) increased               

for both stimulation conditions (Fig. 6B, left and right panels). This phenomenon was observed              

also in the visual pathway (Suppl. Fig. 3B). For the somatosensory pathway, the DI augmented               

in a time interval ranging between 20 and 30 msec after stimulation (Fig. 6B). For the visual                 

pathway, the DI augmented in a time interval ranging between 50 and 70 msec after the                

stimulation with a transfer lag of approximately 10 to 20 msec (Suppl. Fig. 3B). Modulations in                

DI were similar (p=0.68) across stimulation protocol (Fig. 6F, top-left panel). On the other hand,               

the FIT displayed a significant increase only for the stimulus feature encoded in the neural               

pathway (Fig. 6D and Suppl. Fig. 3D, top panels). For the somatosensory pathway, the FIT               

increased in a time interval from approximately 20 to 30 msec after the stimulation (Fig. 6C). For                 

the visual pathway, the FIT increased in a time interval from approximately 50 to 70 msec after                 

stimulation (Suppl. Fig. 3C). We then confirmed, using a non-parametric statistical test ​(Maris             

and Oostenveld, 2007)​, the presence of significant clusters of information transfer (Fig. 6D;             
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Suppl. Fig. 3D, lower panels). For the somatosensory pathway, the FIT values clearly showed a               

transfer of information about the presence of the tactile stimulus (Fig. 6D, right panels) and not                

about the presence of the visual stimulus (Fig. 6D, left panels). For the visual pathway, the FIT                 

values clearly showed a transfer of information about the visual feature (Suppl. Fig. 3D, left               

panels) and not about the tactile input (Suppl. Fig. 3D, right panels). We then compared the                

values in the cluster that captured the transfer (comm) to a cluster of the same shape and size,                  

but positioned elsewhere on the timeline with no overlap (no comm) and surrogate values              

obtained by random shuffling of the stimulus values. For the somatosensory pathway, the             

results showed that FIT values were significantly higher in the communication period than those              

obtained at different time points (p=0.0050) and with respect to surrogates (p=0.0067) (Fig. 6E,              

right panel); this was true also for QE corrected FIT (p=0.0031 and p=0.0039) (Fig. 6E, left                

panel). Also for the visual pathway, the results showed that FIT values were significantly higher               

in the communication period than those obtained at different time points (p=0.0045) and with              

respect to surrogates (p=0.0048) (Suppl. Fig. 3E, right panel); this was true also for QE               

corrected FIT (p=0.0034 and p=0.0048) (Suppl. Fig. 3E, left panel). Then, we compared all four               

combinations of information directionality (from thalamus to cortex and vice-versa) and           

stimulation conditions. We confirmed that significant FIT from thalamus to cortex occurred            

during the first 100 msec after the stimulation (p=0.032 for VPM->S1, p=0.34 for S1->VPM,              

p=0.019 for LGN->V1, p=0.61 for V1->LGN) (Fig. 6F and Suppl. Fig. 3F, bottom left panels).  

Finally, we tested the different measures in their ability to track the correct directionality of               

information flow. The DI was not able to discern between stimulation conditions neither in the               

visual (p=0.70 for LGN->V1, p=0.67 for V1->LGN) or somatosensory domain (p=0.68 for            

VPM->S1, p=0.052 for S1->VPM) (Fig. 6F and Suppl. Fig. 3F, two top-left panels). The DFI,               

unlike the FIT, was able to capture the transfer only for the somatosensory pathway (p=0.0011               

for VPM->S1, p=0.16 for S1->VPM) (Fig. 6F, top-right panels), but not for the visual pathway               

(p=0.125 for LGN->V1, p=0.321 for V1->LGN) (Suppl. Fig. 3F, top-right panels). The uncorrect             

and bias-corrected FIT provided the strongest detectability signals (p=0.046 for VPM->S1,           

p=0.42 for S1->VPM, p=0.043 for LGN->V1, p=0.72 for V1->LGN) (Fig. 6F and Suppl. Fig. 3F,               

bottom-right panels).  
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Figure 6. Information transfer in visual and somatosensory system. A. MUA was recorded from the visual and                 
somatosensory territories of the thalamus and associated primary cortical regions. We considered only stimulation              
contralateral to the recording regions. Visual information flows from the eye receptors to the primary visual cortex                 
(V1) through the Lateral Geniculate Nucleus (LGN) of the thalamus and somatosensory information flows from the                
whiskers receptors to the primary somatosensory cortex (S1) through the Ventral Posteromedial nucleus (VPM) of               
the thalamus. ​B. DI from the VPM to S1. The 2D map shows values for a given pair of time and delay that determines                        
how far in the past the past values of X and Y were taken from. Line plots above and below show mutual information                       
between the electrophysiological response (MUA) and the presented stimulus. ​C. FIT values on the same timeline as                 
in B averaged across all delays for all combinations of transfer direction and stimulation. ​D. Nonparametric                
cluster-based statistical test (Maris and Oostenveld 2007) that identifies all significant clusters of values in the 2D                 
map. The upper plot shows the raw values of FIT and the bottom one only the cluster that was identified as                     
significant. ​E. Comparison of FIT value in the cluster that captured the transfer (comm) to a cluster of the same shape                     
and size, but positioned elsewhere on the timeline with no overlap (no comm) and surrogate values obtained by                  
random shuffling of the stimulus values. ​F. Comparisons between all 4 combinations of transfer direction (from                
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thalamus to cortex and vice-versa) and conditions (when the stimulus feature matched the neural pathway under                
examination and when it was not encoded by the brain pathway), for all the 4 measures (DI, DFI, FIT, Qe-FIT). 

Information transfer in human visuomotor network (MEG) 

In the third set of analyses, we used our novel metric to infer visuomotor-related changes in                

information transfer over the human visuomotor network. Previous work has shown that the             

medial superior parietal cortex (SPCm) plays a key role in the visuomotor-related FC network              

(Brovelli et al., 2017)​. Briefly, two measures of centrality, such as the eigenvector centrality and               

the betweenness centrality defined as the propensity of a brain area to participate in multiple               

sub-networks, placed the SPCm at the top of the cortical hierarchy. In particular, the SPCm was                

found to participate both in a visuo-parietal network early during the processing of visual              

information and during the planning of visuomotor associations with the dorsolateral premotor            

cortex (PMdl). Granger causality analyses also revealed a directional influence from the superior             

parietal lobe towards the premotor area ​(Brovelli et al., 2015)​. 

The goal of the MEG analysis was to assess the dynamics of visuomotor-related modulations              

in DI, DFI and FIT as they evolve over time. The DFI and FIT were thus computed by taking as                    

feature the event-related ​versus ​baseline HGA. The DI, DFI and FIT were computed between              

the SPCm and the dorsolateral premotor cortex PMdl. Figure 7A (left panels) shows the              

increase in high-gamma activity (HGA) aligned on movement onset. The DI and DFI showed a               

directional pattern that is consistent with previous results (higher directionality from the SPCm             

towards the PMdl), but the degree of asymmetry was weaker than the one observed with the                

FIT. In fact, the FIT was practically absent in the PMdl to SPCm direction and showed a clear                  

drop after action execution (i.e., time equal to zero), as shown in (Fig. 7A) (center and right                 

panels). This result supports current knowledge about the dynamics of interaction between the             

superior parietal lobe and the dorsolateral premotor cortex, which is expected to occur over a               

timescale of tens to hundreds on milliseconds during a time interval prior to motor output. Then,                

we analyzed the coupling between the SPCm and a companion area in the parietal lobe, the                

dorsal Inferior Parietal Cortex (IPCd). This analysis was performed to test the efficiency of the               

FIT in estimating efficiently directional coupling from neural signals from nearby brain regions             

that may share information and display common-driving effects. The FIT displayed a clear             

selectivity for one of the directionality of information flow, with respect to the DI and DFI (Fig.                 

7B). Overall, these results suggest that the use of the FIT to event-related analyses successfully               

retrieves information transfer at a high temporal and directional selectivity, key elements for             

tracking cortico-cortical directional interactions. 

16 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/758128doi: bioRxiv preprint first posted online Sep. 8, 2019; 

https://paperpile.com/c/xyP0lL/uzNzS
https://paperpile.com/c/xyP0lL/c2nUg
http://dx.doi.org/10.1101/758128


 
Figure 7. Event-related FIT. A. Left panel: time course of high-gamma activity (HGA) for three selected brain                 
regions: the dorsal Inferior Parietal Cortex (IPCd), the medial superior parietal cortex (SPCm)and the dorsolateral               
premotor cortex (PMdl) . Central and right panels: directional influences (DI, DFI and FIT) between the SPCm and                  
PMdl. ​B. Information flow between the SPCm and the dorsal Inferior Parietal Cortex (IPCd) for the DI (left panel), DFI                    
(central panel) and FIT (right panel).  
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Discussion 
In the current paper, we developed a novel information theoretic measure that quantifies             

feature-specific information transfer (FIT) between neural signals. The measure is based on the             

Partial Information Decomposition formalism ​(Williams and Beer, 2010) and on the notion of             

redundancy of information. The rationale is that transfer of information about an experimental             

variable, or feature, flows between two neural signals to if information about is shared   S       X   Y    S    

(redundant) between the past of and present of , while being absent in the past of . Our     X     Y         Y   

measure therefore reflects both the amount and content of information transfer between neural             

signals. We performed numerical simulations to test the reliability of the FIT measure to capture               

feature-specific information transfer in different communication scenarios. The goal was to           

compare the FIT measure with two complementary metrics that are used to quantify information              

transfer: 1) Directed Information (DI) or Transfer Entropy, which quantifies the amount of             

information transfer between signals, but not its content; 2) the Directed Feature Information             

(DFI), which is a measure previously developed to quantify stimulus-dependent information           

transfer. The results of the first simulation (Fig. 1A) showed that the FIT is effective in recovering                 

the underlying information transfer in a simple feedforward communication channel, similarly to            

the DI and DFI. In scenario 2, we investigated a communication channel in which the sender                

node contained information about the feature of interest, but did not communicate it to the               

receiver (Fig. 1B). The FIT successfully showed a non-significant information transfer, like the             

DFI, whereas the DI was positive for the whole time interval of communication. In the third                

scenario, which included an external confounding signal added to the receiving node (Fig. 1C),              

the FIT accurately represented the lack of stimulus-specific information transfer, whereas the            

DFI showed significant decreases in information with respect to baseline (Fig. 1C), potentially             

due to synergistic effects. Indeed, the DFI can be mathematically decomposed in different terms              

of the PID framework, which contains several synergistic (negative) terms, which may lead to              

negative values of the measure (Suppl. Methods). Numerical simulations using communication           

scenario with strong synergistic effects showed that the DFI yielded significant negative values,             

while the FIT displayed a significant increases (Suppl. Fig. 2C) . Thus, both theoretical and               

numerical results suggested that the DFI may not be taken as a metric for feature-specific               

information transfer in cases when synergistic effects dominate. 

We then studied how the DI and FIT measures scale as a function of varying levels of noise                  

and signal amplitude. We showed that the DI does not dissociate between noise and amplitude               
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components of the information transfer. On the other hand, the FIT measure decreased with              

increasing noise level and increased with stimulus amplitude (Fig. 2), thus suggesting that the              

FIT is an appropriate metric for varying signal-to-noise ratios. Subsequently, the analysis of             

dependence on temporal parameters of information transmission (such as the width of the             

information peaks in signals and , the temporal interval between peaks and delays at    X   Y          

which the information measures were computed) showed that the FIT measure correctly            

differentiated modulations in these parameters, whereas the DI and DFI were largely unaffected             

(Fig. 3). These results further confirmed the sensitivity of our measures to key temporal features               

of information transfer. Finally, numerical simulations testing the ability to detect the correct             

directionality of information transfer between neural signals showed that the FIT is more             

sensitive than the DI and DFI (Fig. 4). Indeed, the DI and DFI did not provide clear directional                  

information especially when the delay was short with respect to the overlap (top row in Fig. 4),                 

whereas the FIT clearly demonstrated consistent behavior across all parameters, correctly           

capturing the correct direction of transfer of information from and (Fig. 4, right panels). In         X   Y      

terms of sample bias problem, the FIT suffers the same limitation as all other Information Theory                

quantities and can be corrected by using Quadratic Extrapolation procedure ​(Panzeri et al.,             

2007; Strong et al., 1998) . However, simulations suggested that FIT provides information about              

the content of a transfer with either less data (approximately a 10th of the data size) or noisier                  

(Suppl. Fig. 3). Overall, the analysis of numerical simulations in different communication            

scenarios, signal-to-noise relations, temporal parameters of information flow and directionality          

patterns showed that the FIT measure accurately detects feature-specific information transfer           

and provides a novel non-negative information theoretical measure. 

A potential limitation of the FIT measure resides in the assumption that correctly            Imin   

quantifies unique, redundant and synergistic information (see Materials and Methods for the            

definition of ). Indeed, has been criticized for potentially miscategorising purely unique  Imin   Imin          

information as synergistic and there were several attempts to improve it ​(Bertschinger et al.,              

2014; Griffith and Koch, 2014; Harder et al., 2013)​. In the case of only two predictors, the                 

measure of Bertschinger ​(Bertschinger et al., 2014) is currently preferred. However, it cannot be              

applied to cases when the number of predictors is larger than two, as in our case. On the other                   

hand, we should point out that our simulations suggest that is adequate for the          Imin      

communication scenarios investigated in the current study and the numerical manipulations we            

have performed. In the case of Gaussian variables, an alternative measure of redundancy that              
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provides non-negative terms is the minimum mutual information (MMI) PID (Barrett, 2015).            

Further work is, however, needed to assess the potential application of MMI PID in the               

development of a features-specific information transfer metric. 

In the second part of our work, we investigated the validity of the FIT measure on                

neurophysiological data. The analysis of human electroencephalographic (EEG) data confirmed          

current hypotheses ​(Ince et al., 2016) suggesting that information about the presence of an eye               

in a face image flows from the contralateral to the ipsilateral hemisphere with respect to the                

position of the eye (Fig. 5). Crucially, eye-specific information transfer was detectable only by              

means of our novel measure, whereas neither the DI nor DFI measures successfully captured              

such transfer (Fig. 5F). The analysis of MUA data recorded from thalamus and cortex of rat’s                

brain, confirmed that the FIT measure is able to detect information transfer about a specific               

feature (e.g. visual or somatosensory) in the correct neural pathway (Fig. 6 and Suppl. Fig. 4).                

FIT displayed significant increase along the somatosensory pathway from the VPM to S1 in              

experimental protocols that involved whiskers’ stimulations (Fig. 6). In parallel, it displayed            

significant modulations along the visual pathway from LGN to V1 in protocols involving visual              

stimulations (Suppl. Fig. 4). Neither DI nor DFI could resolve feature-specific information            

transfer along these pathways. In addition, only the FIT metric could differentiate the correct (i.e,               

from thalamus to cortex) directionality of information transfer both in the visual and             

somatosensory domains. Finally, the analysis of MEG data confirmed previous work based on             

Granger causality analyses of high-gamma activity showing that the superior parietal area plays             

a driving role in the network, exerting Granger causality on the dorsal premotor area ​(Brovelli et                

al., 2015)​. However, previous work did quantify the dynamics of information flow from superior              

parietal regions to premotor areas. Here, we exploited our novel measure to quantify the              

directionality of information flow in a dynamical (time-resolved). The results showed that the FIT              

outperformed the DI and DFI in detecting the timing of information transfer between the superior               

parietal region and the dorsal premotor cortex. Indeed, the increase in FIT from the SPCm to                

the PMdl (Fig. 7A, central panel) peaked approximately 0.2s before the motor response,             

therefore confirming the notion that the dorsal frontoparietal network is crucial for the visuomotor              

computations transforming visual information into motor plans ​(Corbetta and Shulman, 2002;           

Culham and Valyear, 2006; Wise et al., 1996; Wise and Murray, 2000)​. The DI and DFI,                

however, were most probably influenced by the global increase in HGA observed around the              

motor response and their temporal dynamics decreases around motor output (Fig. 7A, the right              

and central panel). A second advantage of the FIT was its ability to better detect directionality of                 
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information transfer than the DI and DFI, as demonstrated in simulations (Fig. 4). Whereas the               

DI and DFI show bidirectional effect, the FIT measure displayed unidirectional effect from the              

superior parietal to premotor are (Fig. 7B). The results suggest that the FIT reduces potential               

bias present in the DI and DFI due to the autocorrelation in the HGA. Taken together, the                 

analysis of neurophysiological data suggests high selectivity for temporal and directional           

information and confirms the ability of the FIT to infer the dynamics of feature-specific              

information flow from neurophysiological data. 

To conclude, the results from numerical simulations and the analysis of human and rodent              

neurophysiological data showed that the FIT provides high discriminability of information           

transfer both in time and across directions of information flow. Altogether our work suggests that               

the FIT measure has potential to uncover previously hidden feature-specific information transfer            

from neural data and provide a better understanding of brain communication. 
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Materials and Methods 
Derivation of Feature-specific Information Transfer 

In the following section, we will begin by defining concepts from Information Theory that form               

the cornerstones of our work. Then, we will introduce the framework of Partial Information              

Decomposition (PID) and the derivation of our novel measure named Feature-specific           

Information Transfer (FIT). In classical Information Theory, the Shannon entropy ​(Shannon,           

1948)​ of the random variable  is defined asX  

                                                   (1)(X) (x) log p(x)H =  − ∑
 

x∈X
p  

is the expected value of outcome's ​surprisal, or ​self-information, and it defines ​the amount(X)H                

of average surprise generated by the event . represents the amount of information       x  (X)H       

conveyed by (the self-information is zero if is fully predictable; non-negative otherwise). In  X       X        

addition, can be interpreted as the amount of uncertainty associated with the values taken (X)H               

by the random variable . The conditional entropy of given a second variable is defined    X      X      Y    

as 

                                       (2)(X |Y ) (y) (x|y) log p(x|y)  H =  − ∑
 

y∈Y
p ∑

 

x∈X
p  

quantifies the amount of information carried by given that the value of another(X |Y )H         X        

random variable is known. The total amount of information provided by and (or the total  Y          X   Y    

uncertainty when observing  and  together) is quantified by the joint entropy :X Y (X , )H Y  

                                                (3)(X , ) H(X |Y ) H(Y )H Y =  +   

Finally, to complete the set of all possible information interactions between two variables, the              

mutual information  between  and is:(X; )I Y X Y  

                                           (4)(X; ) H(X) H(Y ) H(X , )I Y =  +  −  Y  

All these quantities are non-negative and additive, and create a full decomposition of             

information content between two random variables. 

The amount of transfer of information between two random processes and , is usually          X   Y    

quantified with the measures called Transfer Entropy ​(Schreiber, 2000) and Directed           
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Information ​(Massey, 1990)​, which are intimately related ​(Amblard and Michel, 2011)​. In our             

work, we will use the term Directed Information (DI), for the estimate 

                                                    (5)I (Y  ; X  | Y  )D X→Y = I t  t−d t−d  

where is the value of at time , whereas and are the values of and at Y t      Y   t   X t−d   Y t−d      X   Y  

some preceding point in time (where ​d stands for delay), respectively. DI quantifies the     t − d           

amount of information transferred from the past of to the present of , which is not        X      Y     

contained in the past of . DI is a model-free measure of Granger causality and it quantifies the     Y              

amount of information transfer between two random processes. 

The aim of our work was to develop a novel information theoretical metric that could quantify                

the amount of information transfer from to about an experimental variable (i.e., the      X   Y     S    

content of information transfer). Such experimental ​feature ​may represent any experimental           

(dependent or independent) variable under investigation (e.g., stimulus type, experimental          

condition, etc.). We reasoned that three conditions must be met in order for feature-specific              

information transfer to occur between two random processes. First, the sender should           X   

convey information about at some time point in the past. Second, the receiver should   S            Y   

encode such information later in time. Third, the information carried by the past of and the              X    

present of should be redundant and absent in the past of (otherwise the transfer would not  Y          Y      

be the origin of the information). To summarize, in order for transfer of information about to               S   

occur from  to , the following predicates should be satisfied:X Y  

1. The past of at time should carry information about X t d−   S  

2. The present of at time should carry information about Y t S  

3. The past of and present of should share information about that is not already   X     Y     S      

present in the past of Y  

The first predicate is satisfied if the mutual information between and the past of , namely          S      X   

, is positive. Similarly, the mutual information between and the present of should(S; )I X t−d         S      Y  

be non-zero. The third predicate, however, remains challenging.  

A recent measure called Directed Feature Information (DFI) was introduced to quantify            

feature-specific directed information ​(Ince et al., 2015)​: 

                                                (6)DI |SDFISX→Y =  X→Y − DIX→Y  
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The DFI expresses the difference between the total information transfer between and (           X   Y  

) and the information transfer when the stimulus is known ( ). The first termDIX→Y         S    |SDIX→Y     

quantifies the total amount information transferred between and , whereas the second       X   Y     

term quantifies the amount of information that is transferred for a fixed . Hence, the            S    

subtraction was considered as the remaining information transfer between and about . In         X  Y  S   

other words, the DFI quantifies the amount of new information transferred from to that is            X   Y    

related to the variations in (Ince et al., 2015). The DFI can also be expressed as the     S              

co-information ​(Bell, 2003; McGill, 1954) between and with respect to (see      X   Y     S   

Supplementary Methods for the full derivation): 

   (7)Red  (Y  ; X  | Y )  (S; X  | Y )  (S; Y  | Y )  (S; X ,  | Y ) DFISX→Y =  S t  t−d t−d = I  t−d t−d + I  t t−d − I  t−d Y t t−d  

represents the so called redundancy (Pola et al., 2003; Schneidman et al., (Y  ; X  | Y )RedS t  t−d t−d              

2003) between and about stimulus conditional on . In general, positive  X t−d  Y t    S    Y t−d     

redundancy measures the overlap of the MI about the stimulus feature that is present in two           S       

different responses. Negative values of redundancy indicate synergy, which occurs when the            

two variables carry more MI when considered together than alone (i.e., in cases when the               

stimulus modulates their relationship) (Ince et al., 2015). This occurs whenever the third term is               

larger than the information carried by the two variables observed independently. Despite the fact              

that DFI was successfully applied to detect feature-specific transfer ​(Ince et al., 2015)​, its              

property of potentially being negative hinders its interpretation as the amount of information             

transfer.  

To clarify this issue, let us consider all information interactions between two variables and             X   

(Fig. 8A). The total amount of information in the system is quantified by the joint entropyY                 

, whereas the amount of information carried by each variable separately is quantified by(X , )H Y               

the entropy values and , respectively. The shared part of information is quantified by   (X)H  (Y )X           

the mutual information between those variables . In order to quantify information about a      (X; )I Y         

single variable , we can replace the entropies with mutual information terms with respect to  S              S  

(Fig. 8B). Now, the total information about is quantified by the mutual information       S        (X , ; )I Y S  

and, consistently, the information separately carried by each variable is given by and            (X; )I S  

, respectively. The shared part of information between the variables is quantified by the(Y ; )I S               
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redundancy between and or (i.e., corresponding to the unconditional version of  X   Y  (X; )RedS Y        

eq. 7) 

                                        (8)(X; ) I(X; ) (Y ; ) (X , ; )RedS Y =  S + I S − I Y S  

Eq. 8 demonstrated that can be negative whenever the total amount of information    (X; )RedS Y           

about is larger than the sum of both individual contributions, despite the fact that the shared S                 

part of information is included in the sum twice. In such case, the emergent information carried                

by the interaction between the two variables is called ​synergistic ​information. Hence, we             

conclude that the DFI does not satisfy the third predicate, because it does not exclusively               

represent information that is shared between  and .X Y  

 

 
Figure 8 ​. ​A. Information decomposition of interaction of two variables. H stands for entropy and I for mutual                  
information. The decomposition is composed of three distinct parts, two representing information contributed by the               
variables independently (conditional entropies) (green and blue) and one that represent information that is provided               
by both of them (mutual - also called redundant or shared - information) (red). Based on the diagram it is possible to                      
deduce that in order to compute the mutual information it is possible to add information contributed by both variables                   
H(X) and H(Y) (1 green, 1 blue, 2 red parts) and subtract the total information H(X, Y) (1 green, 1 blue and 1 red                        
part). ​B. Information decomposition of interaction of two mutual informations of two variables (X and Y) with a third                   
one (S). The decomposition follows similar logic as the decomposition in (A). However, if the logic is applied to the                    
computation of the redundant (mutual/shared) part (red) – sum of both mutual informations I(X; S) (green and red)                  
and I(Y; S) (blue and red) and subtracting the total mutual information I(X,Y; S) – the redundant information is not                    
non-negative. Therefore, there must be another part of the diagram that contains the extra information (yellow) that is                  
part of the total I(X,Y; S). 
 

Williams and Beer introduced a new framework allowing the decomposition of mutual            

information between a system of predictors and a target variable ​(Williams and Beer, 2010)​. The               

framework proposes a decomposition of mutual information into non-negative terms that,           

including other beneficial properties, differentiate between redundant and synergistic         

contributions. This mathematical formalism is known as Partial Information Decomposition          

(PID). For simplicity, we will first present the theoretical framework for two predictors and a               

single target variable. Williams and Beer distinguished three types of contributions to the             

25 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/758128doi: bioRxiv preprint first posted online Sep. 8, 2019; 

https://paperpile.com/c/xyP0lL/maS7M
http://dx.doi.org/10.1101/758128


information among two variables, or predictors, (here called and for distinction between        A1   A2     

the formalisms) and a third one, the target (Suppl. Fig. 4). If and both carry the same        C      A1   A2      

information about it suffices to know only one of them to fully determine the mutual  C               

information between them and ; this type of information is called ​redundant ​(Suppl. Fig. 4A). If    C             

only carries information about it is referred to as ​unique ​information ​(Suppl. Fig. 4B); A1     C            

similarly, this holds true for . Finally, if neither of the variables alone provide information     A2           

about , but they do only if observed together, we refer to it as ​synergistic information (Suppl. C                 

Fig. 4C). An exemplar case of synergistic information is the exclusive OR (XOR) operation              

(Suppl. Fig. 4C). In a XOR gate, both ​unique and ​redundant information are zero, whereas only                

synergistic effects carry information about C. In other words, the knowledge of any of the               

predictors separately does not provide any information about the target variable . Only           C   

knowledge of both and together determines the value of . In order to compute the   A1  A2       C       

different terms of the mutual information decomposition, either the synergy or the redundancy             

suffice, because the remaining terms can be thereafter computed. For example, if we compute              

the redundancy between and , then the unique information carried by each source can   A1   A2           

be obtained by subtracting the redundancy from the mutual information between the particular             

source and the target variable . The mutual     nique( A ) ( A ; ) edundancy( A , A )u 1 = I 1 C − r 1  2    

information cannot contain any synergy, because the source is observed ( A ; )I 1 C        A 1    

independently from . Synergy thus becomes the remaining term of the full mutual information  A 2             

 after subtraction of all the other parts.( A , A ; )I 1  2 C  

Within this formalism, Williams and Beer suggested a measure of redundancy called            Imin  

which quantifies the information associated with a specific outcome provided by a set of         c       

possible sources  , and it is defined as:A = {A , , .., A }1 A2 .  k  

                               (11)(C; ) (c) min I(C ; )Imin {A , , .., A }1 A2 .  k =  ∑
 

c
p Ai

= c Ai   

where  is a quantity called ​specific information,​ defined as:(C ; )I = c Ai  

                                   (12)I(C ; ) (a|c)   = c A =  ∑
 

a
p log og[ 1

p(c) − l 1
p(c|a)]  

Where is one of all possible values of . quantifies redundancy in the form of a         A i  Imin        

information that is common to all the sources within : the minimum information that any         A       
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source provides. The mutual information can be considered a special case of redundancy (i.e.,              

the redundancy of a source with itself). This allows the use of the redundancy measures to                

compute all terms of the PID. However, the measures themselves do not quantify the        Imin        

unique contribution of a single part of the decomposition. For example, , which is           (C; A })Imin { 1     

equal to the mutual information between and , includes the redundant information shared      C   A 1       

by and . Nevertheless, it is possible to reconstruct the information contributed A 1   A 2           

independently by each source of the decomposition from the measures, thanks to the         Imin      

natural ordering among all terms of the decomposition. For example, the redundancy between             

and would precede the unique contribution of either or , because its knowledgeA 1   A 2         A1   A2     

is necessary in order to compute the unique contributions. This ordering creates a lattice from               

the elements of (i.e., the set of all parts of the decomposition based on those sources). In   (R)A                

the bivariate case, the terms are defined as follows: the redundant information between sources              

and is written as ; the unique information of a source as and theA1  A2      A }{ A }{ 1 2       A 1    A }{ 1    

synergy between and will be noted as . For the decomposition of the mutual  A 1    A 2       A , A }{ 1  2        

information between two sources and with a target the lowest term in the lattice is    A 1   A2     C         

the redundancy between the two sources, whereas the terms above include the unique             

contributions; the highest term incorporates the synergistic effects (Fig. 9A). Within this            

structure, a higher element in the lattice provides at least as much redundant information as any                

lower term; the highest element of the lattice then completes all the information that is present in                 

the mutual information between all sources and the target . To compute the contribution         (R; )I S      

of each node in the lattice, we need to subtract all information that is provided by underlying                 

nodes. The amount of information provided by a single node is called partial information term               ∏
 

R
 

and it is defined recursively as (see Williams and Beer 2010 for further details):  

                                            (13)(S; ) (S; ) (S; )∏
 

R
α = Imin α −  ∑

 

β<α
∏
 

R
β  

We reasoned that we could exploit the PID formalism to put forward a feature-specific              

measure of information based on the decomposition of a system with a set of three predictors                

and its mutual information with the target stimulus feature (Fig. 9B) . ToX , Y , }R = { t−d  t−d Y t          S      

satisfy the aforementioned third criterion, the novel measure should quantify the information            

about present in that is redundant with respect to information already present in ​and S    Y t            X t−d   
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unique with respect to . Consequently, the desired information measure could be    Y t−d         

expressed by the following partial information term (red dot in Fig. 9B):  

                                                (14)IT  (S; {X }{Y })F =  ∏
 

R
  t−d t  

Note that it is not necessary to apply any conditioning on the past of , because this is implicitly              Y      

accomplished by excluding the information captured by the lower term of the lattice that         ∏
 

R
      

includes the past of , namely .Y (S; X }{Y }{Y }∏
 

R
{ t−d t t−d   

 

 
Figure 9. A Partial information decomposition lattice for 2 sources. ​B Partial information decomposition lattice for 3                 
source ( ). The lattice is ordered based on the following: a collection of sources A is considered to , Y ,  X t−d  t−d Y t                  
“succeed” a second collection B (i.e., to be above in the lattice) if for each source in A there exists a source in B that                         
does not provide any additional information than the one in A. The bottom term represents joint redundancy between                  
all three variables and the top their synergy. The novel measure called FIT is marked in red. 
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Numerical simulations 
We performed numerical simulations to test the reliability of our novel measure, the             

feature-specific information transfer (FIT). We analyzed different scenarios, each representing          

particular set of conditions under which feature-specific communication occurs.  

Feature-specific communication was modeled by means of a stimulus-dependent transfer of           

information between two nodes, called (i.e., the sender) and (i.e., the receiver of     X      Y     

information). Each node carried a stimulus-dependent signal plus noise drawn from a Poisson             

distribution with mean equal to the signal value at a given time point. The presence of stimulus                 

was simulated by adding a Gaussian profile with duration equal to the standard deviation of the                

Gaussian profile and centered at a time . The amplitude of the Gaussian profile was then       t1          

modulated by the stimulus value to an otherwise constant (i.e., baseline) signal . The baseline            X    

activity of both and was set to one. Information transfer from to was constructed by   X  Y         X   Y     

adding the activity of at time to signal at . The time interval between and    X    t1    Y   t2      t1   t2
represented the communication delay. Stimulus values , one per trial, were drawn from a      S         

uniform distribution and randomly chosen across trials. We used 4 possible values of stimulus. 

Simulations were based on three scenarios. The first scenario (Fig. 1A, left panel) simulated              

a simple stimulus-dependent information transfer from node to . The goal was to compare       X   Y       

the behavior of FIT with respect to DI and DFI in quantifying stimulus-dependent             

communication. The aim of the second scenario (Fig. 1B, left panel) was to study information               

transfer without a stimulus-dependent modulation. The aim was to study the ability of FIT to               

efficiently dissociate between stimulus-dependent and stimulus-independent transfer. To do so,          

the sender node was split into two sub-nodes, called and . was simulated as in   X        X+  X−  X+     

scenario 1, whereas was equal to baseline activity minus the Gaussian profile of signal   X−             X+

plus a noise drawn from a Poisson distribution with mean equal to the signal value at a given                  

time point. The baseline activity was set to the constant part of the signal, where the stimulus                 

representing Gaussian profile was not added and it was identical for both and . Activities            X+  X−   

of both sub-nodes were then added together and normalized before being injected into the              

signal of the receiver . This process effectively destroys stimulus-dependent information    Y        

transfer to signal , while leaving stimulus-independent transfer unaffected. The third scenario   Y          

(Fig. 1C, left panel) was designed to study the effect of an external source of information                

influencing signal without passing through the communication channel between to . To  Y         X     
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do so, we added information about a second stimulus having the same probability         S ′      

distribution as , but drawn from it independently, to signal . The Gaussian profile added to the          Y        

signal at was thus modulated by the stimulus values . All simulations were run for 120 Y   t2         S′        

timestamps and mimicked the evolution of activity of two hypothetical neural populations over a              

time interval from -20 to 100 msec across several repetitions (i.e., experimental trials). For each               

scenario, we simulated 100 000 trials, except for those used for robustness testing. Robustness              

tests were run on 2 ​8​ to 2 ​17​ number of trials. 

Information theoretical analysis 

For every simulation, we computed values of DI, DFI and FIT in a time-resolved manner. To                

compute the full joint probability distribution required for the calculation of information theoretical             

measures, we binned all variables at a given time point across trials into three bins, using a                 

technique that distributes equally the number of samples per bin. The number of bins was set to                 

three, as a trade-off between the size of the joint probability distribution and computability cost.               

For the simulations showing robustness to noise, effects of conditioning and high synergy, we              

took all past values of and from a time interval , where stands for a delay. The     X   Y     − d    d       

optimal delay was set to the distance between peaks of the stimulus-related activity. We              

additionally computed the information quantities at each time point for a set of delays in interval                

ranging from 1 to 45 samples and then took the average of those values. However, in the                 

scenario showing the effects of conditioning with respect to different delays, we computed             

information measures for 10, 30 and 50 samples (Fig. 3). In order to correct for biases due   d =               

to the limited number of samples, we used the Quadratic Extrapolation procedure ​(Panzeri et              

al., 2007)​. The bias grows quadratically as a function of the logarithmic decrease in the number                

of trials. To correct for such bias, we first computed the value of a given information quantity                 

using either all, half or a quarter of the available simulated trials, and then we fitted a quadratic                  

curve. The constant coefficient of the quadratic curve was the corrected value for the              

information quantity. To increase accuracy in the information theoretic measures, we computed            

the values for both halves and all quarters and then averaged across them. 

Statistical analysis 

In order to assess the level of significance of the different information theoretic measures, we               

used nonparametric permutation techniques. For every time point, we established its 0.1th –             

99.9th quantile interval under the null hypothesis. To obtain the values under the null              
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hypothesis, we randomly shuffled stimulus order across trials for DFI and FIT, and values of               X  

for DI. In this manner, we computed 100 surrogate values based on independent permutations.              

To establish the desired percentile values, we then fitted a Gaussian distribution through the              

surrogates. 

Analysis of Neurophysiological Data 
In order to demonstrate the relevance of our measure in brain communication analysis, we              

analyzed three neurophysiological datasets. The goal of the first analysis was to compare the              

different metrics (DI, DFI and FIT) in their ability to quantify stimulus-dependent information flow              

between EEG signals. To do so, we analyzed an EEG dataset in which participants have to                

perform a face detection task ​(Rousselet et al., 2014)​. The goal of the second analysis was to                 

compare the different metrics (DI, DFI and FIT) in their ability to quantify stimulus-dependent              

information flow between MUA signals recorded from rat’s brain in a multisensory stimulations             

scenario (visual and/or tactile stimulation) ​(Bieler et al., 2018)​. The goal of the third analysis was                

to assess the dynamics of visuomotor-related (i.e., event-related ​versus baseline) modulations           

in DI, DFI and FIT as they evolve over time. To do so, we exploited an MEG dataset containing                   

source-level high-gamma activity from human participants performing a visuomotor mapping          

task ​(Brovelli et al., 2017, 2015)​.  

EEG and face detection task 

Experimental conditions and behavioral tasks  

In the first set of analyses, we computed the DI, DFI and FIT measures on a publicly                 

available EEG dataset ​(Rousselet et al., 2014)​. The data was recorded during a face detection               

task. Participants (N=16) were presented with an image hidden behind a bubble mask. On half               

of the trials, the image was a face and the other half contained a random texture. Participants                 

were instructed to determine the content of the image and report whether a face was present or                 

not. For our purposes, we only considered correct trials where the face was correctly detected               

by the participants (approximately 1000 trials per subject). Previous studies have shown that             

presence of an eye is one of the most important aspects for determining whether an image                

contains a face or not. Indeed, it modulates reaction times and the latency of the N170 response                 

in lateral temporo-occipital EEG electrodes ​(Rousselet et al., 2014)​. More recently, Ince and             

colleagues ​(Ince et al., 2015) showed that temporo-occipital electrodes contain information           

about the contralateral eye later in time. The aim of our analyses was to decode the presence of                  
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an eye from both occipito-temporal sensors in order to determine the origin of that information.               

The dataset contains preprocessed EEG data from the electrodes in the left and the right               

occipito-temporal regions that display the highest mutual information with the visibility of the             

contralateral eye. The dataset contains 15 subjects as one was discarded for low quality of the                

recording. 

Information theoretic measures 

We computed the first derivatives of the EEG signal for both occipito-temporal sensors and              

used both its absolute values and first derivatives to compute the information quantities. We              

used both the raw and absolute time derivatives to be consistent with the analyses performed in                

previous papers. To establish the joint probability distribution for computation of the information             

quantities, we binned both the derivatives and absolute values into 3 equally populated bins              

resulting into 9 possible values for each random variable. The visibility of an eye was               

considered as the stimulus and it was also binned into 3 bins. We computed the information                

quantities for all combinations of direction of the transfer (left to right, right to left) and a                 

particular eye (left and right). These values were computed for every subject and then we               

averaged across them. 

Statistical analyses 

We established significant increase in information measures using a cluster-based          

nonparametric statistical test introduced in ​(Maris and Oostenveld, 2007)​. First, we computed            

the surrogate values of the information quantities for all time points and delays using 100               

permutations of eye visibility. For each of those permutations, we created clusters of values              

higher than a threshold, based on 8-adjacency in the 2D time-delay grid. We set the threshold to                 

97.5 ​th quantile, that we obtained by ranking all the values in the grid. Then, we computed cluster                 

level statistic by summing all values of the given information quantity within the cluster. Finally,               

we took the largest cluster-level statistic for each of the permutations and compared them to               

cluster-level statistic in the non-shuffled data. We considered as significant those clusters that             

had a cluster-level statistic smaller than 5 clusters obtained from the surrogates. 

Robustness with respect to the sample size bias 

We compared values of sample size bias corrected and uncorrected information quantities            

under two conditions, the information transfer being present in the data or not. To compute               

values for each condition, we determined in which areas of two-dimensional grid of all              
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combination of time and delay for which we computed the information quantities the transfer              

was and was not present. The representative value of the first condition was an average across                

all values in an area with the presence of transfer and the representative value of the second                 

condition was an average across values in an identical area moved in time in such manner that                 

it only encapsulated points with no transfer. We computed these values for both conditions in               

simulations that had numbers of trials from 2 ​8 to 2 ​18 and each simulation was repeated 5 times                 

across which we averaged all the computed values. 

MUA and multisensory stimulation 

Experimental conditions 

In the second set of analyses, we compared the three different metrics (DI, DFI and FIT) on                 

multiunit activity (MUA) recorded from rats (N=6). The data was recorded from the visual and               

somatosensory territories of the thalamus and corresponding primary cortical regions in three            

stimulation conditions: visual stimulation, whiskers tactile stimulation and bimodal stimulation          

(simultaneous visual and tactile) ​(Bieler et al., 2018)​. The aim of our analyses was to assess                

the presence of stimulus-specific information transfer from thalamus to cortex. In particular, we             

investigated the ability of our novel measure to characterize the functional properties of two              

neural circuits: 1) the visual pathway carrying the visual information from the eyes to the primary                

visual cortex (V1) through the Lateral Geniculate Nucleus (LGN) of the thalamus; 2) the              

somatosensory pathway carrying the sensory information from the whiskers receptors to the            

primary somatosensory cortex (S1) through the Ventral Posteromedial nucleus (VPM) of the            

thalamus. All experiments were conducted during the light phase under sleep-like conditions            

mimicked by urethane anesthesia ​(Bitzenhofer et al., 2015)​. By these means, the interference             

with spontaneous whisking and the impact of alert state, which modulate cross-modal            

integration, were avoided. Unimodal (either light flash or whisker deflection) or bimodal            

(simultaneous light flash and whisker deflection) stimuli were applied using a custom-made            

stimulation device as described in ​(Sieben et al., 2015, 2013)​. Briefly, whiskers were stimulated              

by deflection through compressed air-controlled roundline cylinders gated via solenoid valves.           

The device produced almost silent (6~10dB), non-electrical stimulation with precise timing           

(0.013 ± 0.81 ms) that was constant over all trials/conditions. For full eye field visual stimulation,                

50-ms-long LED light flashes (300 lux) were used. For bimodal stimulation, whisker deflection             

and light flashes were applied in the same hemifield. Stimuli were randomly presented across              

trials in blocks of three different stimulation conditions (unimodal tactile, unimodal visual,            
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bimodal visual-tactile). In our analysis we considered only stimulation contralateral to the            

recording brain areas. Each type of stimulus was presented 100 times contralateral to the              

recording electrodes with an interstimulus interval of 6.5 ± 0.5 s. To achieve a physically               

simultaneous stimulation of whiskers (valve-controlled whisker stimulation) and eyes         

(instantaneous light flash), the time delay of whisker stimulation was calculated to match visual              

stimulation onset. The non-stimulated eye was covered with an aluminum foil patch. 

The surgery was performed under ketamine/Xylazine anesthesia, the rat’s eyes were           

covered with ointment (Bepanthen), and the ear canals were filled with silicon adhesive             

(Kwik-Sil, World Precision Instruments) to block auditory input. Extracellular recordings of the            

local field potential (LFP) and multiunit activity (MUA) were performed from head-fixed rats             

under light urethane anesthesia (0.5 g/kg body weight, i.p.; Sigma-Aldrich) using custom made             

one-shank 1632-channel electrodes (0.5-3 M_Ω Silicon Michigan probes, Neuronexus         

Technologies; 100-_μm intersite spacing) that were angularly inserted into S1 barrel field            

(ventral-medial, 50°, 2.4-2.6 mm posterior and 5.5-5.8 mm lateral to bregma) and V1             

(ventral-rostral, 45°, 6.9-7.1 mm posterior and 3.4-3.7 mm lateral to bregma) to a depth of 5.3                

mm and 5.5 mm, respectively. The placement of recording sites enabled simultaneous            

recording from supragranular (S), granular (G) and infragranular (I) layers of S1 and the ventral               

posteromedial nucleus (VPM) of the thalamus as well from S, G and I layers of V1 and the                  

dorsal geniculate nucleus (dLGN) of the thalamus. Electrodes spanned supragranular, granular,           

and infragranular layers (please add VPM and LGN) and were labeled with DiI             

(1,1’-dioctadecyl-3,3,3’,3’- tetramethylindocarbocyanine; Invitrogen) for postmortem     

reconstruction of their tracks in histologic sections. A silver wire was inserted into the cerebellum               

and served as ground and reference electrode. The body temperature of the animal was kept               

constant at 37°C during recording. The position of recording sites over layers was confirmed by               

electrophysiological (i.e., reversal of the evoked potential between supragranular and granular           

layers) and histologic (i.e., granular cell body layer) landmarks. Neural activity was recorded at a               

sampling rate of 32 kHz using a multichannel extracellular amplifier (no gain, Digital Lynx 10S,               

Neuralynx) and the acquisition software Cheetah. The signal was bandpass filtered (0.1 Hz and              

5 kHz) by the Neuralynx recording system, for antialiasing, and then down-sampled by a factor               

of 8 obtaining a sampling rate of 8 kHz ​(Bieler et al., 2018)​. In the current work, we used the                    

recordings from infragranular layers of S1 and V1 and from VPM and LGN. Data was imported                

and analyzed offline using custom-written tools in Matlab software (version R2018A           

(Math-Works), and Multi Unit Activity (MUA) was extracted ​(Safaai et al., 2015)​. For all              
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channels, spike times were first detected from the band-passed (400–3,000 Hz, fourth-order IIR             

Butterworth Filter) extracellular potential in each electrode by threshold crossing (>3 SD). A             

spikes train was obtained for all channels using a temporal binning of 0.125 ms (1/8kHz). For                

each brain region, mass MUA was obtained by pooling together the trains of all recorded spikes                

form all electrodes related to that region, a refractory period of 1ms was considered and the                

resulting train was resampled at 1 KHz (1 ms time bins).  

Information theoretic measures and statistical analysis 

Information theoretical analyses were performed on the MUA signals recorded for LGM,            

VPM, V1 and S1. To establish the joint probability distribution for computation of the information               

quantities, we computed the spiking rate for 10 msec temporal bins and then we binned the                

values into 2 equally populated bins resulting into 2 possible values for each random variable.               

We considered two possible stimulation conditions:  

1. Condition 1 = {V, V+T} – unimodal visual stimulation and bimodal stimulation            

(simultaneous visual and tactile ) 

2. Condition 2 = {T, V+T} – unimodal tactile stimulation and bimodal stimulation            

(simultaneous visual and tactile ) 

In condition 1, the difference between the two types of stimulation is due to the presence of the                  

tactile stimulation; our analyses aimed at testing the hypothesis that tactile-specific information            

transfer flows along the neural pathway selective for tactile features (i.e., the VPM to S1               

pathway). On the contrary, in condition 2 the difference between stimulations types is due to the                

visual stimulation; therefore, we expected to observe visual-specific information transfer occurs           

along the neural pathway selective for visual stimulation (i.e. the LGN to V1 pathway). We               

computed the information quantities (DI, DFI, FIT) for all combinations of directions of the              

transfer (from V1 to LGN and vice-versa; from S1 to VPM and vice-versa) and a particular                

stimulus set. These values were computed for every subject and then we averaged across              

them. The statistical analysis was done as described in the previous EEG section. 

Source-level high-gamma MEG activity and visuomotor task 

Experimental conditions, behavioral tasks and brain data acquisition 

The third set of analyses was performed on an MEG dataset collected while participants              

performed an associative visuomotor mapping task ​(Brovelli et al., 2017, 2015)​. The task             

required participants to perform a finger movement associated to a digit number: digit “1”              
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instructed the execution of the thumb, “2” for the index finger, “3” for the middle finger and so                  

on. Maximal reaction time was 1s. After a fixed delay of 1 second following the disappearance                

of the digit number, an outcome image was presented for 1 s and informed the subject whether                 

the response was correct, incorrect, or too late (if the reaction time exceeded 1 s). Incorrect and                 

late trials were excluded from the analysis, because they were either absent or very rare (i.e.,                

maximum 2 late trials per session). The next trial started after a variable delay ranging from 2 to                  

3 s (randomly drawn from a uniform distribution) with the presentation of another visual stimulus.               

Each participant performed two sessions of 60 trials each (total of 120 trials). Each session               

included three digits randomly presented in blocks of three trials. The average reaction time was               

0.504s ± 0.004s (mean ± s.e.m.). Anatomical T1-weighted MRI images were acquired for all              

participants using a 3-T whole-body imager equipped with a circular polarized head coil.             

Magnetoencephalographic (MEG) recordings were performed using a 248 magnetometers         

system (4D Neuroimaging magnes 3600). Visual stimuli were projected using a video projection             

and motor responses were acquired using a LUMItouch® optical response keypad with five             

keys. Presentation® software was used for stimulus delivery and experimental control during            

MEG acquisition. 

Brain Atlas: MarsAtlas 

Single-subject cortical parcellation was performed using the ​MarsAtlas brain scheme ​(Auzias           

et al., 2016)​. After denoising using a non-local means approach ​(Coupé et al., 2008)​,              

T1-weighted MR-images were segmented using the FreeSurfer “recon-all” pipeline         

(http://freesurfer.net). Grey and white matter segmentations of each hemisphere were imported           

into the BrainVisa software and processed using the Morphologist pipeline procedure           

(http://brainvisa.info). White matter and pial surfaces were reconstructed and triangulated, and           

all sulci were detected and labeled automatically ​(Mangin et al., 2004; Perrot et al., 2011)​. A                

parameterization of each hemisphere white matter mesh was performed using the Cortical            

Surface toolbox (​http://www.meca-brain.org/softwares/​). It resulted in a 2D orthogonal system          

defined on the white matter mesh, constrained by a set of primary and secondary sulci ​(Auzias                

et al., 2013)​. The parcels corresponding to the subcortical structures were extracted using             

Freesurfer ​(Fischl et al., 2002)​. The subcortical structures included in the brain parcellation were              

the caudate nucleus, putamen, nucleus accumbens, globus pallidus, thalamus, amygdala, and           

hippocampus. The whole-brain parcellation therefore comprised 96 areas (41 cortical and 7            

subcortical areas per hemisphere). 
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Single-trial high-gamma activity (HGA) in MarsAtlas 

MEG signals were down-sampled to 1 kHz, low-pass filtered to 250 Hz and segmented into               

epochs aligned on finger movement (i.e., button press). Epoch segmentation was also            

performed on stimulus onset and the data from -0.5 and -0.1 s prior to stimulus presentation                

was taken as baseline activity for the calculation of the single-trial high-gamma activity (HGA).              

Artefact rejection was performed semi-automatically and by visual inspection. For each           

movement-aligned epoch and channel, the signal variance and z-value were computed over            

time and taken as relevant metrics for the identification of artefact epochs. All trials with a                

variance greater than 1.5*10-24 across channels were excluded from further search of artefacts.             

Metrics such as the z-score, absolute z-score, and range between the minimum and maximum              

values were also inspected to detect artefacts. Channels and trials displaying outliers were             

removed. Two MEG sensors were excluded from the analysis for all subjects. 

Spectral density estimation was performed using multi-taper method based on discrete           

prolate spheroidal (slepian) sequences ​(Mitra and Pesaran, 1999; Percival and Walden, 1993)​.            

To extract high-gamma activity from 60 to 120Hz, MEG time series were multiplied by ​k               

orthogonal tapers (​k = 8) (0.15s in duration and 60Hz of frequency resolution, each stepped               

every 0.005s), centered at 90Hz and Fourier-transformed. Complex-valued estimates of spectral           

measures , including cross-spectral density matrices, were computed at the sensorX n
sensor (t, )k           

level for each trial ​n​, time ​t and taper ​k​. Source analysis requires a physical forward model or                  

leadfield, which describes the electromagnetic relation between sources and MEG sensors. The            

leadfield combines the geometrical relation of sources (dipoles) and sensors with a model of the               

conductive medium (i.e., the head model). For each participant, we generated a headmodel             

using a single-shell model constructed from the segmentation of the cortical tissue obtained             

from individual MRI scans as described in section 3.2 ​(Nolte, 2003)​. Leadfields were not              

normalized. Sources were placed in the single-subject volumetric parcellation regions. For each            

region, we computed the number of sources ​nSP as the ratio of the volume and the volume of a                   

sphere of radius equal to 3 mm. The k-means algorithm ​(Tou and González, 1974) was then                

used to partition the 3D coordinates of the voxels within a given volumetric region into ​nS                

clusters. The sources were placed at the center of each partition for each brain region. The                

head model, source locations and the information about MEG sensor position for both models              

were combined to derive single-participant leadfields. The orientation of cortical sources was set             

perpendicular to the cortical surface, whereas the orientation for subcortical sources was left             
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unconstrained. 

We used adaptive linear spatial filtering ​(Van Veen et al., 1997) to estimate the power at the                 

source level. In particular, we employed the Dynamical Imaging of Coherent Sources (DICS)             

method, a beamforming algorithm for the tomographic mapping in the frequency domain ​(Groß             

et al., 2001)​, which is a well suited for the study of neural oscillatory responses based on                 

single-trial source estimates of band-limited MEG signals (for a series of review see, ​(Hansen et               

al., 2010)​). At each source location, DICS employs a spatial filter that passes activity from this                

location with unit gain while maximally suppressing any other activity. The spatial filters were              

computed on all trials for each time point and session, and then applied to single-trial MEG data.                 

DICS allows the estimate of complex-value spectral measures at the source level,            

, where is the spatial filter that transforms the data from theXnsource (t, )k = A (t)Xnsensor (t, )k   A (t)            

sensor to source level and is the complex-valued estimates of spectral measures,     Xnsensor (t, )k         

including cross-spectral density matrices, computed at the sensor level for each trial ​n​, time ​t               

and taper ​k ​(for a detailed description of a similar approach see ​(Hipp et al., 2011)​). The                 

single-trial high-gamma power at each source location was estimated by multiplying the            

complex spectral estimates with their complex conjugate, and averaged over tapers ​k​,            

, where angle brackets refer to the average across tapers P nsource (t) = ⟨X (t, ) ⟩n
source (t, )k Xnsource k *

k           

and * to the complex conjugate. Single-trial power estimates aligned on movement and stimulus              

onset were log-transformed to make the data approximate Gaussian and low-pass filtered at             

50Hz to reduce noise. Single-trial mean power and standard deviation in a time window from               

-0.5 and -0.1 s prior to stimulus onset was computed for each source and trial, and used to                  

z-transform single-trial movement-locked power time courses. Similarly, single-trial        

movement-locked power time courses were log-transformed and z-scored with respect to           

baseline period, so to produce HGAs for the prestimulus period from -1.6 to -0.1 s with respect                 

to stimulation for subsequent functional connectivity analysis. Finally, single-trial HGA for each            

brain region of ​MarsAtlas was computed as the mean z-transformed power values averaged             

across all sources within the same region. 
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Information theoretic measures 

The goal of the MEG analysis was to assess the dynamics of visuomotor-related modulations              

in DI, DFI and FIT as they evolve over time. The DFI and FIT were thus computed by taking as                    

feature the visuomotor-related ​versus ​baseline HGA. The visuomotor-related activity was          

considered as the HGA aligned to movement onset (from -1s to 0.75s), whereas the baseline               

activity was defined as the HGA at -0.5s prior to stimulus onset. To estimate the joint probability                 

distribution at each time stamp around movement onset, we concatenated the HGA in windows              

of 20 msec (4 time instants), trials and subjects, and we binned the values into three                

equally-populated bins, thus resulting into 6 possible values for each random variable. The DI,              

DF and FIT measures were thus computed in a time-resolved manner on all time points aligned                

on motor response. We computed information theoretic measures to quantify the information            

transfer about visuomotor processing between three regions of interest: the medial superior            

parietal cortex (SPCm), the dorsolateral premotor cortex (PMdl) and the dorsal Inferior Parietal             

Cortex (IPCd).  
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