
HAL Id: hal-02391844
https://hal.science/hal-02391844v4

Preprint submitted on 27 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of a slow moving vehicle on traffic:
Well-posedness and approximation for a mildly nonlocal

model
Abraham Sylla

To cite this version:
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for
a mildly nonlocal model. 2021. �hal-02391844v4�

https://hal.science/hal-02391844v4
https://hal.archives-ouvertes.fr


In�uence of a slow moving vehicle on tra�c:

Well-posedness and approximation for a mildly nonlocal

model
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Institut Denis Poisson, CNRS UMR 7013, Université de Tours, Université d'Orléans

Parc de Grandmont, 37200 Tours cedex, France

Abstract

In this paper, we propose a macroscopic model that describes the in�uence of a slow moving
large vehicle on road tra�c. The model consists of a scalar conservation law with a nonlocal
constraint on the �ux. The constraint level depends on the trajectory of the slower vehicle which
is given by an ODE depending on the downstream tra�c density. After proving well-posedness,
we �rst build a �nite volume scheme and prove its convergence, and then investigate numerically
this model by performing a series of tests. In particular, the link with the limit local problem
of [M. L. Delle Monache and P. Goatin, J. Di�er. Equ. 257 (2014), 4015�4029] is explored
numerically.
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1 INTRODUCTION

1 Introduction

Delle Monache and Goatin developed in [20] a macroscopic model aiming at describing the situation
in which a slow moving large vehicle � a bus for instance � reduces the road capacity and thus
generates a moving bottleneck for the surrounding tra�c �ow. Their model is given by a Cauchy
problem for Lightwill-Whitham-Richards scalar conservation law in one space dimension with local
point constraint. The constraint is prescribed along the slow vehicle trajectory (y(t), t), the un-
known y being coupled to the unknown ρ of the constrained LWR equation. Point constraints were
introduced in [19, 17] to account for localized in space phenomena that may occur at exits and which
act as obstacles. The constraint in the model of [20] depends upon the slow vehicle speed ẏ, where
its position y veri�es the following ODE

ẏ(t) = ω
(
ρ(y(t)+, t)

)
. (A)

Above, ρ = ρ(x, t) ∈ [0, R] is the tra�c density and ω : [0, R] → R+ is a nonincreasing Lipschitz
continuous function which links the tra�c density to the slow vehicle velocity. Delle Monache and
Goatin proved an existence result for their model in [20] with a wave-front tracking approach in
the BV framework. Adjustments to the result were recently brought by Liard and Piccoli in [28].
Despite the step forward made in [21], the uniqueness issue remained open for a time. Indeed, the
appearance of the trace ρ(y(t)+, t) makes it fairly di�cult to get a Lipschitz continuous dependency
of the trajectory y = y(t) from the solution ρ = ρ(x, t). Nonetheless, a highly nontrivial uniqueness
result was achieved by Liard and Piccoli in [27]. To describe the in�uence of a single vehicle on the
tra�c �ow, the authors of [26] proposed a PDE-ODE coupled model without constraint on the �ux
for which they proposed in [9] two convergent schemes. In the present paper, we consider a modi�ed
model where the point constraint becomes nonlocal, making the velocity of the slow vehicle depend
on the mean density evaluated in a small vicinity ahead the driver. More precisely, instead of A, we
consider the relation

ẏ(t) = ω

(�
R
ρ(x+ y(t), t)µ(x) dx

)
, (B)

where µ ∈ BV(R;R+) is a weight function used to average the density. From the mathematical
point of view, this choice makes the study of the new model easier. Indeed, the authors of [5, 3, 4] put
forward techniques for full well-posedness analysis of similar models with nonlocal point constraints.
From the modeling point of view, considering B makes sense for several reasons outlined in Section
3.5.
The paper is organized as follows. Sections 2 and 3 are devoted to the proof of the well-posedness of
the model. In Section 4 we introduce the numerical �nite volume scheme and prove its convergence.
An important step of the reasoning is to prove a BV regularity for the approximate solutions. It
serves both in the existence proof and it is central in the uniqueness argument. In that optic, the
appendix is essential. Indeed, it is devoted to the proof of a BV regularity for entropy solutions
to a large class of limited �ux models. Let us stress that we highlight the interest of the BVloc

discrete compactness technique of Towers [32] in the context of general discontinuous-�ux problems.
In the numerical section 5, �rst we perform numerical simulations to validate our model. Then we
investigate both qualitatively and quantitatively the proximity between our model � in which we
considered B � as δ → µ0+ and the model of [20] in which the authors considered A.
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2 MODEL, NOTION OF SOLUTION AND UNIQUENESS

2 Model, notion of solution and uniqueness

2.1 Model in the bus frame

Note that we �nd it convenient to study the problem in the bus frame, which means setting X =
x − y(t) in the model of Delle Monache and Goatin in [20]. Keeping in mind what we said above
about the nonlocal constraint, the problem we consider takes the following form:

∂tρ+ ∂x (F (ẏ(t), ρ)) = 0 R× (0, T )

ρ(x, 0) = ρ0(x+ y0) x ∈ R

F (ẏ(t), ρ)|x=0 ≤ Q(ẏ(t)) t ∈ (0, T )

ẏ(t) = ω

(�
R
ρ(x, t)µ(x) dx

)
t ∈ (0, T )

y(0) = y0.

(2.1)

Above, ρ = ρ(x, t) denotes the tra�c density, of which maximum attainable value is R > 0, and

F (ẏ(t), ρ) = f(ρ)− ẏ(t)ρ

denotes the normal �ux through the curve x = y(t). We assume that the �ux function f : [0, R]→ R
is Lipschitz continuous and bell-shaped, which are commonly used assumptions in tra�c dynamics:

f(ρ) ≥ 0, f(0) = f(R) = 0, ∃! ρ ∈ (0, R), f ′(ρ)(ρ− ρ) > 0 for a.e. ρ ∈ (0, R). (2.2)

In [20], the authors chose the function Q(s) = α×
(

1− s
2

)2

to prescribe the maximal �ow allowed

through a bottleneck located at x = 0. The parameter α ∈ (0, 1) was giving the reduction rate of
the road capacity due to the presence of the slow vehicle. We use the s variable to stress that the
value of the constraint is a function of the speed of the slow vehicle. In the sequel the s variable will
refer to quantities related to the slow vehicle velocity. Regarding the function Q, we can allow for
more general choices. Speci�cally,

Q : [0, ‖ω‖L∞ ]→ R+

can be any Lipschitz continuous function. It is a well known fact that in general, the total variation of
an entropy solution to a constraint Cauchy problem may increase (see [17, Section 2] for an example).
However, this increase can be controlled if the constraint level does not reach the maximum level.
A mild assumption on Q � see Assumption (3.7) below � will guarantee availability of BV bounds,
provided we suppose that

ρ0 ∈ L1(R; [0, R]) ∩BV(R).

2.2 Notion of solution

Throughout the paper, we denote by

Φ(a, b) = sign(a− b)(f(a)− f(b)) and Φẏ(t)(a, b) = Φ(a, b)− ẏ(t)|a− b|

the entropy �uxes associated with the Kruºkov entropy ρ 7→ |ρ − κ|, for all κ ∈ [0, R], see [25].
Following [20, 17, 6, 15], we give the following de�nition of solution for Problem (2.1).
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2 MODEL, NOTION OF SOLUTION AND UNIQUENESS

De�nition 2.1. A couple (ρ, y) with ρ ∈ L∞(R × (0, T )) and y ∈ W1,∞((0, T )) is an admissible
weak solution to (2.1) if

(i) the following regularity is ful�lled:

ρ ∈ C([0, T ];L1
loc(R)); (2.3)

(ii) for all test functions ϕ ∈ C∞c (R × R+), ϕ ≥ 0 and κ ∈ [0, R], the following entropy inequalities
are veri�ed for all 0 ≤ τ < τ ′ ≤ T :

� τ ′

τ

�
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

�
R
|ρ(x, τ)− κ|ϕ(x, τ) dx

−
�
R
|ρ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

� τ ′

τ
Rẏ(t)(κ, q(t))ϕ(0, t) dt ≥ 0,

(2.4)

where

Rẏ(t)(κ, q(t)) = F (ẏ(t), κ)−min {F (ẏ(t), κ), q(t)} and q(t) = Q(ẏ(t));

(iii) for all test functions ψ ∈ C∞([0, T ]), ψ ≥ 0 and some given ϕ ∈ C∞c (R) which veri�es ϕ(0) = 1,
the following weak constraint inequalities are veri�ed for all 0 ≤ τ < τ ′ ≤ T :

−
� τ ′

τ

�
R+

ρ∂t(ϕψ) + F (ẏ(t), ρ)∂x(ϕψ) dx dt−
�
R+

ρ(x, τ)ϕ(x)ψ(τ) dx

+

�
R+

ρ(x, τ ′)ϕ(x)ψ(τ ′) dx ≤
� τ ′

τ
q(t)ψ(t) dt ;

(2.5)

(iv) the following weak ODE formulation is veri�ed for all t ∈ [0, T ]:

y(t) = y0 +

� t

0
ω

(�
R
ρ(x, s)µ(x) dx

)
ds . (2.6)

De�nition 2.2. We will call BV-regular solution any admissible weak solution (ρ, y) to the Problem
(2.1) which also veri�es

ρ ∈ L∞((0, T );BV(R)).

Remark 2.1. It is more usual to formulate (2.4) with ϕ ∈ C∞c (R× [0, T )), τ = 0 and τ ′ = T . The
equivalence between the two formulations is due to the regularity (2.3).

Remark 2.2. As it happens, the time-continuity regularity (2.3) is actually a consequence of in-
equalities (2.4). Indeed, we will use the result [12, Theorem 1.2] which states that if Ω is an open
subset of R and if for all test functions ϕ ∈ C∞c (Ω × [0, T )), ϕ ≥ 0 and κ ∈ [0, R], ρ satis�es the
following entropy inequalities:

� T

0

�
Ω
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

�
Ω
|ρ0(x)− κ|ϕ(x, 0) dx ≥ 0,

then ρ ∈ C([0, T ];L1
loc(Ω)). Moreover, since ρ is bounded and Ω\Ω has a Lebesgue measure 0,

ρ ∈ C([0, T ];L1
loc(Ω)). We will use this remark several times in the sequel of the paper, with

Ω = R∗.
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2 MODEL, NOTION OF SOLUTION AND UNIQUENESS

Remark 2.3. Any admissible weak solution (ρ, y) to Problem (2.1) is also a distributional solution
to the conservation law in (2.1). Therefore, inequalities (2.5) imply the following ones for all 0 ≤
τ < τ ′ ≤ T :

� τ ′

τ

�
R−

ρ∂t(ϕψ) + F (ẏ(t), ρ)∂x(ϕψ) dx dt+

�
R−

ρ(x, τ)ϕ(x)ψ(τ) dx

−
�
R−

ρ(x, τ ′)ϕ(x)ψ(τ ′) dx ≤
� τ ′

τ
q(t)ψ(t) dt ,

where ϕ and ψ are such as described in De�nition 2.1 (iii).

The interest of weak formulations (2.5)-(2.6) for the �ux constraint and for the ODE governing the
slow vehicle lies in their stability with respect to ρ. Formulation (2.4) � (2.6) is well suited for
passage to the limit of a.e. convergent sequences of exact or approximate solutions.

2.3 Uniqueness of the BV-regular solution

In this section, we prove stability with respect to the initial data and uniqueness for BV-regular
solutions to Problem (2.1). We start with the

Lemma 2.3. If (ρ, y) is an admissible weak solution to Problem (2.1), then ẏ ∈W1,∞((0, T )). In
particular, ẏ ∈ BV([0, T ]).

Proof. Denote for all t ∈ [0, T ],

s(t) = ω

(�
R
ρ(x, t)µ(x) dx

)
.

Since µ ∈ L1(R) ∩ L∞(R) and ρ ∈ C([0, T ];L1
loc(R)), s is continuous on [0, T ]. By de�nition, y

satis�es the weak ODE formulation (2.6). Consequently, for a.e. t ∈ (0, T ), ẏ(t) = s(t). We are
going to prove that s is Lipschitz continuous on [0, T ], which will ensure that ẏ ∈ W1,∞((0, T )).
Since µ ∈ BV(R), there exists a sequence (µn)n∈N ⊂ BV(R) ∩C∞c (R) such that:

‖µn − µ‖L1 −→
n→+∞

0 and TV(µn) −→
n→+∞

TV(µ).

Introduce for all n ∈ N and t ∈ [0, T ], the function

ξn(t) =

�
R
ρ(x, t)µn(x) dx .

Fix ψ ∈ C∞c ((0, T )). Since ρ is a distributional solution to the conservation law in (2.1), we have
for all n ∈ N, � T

0
ξn(t)ψ̇(t) dt =

� T

0

�
R
ρ∂t(ψµn) dx dt

= −
� T

0

�
R
F (ẏ(t), ρ)∂x(ψµn) dx dt

= −
� T

0

(�
R
F (ẏ(t), ρ)µ′n(x) dx

)
ψ(t) dt ,

which means that for all n ∈ N, ξn is di�erentiable in the weak sense, and that for a.e. t ∈ (0, T ),

ξ̇n(t) =

�
R
F (ẏ(t), ρ)µ′n(x) dx .
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2 MODEL, NOTION OF SOLUTION AND UNIQUENESS

In particular, since both the sequences (‖µn‖L1)n and (TV(µn))n are bounded � say by C > 0 � we
also have for all n ∈ N,

‖ξn‖L∞ ≤ RC and ‖ξ̇n‖L∞ ≤ C(‖f‖L∞ + ‖ω‖L∞R).

Therefore, the sequence (ξn)n is bounded in W1,∞((0, T )). Now, for all t, τ ∈ [0, T ] and n ∈ N,
triangle inequality yields:

|s(t)− s(τ)| ≤ 2‖ω′‖L∞R‖µn − µ‖L1 + ‖ω′‖L∞
∣∣∣∣�

R
(ρ(x, t)− ρ(x, τ))µn(x) dx

∣∣∣∣
= 2‖ω′‖L∞R‖µn − µ‖L1 + ‖ω′‖L∞ |ξn(t)− ξn(τ)|
≤ 2‖ω′‖L∞R‖µn − µ‖L1 + C‖ω′‖L∞(‖f‖L∞ + ‖ω‖L∞R)︸ ︷︷ ︸

K

|t− τ |.

Letting n → +∞, we get that for all t, τ ∈ [0, T ], |s(t)− s(τ)| ≤ K|t− τ |, which proves that s is
Lipschitz continuous on [0, T ]. The proof of the statement is completed. �

Before stating the uniqueness result, we make the following additional assumption:

∀s ∈ [0, ‖ω‖L∞ ], argmax
ρ∈[0,R]

F (s, ρ) > 0. (2.7)

This ensures that for all s ∈ [0, ‖ω‖L∞ ], the function F (s, ·) veri�es the bell-shaped assumptions
(A.2). For example, when considering the �ux f(ρ) = ρ(R− ρ), (2.7) reduces to ‖ω‖L∞ < R, which
only means that the maximum velocity of the slow vehicle is lesser than the maximum velocity of
the cars.

Theorem 2.4. Suppose that f satis�es (2.2) and (2.7). Fix ρ1
0, ρ

2
0 ∈ L1(R; [0, R]) ∩ BV(R) and

y1
0, y

2
0 ∈ R. We denote by (ρ1, y1) a BV-regular solution to Problem (2.1) corresponding to initial

data (ρ1
0, y

1
0), and by (ρ2, y2) an admissible weak solution with initial data (ρ2

0, y
2
0). Then there exist

constants α, β, γ > 0 such that

for a.e. t ∈ (0, T ), ‖ρ1(t)− ρ2(t)‖L1 ≤
(
|y1

0 − y2
0|TV(ρ1

0) + ‖ρ1
0 − ρ2

0‖L1

)
exp(αt) (2.8)

and

∀t ∈ [0, T ], |y1(t)− y2(t)| ≤ |y1
0 − y2

0|+ (β|y1
0 − y2

0|+ γ‖ρ1
0 − ρ2

0‖L1)(exp(αt)− 1). (2.9)

In particular, Problem (2.1) admits at most one BV-regular solution.

Proof. Since (ρ1, y1) is a BV-regular solution to Problem (2.1), there exists C ≥ 0 such that

∀t ∈ [0, T ], TV(ρ1(t)) ≤ C.

Lemma 2.3 ensures that ẏ1, ẏ2 ∈ BV([0, T ];R+). We can use result (A.3) to obtain that for a.e.
t ∈ (0, T ),

‖ρ1(t)−ρ2(t)‖L1 ≤ |y1
0−y2

0|TV(ρ1
0)+‖ρ1

0−ρ2
0‖L1+

(
2‖Q′‖L∞ + 2R+ C

)� t

0
|ẏ1(s)−ẏ2(s)|ds . (2.10)

Moreover, since for a.e. t ∈ (0, T ),

|ẏ1(t)− ẏ2(t)| ≤ ‖ω′‖L∞‖µ‖L∞‖ρ1(t)− ρ2(t)‖L1 ,
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2 MODEL, NOTION OF SOLUTION AND UNIQUENESS

Gronwall's lemma yields (2.8) with α =
(
2‖Q′‖L∞ + 2R+ C

)
‖ω′‖L∞‖µ‖L∞ . Then for all t ∈ [0, T ],

|y1(t)− y2(t)| ≤ |y1
0 − y2

0|+
� t

0
|ẏ1(s)− ẏ2(s)| ds

≤ |y1
0 − y2

0|+ ‖ω′‖L∞‖µ‖L∞
� t

0
‖ρ1(s)− ρ2(s)‖L1 ds

≤ |y1
0 − y2

0|+ (β|y1
0 − y2

0|+ γ‖ρ1
0 − ρ2

0‖L1)(exp(αt)− 1),

where

β =
TV(ρ1

0)

2‖Q′‖L∞ + 2R+ C
and γ =

1

2‖Q′‖L∞ + 2R+ C
.

The uniqueness of a BV-regular solution is then clear. �

Remark 2.4. Up to inequality (2.10), our proof was very much following the one of [21, Theorem
2.1]. However, the authors of [21] faced an issue to derive a Lipschitz stability estimate between the
car densities and the slow vehicle velocities starting from

|ω
(
ρ1(0+, t)

)
− ω

(
ρ2(0+, t)

)
|.

For us, due to the nonlocality of our problem, it was straightforward to obtain the bound∣∣∣∣ω(�
R
ρ1(x, t)µ(x) dx

)
− ω

(�
R
ρ2(x, t)µ(x) dx

)∣∣∣∣ ≤ ‖ω′‖L∞‖µ‖L∞‖ρ1(·, t)− ρ2(·, t)‖L1 .

Remark 2.5. A noteworthy consequence of Theorem 2.4 is that existence of a BV-regular solution
will ensure uniqueness of an admissible weak one.
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3 TWO EXISTENCE RESULTS

3 Two existence results

3.1 Time-splitting technique

In [20], to prove existence for their problem, the authors took a wave-front tracking approach. We
choose here to use a time-splitting technique. The main advantage of this technique is that it relies
on a ready-to-use theory. More precisely, at each time step, we will deal with exact solutions to a
conservation law with a �ux constraint, which have now become standard, see [17, 6, 15].

Fix ρ0 ∈ L1(R; [0, R]) and y0 ∈ R. Let δ > 0 be a time step, N ∈ N such that T ∈ [Nδ, (N + 1)δ)
and denote for all n ∈ {0, . . . , N + 1}, tn = nδ. We initialize with

∀t ∈ R, ρ0(t) = ρ0(·+ y0) and ∀t ∈ [0, T ], y0(t) = y0.

Fix n ∈ {1, . . . , N + 1}. First, we de�ne for all t ∈ (tn−1, tn],

σn(t) = ω

(�
R
ρn−1(x, t− δ)µ(x) dx

)
, sn = σn(tn) and qn = Q(sn).

Since both qn and ρn−1(·, tn−1) are bounded, [6, Theorem 2.11] ensures the existence and uniqueness
of a solution ρn ∈ L∞(R× [tn−1, tn]) to

∂tρ+ ∂x (F (sn, ρ)) = 0 R× (tn−1, tn)

ρ(x, tn−1) = ρn−1(x, tn−1) x ∈ R

F (sn, ρ)|x=0 ≤ qn t ∈ (tn−1, tn),

in the sense that ρn satis�es entropy/constraint inequalities analogous to (2.4)-(2.5) with suitable
�ux/constraint function and initial data, see De�nition A.1. Taking also into account Remark 2.2,
ρn ∈ C([tn−1, tn];L1

loc(R)). We then de�ne the following functions:

• ρδ(t) = ρ01R−(t) +
N+1∑
n=1

ρn(t)1(tn−1,tn](t)

• σδ(t), qδ(t), sδ(t) = σn(t), qn, sn if t ∈ (tn−1, tn]

• yδ(t) = y0 +

� t

0
σδ(u) du .

First, let us prove that (ρδ, yδ) solves an approximate version of Problem (2.1).

Proposition 3.1. The couple (ρδ, yδ) is an admissible weak solution to

∂tρδ + ∂x (F (sδ(t), ρδ)) = 0 R× (0, T )

ρδ(x, 0) = ρ0(x+ y0) x ∈ R

F (sδ(t), ρδ)|x=0 ≤ qδ(t) t ∈ (0, T )

ẏδ(t) = ω

(�
R
ρδ(x, t− δ)µ(x) dx

)
t ∈ (0, T )

yδ(0) = y0,

(3.1)

in the sense that ρδ ∈ C([0, T ];L1
loc(R)) and satis�es entropy/constraint inequalities analogous to

(2.4)-(2.5) with �ux F (sδ(·), ·), constraint qδ, and initial data ρ0(·+ y0); and yδ satis�es, instead of
(2.6), the following weak ODE formulation:

∀t ∈ [0, T ], yδ(t) = y0 +

� t

0
ω

(�
R
ρδ(x, s− δ)µ(x) dx

)
ds .
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3 TWO EXISTENCE RESULTS

Proof. By construction, for all n ∈ {1, . . . , N+1}, ρn ∈ C([tn−1, tn];L1
loc(R)). Combining this with

the "stop-and-restart" conditions ρn(·, tn−1) = ρn−1(·, tn−1), one ensures that ρδ ∈ C([0, T ];L1
loc(R)).

Let t ∈ [0, T ] and n ∈ {1, . . . , N + 1} such that t ∈ [tn−1, tn). Then,

yδ(t)− y0 =
n−1∑
k=1

� tk

tk−1

σk(s) ds+

� t

tn−1

σn(s) ds

=

n−1∑
k=1

� tk

tk−1

ω

�
R
ρk−1(x, s− δ)︸ ︷︷ ︸

ρδ(x,s−δ)

µ(x) dx

 ds+

� t

tn−1

ω

�
R
ρn−1(x, s− δ)︸ ︷︷ ︸

ρδ(x,s−δ)

µ(x) dx

ds

=

� t

0
ω

(�
R
ρδ(x, s− δ)µ(x) dx

)
ds ,

(3.2)

which proves that ẏδ solves the ODE in (3.1) in the weak sense. Fix now ϕ ∈ C∞c (R × R+), ϕ ≥ 0
and κ ∈ [0, R]. By construction of the sequence ((ρk, yk))k, we have for all n,m ∈ {0, . . . , N + 1},
� tm

tn

�
R
|ρδ − κ|∂tϕ+ Φsδ(t)(ρδ, κ)∂xϕdx dt

=

m∑
k=n+1

� tk

tk−1

�
R
|ρk − κ|∂tϕ+ Φsk(ρk, κ)∂xϕdx dt

≥
m∑

k=n+1


�
R
|ρk(x, tk)− κ|ϕ(x, tk) dx−

�
R
| ρk(x, tk−1)︸ ︷︷ ︸
ρk−1(x,tk−1)

−κ|ϕ(x, tk−1) dx− 2

� tk

tk−1

Rsk(κ, qk)ϕ(0, t) dt


=

�
R
|ρδ(x, tm)− κ|ϕ(x, tm) dx−

�
R
|ρδ(x, tn)− κ|ϕ(x, tn) dx− 2

� tm

tn
Rsδ(t)(κ, qδ(t))ϕ(0, t) dt .

It is then straightforward to prove that for all 0 ≤ τ < τ ′ ≤ T ,
� τ ′

τ

�
R
|ρδ − κ|∂tϕ+ Φsδ(t)(ρδ, κ)∂xϕ dx dt+

�
R
|ρδ(x, τ)− κ|ϕ(x, τ) dx

−
�
R
|ρδ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

� τ ′

τ
Rsδ(t)(κ, qδ(t))ϕ(0, t) dt ≥ 0.

(3.3)

Proving that ρδ satis�es constraint inequalities is very similar so we omit the details. One has to
start from

−
� τ ′

τ

�
R+

ρδ∂t(ϕψ) + F (sδ(t), ρδ)∂x(ϕψ) dx dt

and make use once again of the construction of the sequence ((ρk, yk))k to obtain

−
� τ ′

τ

�
R+

ρδ∂t(ϕψ) + F (sδ(t), ρδ)∂x(ϕψ) dx dt−
�
R+

ρδ(x, τ)ϕ(x)ψ(τ) dx

+

�
R+

ρδ(x, τ
′)ϕ(x)ψ(τ ′) dx ≤

� τ ′

τ
qδ(t)ψ(t) dt .

(3.4)

This concludes the proof. �
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Remark 3.1. Remark that we have for all δ > 0,

‖σδ‖L∞ ≤ ‖ω‖L∞ and ‖yδ‖L∞ ≤ |y0|+ T‖ω‖L∞ .

This means that the sequence (yδ)δ is bounded in W1,∞((0, T )). Then the compact embedding of
W1,∞((0, T )) in C([0, T ]) yields a subsequence of (yδ)δ, which we do not relabel, which converges
uniformly on [0, T ] to some y ∈ C([0, T ]).

At this point, we propose two ways to obtain compactness for the sequence (ρδ)δ, which will lead to
two existence results.

3.2 The case of a nondegenerately nonlinear �ux

Theorem 3.2. Fix ρ0 ∈ L1(R; [0;R]) and y0 ∈ R. Suppose that f is Lipschitz continuous, satis�es
(2.2)-(2.7) and the following nondegeneracy assumption

for a.e. s ∈ (0, ‖ω‖L∞), mes{ρ ∈ [0, R] | f ′(ρ)− s = 0} = 0. (3.5)

Then Problem (2.1) admits at least one admissible weak solution.

Proof. Condition (3.5) combined with the obvious uniform L∞ bound

∀δ > 0, ∀(x, t) ∈ R× [0, T ], ρδ(x, t) ∈ [0, R],

and the results proved by Panov in [30, 31] ensure the existence of a subsequence � which we
do not relabel � that converges in L1

loc(R∗ × (0, T )) to some ρ ∈ L1
loc(R∗ × (0, T )); and a further

extraction yields the almost everywhere convergence on R×(0, T ) and also the fact that ρ ∈ L∞(R×
(0, T ); [0, R]). We now show that the couple (ρ, y) constructed above is an admissible weak solution
to (2.1) in the sense of De�nition 2.1.

For all δ > 0 and t ∈ [0, T ],

yδ(t)− y0 =

� t

0
ω

(�
R
ρδ(x, s− δ)µ(x) dx

)
ds

=

� t−δ

−δ
ω

(�
R
ρδ(x, s)µ(x) dx

)
ds

=

� t

0
ω

(�
R
ρδ(x, s)µ(x) dx

)
ds+

(� 0

−δ
−
� t

t−δ

)
ω

(�
R
ρδ(x, s)µ(x) dx

)
ds .

The last term vanishes as δ → 0 since ω is bounded. Then, Lebesgue theorem combined with the
continuity of ω gives, for all t ∈ [0, T ],

yδ(t) −→
δ→0

y0 +

� t

0
ω

(�
R
ρ(x, s)µ(x) dx

)
ds .

This last quantity is also equal to y(t) due to the uniform convergence of (yδ)δ to y. This proves
that y veri�es (2.6). Now, we aim at passing to the limit in (3.3) and (3.4). With this in mind,
we prove the a.e. convergence of the sequence (σδ)δ towards ẏ. Since µ ∈ BV(R), there exists a
sequence of smooth functions (µn)n∈N ⊂ BV(R) ∩C∞c (R) such that:

‖µn − µ‖L1 −→
n→+∞

0 and TV(µn) −→
n→+∞

TV(µ).
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Introduce for every δ > 0 and n ∈ N, the function

ξnδ (t) =

�
R
ρδ(x, t)µn(x) dx .

Since for all δ > 0, ρδ is a distributional solution to the conservation law in (3.1), one can show �
following the proof of Lemma 2.3 for instance � that for every n ∈ N, ξnδ ∈W1,∞((0, T )), and that
for a.e. t ∈ (0, T ),

ξ̇nδ (t) =

�
R
F (sδ(t), ρδ)µ

′
n(x) dx .

Moreover, since both the sequences (‖µn‖L1)n and (TV(µn))n are bounded, it is clear that (ξnδ )δ,n
is uniformly bounded in W1,∞((0, T )), therefore so is (ω(ξnδ ))δ,n. Consequently, for all n ∈ N, δ > 0

and almost every t ∈ (0, T ), triangle inequality yields:∣∣∣∣σδ(t)− ω(�
R
ρ(x, t)µ(x) dx

)∣∣∣∣ ≤ 2‖ω′‖L∞R‖µn − µ‖L1 + δ sup
n∈N

‖ω(ξnδ )‖W1,∞

+ ‖ω′‖L∞
∣∣∣∣�

R
(ρδ(x, t)− ρ(x, t))µ(x) dx

∣∣∣∣ −→δ→0
n→+∞

0,

which proves that (σδ)δ converges a.e. on (0, T ) to ẏ. To prove the time-continuity regularity,
we �rst apply inequality (3.3) with τ = 0, τ ′ = T (which is licit since ρδ is continuous in time),
ϕ ∈ C∞c (R∗ × [0, T )), ϕ ≥ 0 and κ ∈ [0, R]:

� T

0

�
R
|ρδ − κ|∂tϕ+ Φσδ(t)(ρδ, κ)∂xϕ dx dt+

�
R
|ρ0(x+ y0)− κ|ϕ(x, 0) dx ≥ 0.

Then, we let δ → 0 to get

� T

0

�
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

�
R
|ρ0(x+ y0)− κ|ϕ(x, 0) dx ≥ 0.

Consequently, ρ ∈ C([0, T ];L1
loc(R)), see Remark 2.2. Finally, the a.e. convergences of (σδ)δ and

(ρδ)δ to ẏ and ρ, respectively, are enough to pass to the limit in (3.3). This ensures that for all
test functions ϕ ∈ C∞c (R × R+), ϕ ≥ 0 and κ ∈ [0, R], the following inequalities hold for a.e.
0 ≤ τ < τ ′ ≤ T :

� τ ′

τ

�
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕ dx dt+

�
R
|ρ(x, τ)− κ|ϕ(x, τ) dx

−
�
R
|ρ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

� τ ′

τ
Rẏ(t)(κ, q(t))ϕ(0, t) dt ≥ 0.

Observe that the expression in the left-hand side of the previous inequality is a continuous function
of (τ, τ ′) which is almost everywhere greater than the continuous function 0. By continuity, this
expression is everywhere greater than 0, which proves that ρ satis�es the entropy inequalities (2.4).
Using similar arguments, we show that ρ satis�es the constraint inequalities (2.5). This proves the
couple (ρ, y) is an admissible weak solution to Problem (2.1), and this concludes the proof. �
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In this section, we proved an existence result for L∞ initial data, but we have no guarantee of
uniqueness since a priori we have no information regarding the BV regularity of such solutions.
Assumption (3.5) ensures the compactness for sequences of entropy solutions to conservation laws
with �ux function F . However, it prevents us from using �ux functions with linear parts � which
corresponds to constant tra�c velocity for small densities � whereas such fundamental diagrams are
often used in tra�c modeling. The results of the next section will extend to this interesting case,
under the extra BV assumption on the data.

3.3 Well-posedness for BV data

To obtain compactness for (ρδ)δ, an alternative to the setting of Section 3.2 is to derive uniform BV
bounds.

Theorem 3.3. Fix ρ0 ∈ L1(R; [0, R])∩BV(R) and y0 ∈ R. Suppose that f satis�es (2.2) and (2.7).
Suppose also that

∀s ∈ [0, ‖ω‖L∞ ] , F (s, ·) ∈ C1([0, R]\{ρs}), (3.6)

where ρs = argmax
ρ∈[0,R]

F (s, ρ). Finally assume that Q satis�es the condition

∃ε > 0, ∀s ∈ [0, ‖ω‖L∞ ], Q(s) ≤ max
ρ∈[0,R]

F (s, ρ)− ε. (3.7)

Then Problem (2.1) admits a unique admissible weak solution, which is also
BV-regular.

Proof. Fix δ > 0. Recall that (ρδ, yδ) is an admissible weak solution to (3.1). In particular, ρδ is
an admissible weak solution to the constrained conservation law in (3.1), in the sense of De�nition
A.1. It is clear from the splitting construction that for a.e. t ∈ (0, T ),

σδ(t) = ω

(�
R
ρδ(x, t− δ)µ(x) dx

)
.

Following the steps of the proof of Lemma 2.3, we can show that for all δ > 0, σδ ∈ BV([0, T ];R+).
Even more than that, by doing so we show that the sequence (TV(σδ))δ is bounded. Therefore,
the sequence (TV(sδ))δ is bounded as well. Moreover, since Q veri�es (3.7), all the hypotheses of
Corollary A.7 are ful�lled. Combining this with Remark A.3, we get the existence of a constant
Cε = Cε(‖∂sF‖L∞) such that for all t ∈ [0, T ],

TV(ρδ(t)) ≤ TV(ρ0) + 4R+ Cε (TV(qδ) + TV(sδ))

≤ TV(ρ0) + 4R+ Cε(1 + ‖Q′‖L∞)TV(sδ).
(3.8)

Consequently for all t ∈ [0, T ], the sequence (ρδ(t))δ is bounded in BV(R). A classical analysis
argument � see [24, Theorem A.8] � ensures the existence of ρ ∈ C([0, T ];L1

loc(R)) such that

∀t ∈ [0, T ], ρδ(t) −→
δ→0

ρ(t) in L1
loc(R).

With this convergence, we can follow the proof of Theorem 3.2 to show that (ρ, y) is an admissible
weak solution to (2.1). Then, when passing to the limit in (3.8), the lower semi-continuity of the
BV semi-norm ensures that (ρ, y) is also BV-regular. By Remark 2.5, it ensures uniqueness and
concludes the proof. �
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3.4 Stability with respect to the weight function

To end this section, we now study the stability of Problem (2.1) with respect to the weight function
µ. More precisely, let

(
µ`
)
`
⊂ BV(R;R+) be a sequence of weight functions that converges to µ in

the weak L1 sense:

∀g ∈ L∞(R),

�
R
g(x)µ`(x) dx −→

`→+∞

�
R
g(x)µ(x) dx . (3.9)

Let (y`0)` ⊂ R be a sequence of real numbers that converges to some y0 and let (ρ`0)` ⊂ L1(R; [0, R])
be a sequence of initial data that converges to ρ0 in the strong L1 sense. We suppose that the �ux
function f satis�es Assumptions (2.2)-(2.7)-(3.5). Theorem 3.2 allows us to de�ne or all ` ∈ N, the
couple (ρ`, y`) as an admissible weak solution to the problem

∂tρ
` + ∂x

(
F (ẏ`(t), ρ`)

)
= 0 R× (0, T )

ρ`(x, 0) = ρ`0(x+ y`0) x ∈ R

F (ẏ`(t), ρ`)
∣∣
x=0
≤ Q(ẏ`(t)) t ∈ (0, T )

ẏ`(t) = ω

(�
R
ρ`(x, t)µ`(x) dx

)
t ∈ (0, T )

y`(0) = y`0.

Remark 3.2. Using the same arguments as in Remark 3.1 and as in the proof of Theorem 3.2, we get
that up to the extraction of a subsequence, (y`)` converges uniformly on [0, T ] to some y ∈ C([0, T ])
and (ρ`)` converges a.e. on R× (0, T ) to some ρ ∈ L∞(R× (0, T )).

Theorem 3.4. The couple (ρ, y) constructed above is an admissible weak solution to Problem (2.1).

Proof. The sequence (µ`)` converges in the weak L1 sense and is bounded in L1(R); by the
Dunford-Pettis theorem, this sequence is equi-integrable:

∀ε > 0, ∃α > 0, ∀A ∈ B(R), mes(A) < α =⇒ ∀` ∈ N,
�
A
µ`(x) dx ≤ ε (3.10)

and

∀ε > 0, ∃X > 0, ∀` ∈ N,
�
|x|≥X

µ`(x) dx ≤ ε. (3.11)

Fix t ∈ (0, T ) and ε > 0. Fix α,X > 0 given by (3.10) and (3.11). Egoro� theorem yields the
existence of a measurable subset Et ⊂ [−X,X] such that

mes([−X,X]\Et) < α and ρ`(·, t) −→ ρ(·, t) uniformly on Et.

For a su�ciently large ` ∈ N,∣∣∣∣�
R
ρ`(x, t)µ`(x) dx−

�
R
ρ(x, t)µ(x) dx

∣∣∣∣
≤
�
|x|≥X

|ρ` − ρ|µ` dx+

∣∣∣∣�
Et

(ρ` − ρ)µ` dx

∣∣∣∣+

∣∣∣∣∣
�

[−X,X]\Et
(ρ` − ρ)µ` dx

∣∣∣∣∣
+

∣∣∣∣�
R
ρµ` dx−

�
R
ρµ dx

∣∣∣∣
≤Rε+ ‖ρ` − ρ‖L∞(Et)

�
Et

µ`(x) dx+R

�
[−X,X]\Et

µ`(x) dx+ ε

≤2(R+ 1)ε,
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which proves that for a.e. t ∈ (0, T ),

�
R
ρ`(x, t)µ`(x) dx −→

`→+∞

�
R
ρ(x, t)µ(x) dx . (3.12)

We get that y veri�es the weak ODE formulation (2.6) by passing to the limit in

y`(t) = y`0 +

� t

0
ω

(�
R
ρ`(x, s)µ`(x) dx

)
ds .

By de�nition, for all ` ∈ N, the couple (ρ`, y`) satis�es the analogue of entropy/constraint inequalities
(2.4)-(2.5) with suitable �ux/constraint functions. Applying these inequalities with τ = 0, τ ′ = T ,
ϕ ∈ C∞c (R∗ × [0, T )), ϕ ≥ 0 and κ ∈ [0, R], we get

� T

0

�
R
|ρ` − κ|∂tϕ+ Φẏ`(t)(ρ

`, κ)∂xϕdx dt+

�
R
|ρ`0(x+ y`0)− κ|ϕ(x, 0) dx ≥ 0.

The continuity of ω and the convergence (3.12) ensure that (ẏ`)` converges a.e. to ẏ. This combined
with the a.e. convergence of (ρ`)` to ρ and Riesz-Frechet-Kolmogorov theorem �

(
ρ`0
)
`
being strongly

compact in L1(R) � is enough to show that when letting ` → +∞ in the inequality above, we get,
up to the extraction of a subsequence, that

� T

0

�
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

�
R
|ρ0(x+ y0)− κ|ϕ(x, 0) dx ≥ 0.

Consequently ρ ∈ C([0, T ];L1
loc(R)), see Remark 2.2. Finally, the combined a.e. convergences of

(ẏ`)` and (ρ`)` to ẏ and ρ, respectively, guarantee that (ρ, y) veri�es inequalities (2.4)-(2.5) for almost
every 0 ≤ τ < τ ′ ≤ T . The same continuity argument we used in the proof Theorem 3.2 holds here
to ensure that (ρ, y) actually satis�es the inequalities for all 0 ≤ τ < τ ′ ≤ T . This concludes the
proof of our stability claim. �

3.5 Discussion

The last section concludes the theoretical analysis of Problem (2.1). The nonlocality in space of the
constraint delivers an easy proof of stability with respect to the initial data in the BV framework.
Although a proof of existence using a �xed point theorem was possible (cf. [4]), we chose to propose
a proof based on a time-splitting technique. The stability with respect to µ is a noteworthy feature,
which shows a certain sturdiness of the model. However, the case we had in mind � namely µ→ δ0+

� is not reachable with the assumptions we used to prove the stability, especially (3.9). We will
explore this singular limit numerically, after having built a robust convergent numerical scheme for
Problem (2.1). Let us also underline that unlike in [27, 28] where the authors required a particular
form for the function ω to prove well-posedness for their model, our result holds as long as ω is
Lipschitz continuous.

As evoked earlier, the nonlocality in space of the constraint makes the mathematical study of the
model easier. But in the modeling point of view, this choice also makes sense for several reasons.
First of all, one can think that the velocity ẏ of the slow moving vehicle � unlike its acceleration
� is a rather continuous value. Even if the driver of the slow vehicle suddenly applies the brakes,
the vehicle will not decelerate instantaneously. Note that the LWR model allows for discontinuous
averaged velocity of the agents, however while modeling the slow vehicle we are concerned with
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an individual agent and can model its behavior more precisely. Moreover, considering the mean
value of the tra�c density in a vicinity ahead of the driver could be seen at taking into account
both the driver anticipation and a psychological e�ect. For example, if the driver sees � several
dozens of meters ahead of him/her � a speed reduction on tra�c, he/she will start to slow down.
This observation can be related to the fact that, compared to the �uid mechanics models where
the typical number of agents is governed by the Avogadro constant, in tra�c models the number of
agents is at least 1020 times less. Therefore, a mild nonlocality (evaluation of the downstream tra�c
�ow via averaging over a handful of preceding cars) is a reasonable assumption in the macroscopic
tra�c models inspired by �uid mechanics. This point of view is exploited in the model of [16]. Note
that it is feasible to substitute the basic LWR equation on ρ by the nonlocal LWR introduced in [16]
in our nonlocal model for the slow vehicle. Such mildly nonlocal model remains close to the basic
local model of [20]. It can be studied combining the techniques of [16] and the ones we developed in
this section.
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4 NUMERICAL APPROXIMATION OF THE MODEL

4 Numerical approximation of the model

In this section, we aim at constructing a �nite volume scheme and at proving its convergence toward
the BV-regular solution to (2.1). We will use the notations:

a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Fix ρ0 ∈ L1(R; [0, R]) and y0 ∈ R.

4.1 Finite volume scheme in the bus frame

For a �xed spatial mesh size ∆x and time mesh size ∆t, let xj = j∆x, tn = n∆t. We de�ne the
grid cells Kj+1/2 = (xj , xj+1). Let N ∈ N such that T ∈ [tN , tN+1). We write

R× [0, T ] ⊂
N⋃
n=0

⋃
j∈Z
Pnj+1/2, Pnj+1/2 = Kj+1/2 × [tn, tn+1).

We choose to discretize the initial data ρ0(·+ y0) and the weight function µ with
(
ρ0
j+1/2

)
j∈Z

and(
µj+1/2

)
j∈Z where for all j ∈ Z, ρ0

j+1/2 and µj+1/2 are their mean values on the cell Kj+1/2.

Remark 4.1. Others choice could be made, for instance in the case ρ0 ∈ C(R) such that lim
|x|→+∞

ρ0(x)

exists (in which case, the limit is zero due to the integrability assumption), the values ρ0
j+1/2 =

ρ0

(
xj+1/2 + y0

)
can be used. The only requirements are

∀j ∈ Z, ρ0
j+1/2 ∈ [0, R] and ρ0

∆ =
∑
j∈Z

ρ0
j+1/21Kj+1/2

−→
∆x→0

ρ0(·+ y0) in L1
loc(R).

Fix n ∈ {0, . . . , N −1}. At each time step we �rst de�ne an approximate velocity of the slow vehicle
sn+1 and a constraint level qn+1:

sn+1 = ω

∑
j∈Z

ρnj+1/2µj+1/2∆x

 , qn+1 = Q
(
sn+1

)
. (4.1)

With these values, we update the approximate tra�c density with the marching formula for all
j ∈ Z:

ρn+1
j+1/2 = ρnj+1/2 −

∆t

∆x

(
Fn+1
j+1 (ρnj+1/2, ρ

n
j+3/2)− Fn+1

j (ρnj−1/2, ρ
n
j+1/2)

)
, (4.2)

where, following the recipe of [6, 15],

Fn+1
j (a, b) =

{
Fn+1(a, b) if j 6= 0

min
{
Fn+1(a, b), qn+1

}
if j = 0,

(4.3)

Fn+1 being a monotone consistent and Lipschitz numerical �ux associated to F (sn+1, ·). We will
also use the notation

ρn+1
j+1/2 = Hn+1

j (ρnj−1/2, ρ
n
j+1/2, ρ

n
j+3/2), (4.4)
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where Hn+1
j is given by the expression in the right-hand side of (4.2). We then de�ne the functions

• ρ∆(x, t) =

N∑
n=0

∑
j∈Z

ρnj+1/21Pnj+1/2
(x, t)

• s∆(t), q∆(t) = sn+1, qn+1 if t ∈ [tn, tn+1)

• y∆(t) = y0 +

� t

0
s∆(u) du .

Let ∆ = (∆x,∆t). For our convergence analysis, we will assume that ∆ → 0, with λ = ∆t/∆x
verifying the CFL condition

λ sup
s∈[0,‖ω‖L∞ ]

(∥∥∥∥∂Fs∂a

∥∥∥∥
L∞

+

∥∥∥∥∂Fs∂b

∥∥∥∥
L∞

)
︸ ︷︷ ︸

L

≤ 1, (4.5)

where Fs = Fs(a, b) is the numerical �ux, associated to F (s, ·), we use in (4.2).

Remark 4.2. When considering the Rusanov �ux or the Godunov one, (4.5) is guaranteed when

2λ(‖f ′‖L∞ + ‖ω‖L∞) ≤ 1.

4.2 Stability and discrete entropy inequalities

Proposition 4.1 (L∞ stability). The scheme (4.4) is

(i) monotone: for all n ∈ {0, . . . , N − 1} and j ∈ Z, Hn+1
j is nondecreasing with respect to its three

arguments;
(ii) stable:

∀n ∈ {0, . . . , N}, ∀j ∈ Z, ρnj+1/2 ∈ [0, R]. (4.6)

Proof. (i) In the classical case � j /∈ {−1, 0} � we simply di�erentiate the Lipschitz function Hn+1
j

and make use of both the CFL condition (4.5) and the monotonicity of Fn+1. For j ∈ {−1, 0}, note
that the authors of [6] pointed out (in Proposition 4.2) that the modi�cation done in the numerical
�ux (4.3) does not change the monotonicity of the scheme.

(ii) The L∞ stability is a consequence of the monotonicity and also of the fact that 0 and R are
stationary solutions of the scheme. Indeed, as in [6, Proposition 4.2] for all n ∈ {0, . . . , N} and
j ∈ Z,

Hn+1
j (0, 0, 0) = 0, Hn+1

j (R,R,R) = R.

�

In order to show that the limit of (ρ∆)∆ � under the a.e. convergence up to a subsequence � is a
solution of the conservation law in (2.1), we derive discrete entropy inequalities. These inequalities
also contain terms that will help to pass to the limit in the constrained formulation of the conservation
law, as soon as the sequence (q∆)∆ of constraints is proved convergent as well.

Proposition 4.2 (Discrete entropy inequalities). The numerical scheme (4.4) ful�lls the following
inequalities for all n ∈ {0, . . . , N − 1}, j ∈ Z and κ ∈ [0, R]:(

|ρn+1
j+1/2 − κ| − |ρ

n
j+1/2 − κ|

)
∆x+

(
Φn
j+1 − Φn

j

)
∆t

≤ Rsn+1(κ, qn+1)∆t δj∈{−1,0} + (Φn
0 − Φn

int) ∆t (δj=−1 − δj=0) ,
(4.7)
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4 NUMERICAL APPROXIMATION OF THE MODEL

where Φn
j and Φn

int denote the numerical �uxes:

Φn
j = Fn+1(ρnj−1/2 ∨ κ, ρ

n
j+1/2 ∨ κ)− Fn+1(ρnj−1/2 ∧ κ, ρ

n
j+1/2 ∧ κ),

Φn
int = min{Fn+1(ρn−1/2 ∨ κ, ρ

n
1/2 ∨ κ), qn+1} −min{Fn+1(ρn−1/2 ∧ κ, ρ

n
1/2 ∧ κ), qn+1}

and
Rsn+1(κ, qn+1) = F (sn+1, κ)−min{F (sn+1, κ), qn+1}.

Proof. This result is a direct consequence of the scheme monotonicity. When the constraint does
not enter the calculations i.e. j /∈ {−1, 0}, the proof follows [23, Lemma 5.4]. The key point is not
only the monotonicity, but also the fact that in the classical case, all the constants κ ∈ [0, R] are
stationary solutions of the scheme. This observation does not hold when the constraint enters the
calculations. For example if j = −1,

Hn+1
−1 (κ, κ, κ) = κ+ λRsn+1(κ, qn+1).

Consequently, we have both

ρn+1
−1/2 ∨ κ ≤ Hn+1

−1 (ρn−3/2 ∨ κ, ρ
n
−1/2 ∨ κ, ρ

n
1/2 ∨ κ)

and
ρn+1
−1/2 ∧ κ ≥ Hn+1

−1 (ρn−3/2 ∧ κ, ρ
n
−1/2 ∧ κ, ρ

n
1/2 ∧ κ)− λRsn+1(κ, qn+1).

By substracting these last two inequalities, we get

|ρn+1
−1/2 − κ| = ρn+1

−1/2 ∨ κ− ρ
n+1
−1/2 ∧ κ

≤ Hn+1
−1 (ρn−3/2 ∨ κ, ρ

n
−1/2 ∨ κ, ρ

n
1/2 ∨ κ)−Hn+1

−1 (ρn−3/2 ∧ κ, ρ
n
−1/2 ∧ κ, ρ

n
1/2 ∧ κ) + λRsn+1(κ, qn+1)

= |ρn−1/2 − κ| − λ
(

min{Fn+1(ρn−1/2 ∨ κ, ρ
n
1/2 ∨ κ), qn+1} − Fn+1(ρn−1/2 ∨ κ, ρ

n
1/2 ∨ κ)

)
+ λ

(
min{Fn+1(ρn−1/2 ∧ κ, ρ

n
1/2 ∧ κ), qn+1} − Fn+1(ρn−1/2 ∧ κ, ρ

n
1/2 ∧ κ)

)
+ λRsn+1(κ, qn+1)

= |ρn−1/2 − κ| − λ
(
Φn

0 − Φn
−1

)
+ λ (Φn

0 − Φn
int) + λRsn+1(κ, qn+1),

which is exactly (4.7) in the case j = −1. The case j = 0 is similar so we omit the details of the
proof for this case. �

Starting from (4.2) and (4.7), we can obtain approximate versions of (2.4) and (2.5). Let us introduce
the functions:

Φ∆ (ρ∆, κ) =

N∑
n=0

∑
j∈Z

Φn
j 1Pnj+1/2

; F∆(s∆, ρ∆) =
N∑
n=0

∑
j∈Z

Fn+1(ρnj−1/2, ρ
n
j+1/2)1Pn

j+1/2
.

Proposition 4.3 (Approximate entropy/constraint inequalities). (i) Fix ϕ ∈ C∞c (R × R+), ϕ ≥ 0
and κ ∈ [0, R]. Then there exists a constant Cϕ

1 = Cϕ
1 (R, T,L), nondecreasing with respect to its

arguments, such that the following inequalities hold for all 0 ≤ τ < τ ′ ≤ T :
� τ ′

τ

�
R
|ρ∆ − κ|∂tϕ+ Φ∆ (ρ∆, κ) ∂xϕdx dt+

�
R
|ρ∆(x, τ)− κ|ϕ(x, τ) dx

−
�
R
|ρ∆(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

� τ ′

τ
Rs∆(t)(κ, q∆(t))ϕ(0, t) dt ≥ −Cϕ

1 (∆t+ ∆x).

(4.8)
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4 NUMERICAL APPROXIMATION OF THE MODEL

(ii) Fix ψ ∈ C∞([0, T ]), ψ ≥ 0 and ϕ ∈ C∞c (R) such that ϕ(0) = 1. Then there exists a constant

Cϕ,ψ
2 = Cϕ,ψ

2 (R, T,L, ‖Q‖L∞), nondecreasing with respect to its arguments, such that for all 0 ≤
τ < τ ′ ≤ T :

−
� τ ′

τ

�
R+

ρ∆∂t(ϕψ) + F∆(s∆, ρ∆)∂x(ϕψ) dx dt−
�
R+

ρ∆(x, τ)ϕ(x)ψ(τ) dx

+

�
R+

ρ∆(x, τ ′)ϕ(x)ψ(τ ′) dx ≤
� τ ′

τ
q∆(t)ψ(t) dt+ Cϕ,ψ

2 (∆x+ ∆t).

(4.9)

Proof. Fix k,m ∈ N such that τ ∈ [tk, tk+1) and τ ′ ∈ [tm, tm+1).

(i) De�ne for all n ∈ N and j ∈ Z, ϕnj+1/2 =
1

∆x∆t

�
Pn
j+1/2

ϕ(x, t) dx dt. Multiplying the discrete

entropy inequalities (4.7) by ϕnj+1/2, then summing over n ∈ {k, . . . ,m− 1} and j ∈ Z, one obtains
after reorganization of the sums (using in particular the Abel/"summation-by-parts" procedure)

A+B + C +D + E ≥ 0, (4.10)

with

A =
m−1∑
n=k+1

∑
j∈Z
|ρnj+1/2 − κ|

(
ϕnj+1/2 − ϕ

n−1
j+1/2

)
∆x, B =

m−1∑
n=k

∑
j∈Z

Φn
j

(
ϕnj+1/2 − ϕ

n
j−1/2

)
∆t

C =
∑
j∈Z
|ρkj+1/2 − κ|ϕ

k
j+1/2∆x−

∑
j∈Z
|ρmj+1/2 − κ|ϕ

m−1
j+1/2∆x

D =
m−1∑
n=k

Rsn+1(κ, qn+1)
(
ϕn−1/2 + ϕn1/2

)
∆t, E =

m−1∑
n=k

(Φn
0 − Φn

int)
(
ϕn−1/2 − ϕ

n
1/2

)
∆t.

Inequality (4.8) follows from (4.10) with

Cϕ
1 = R

(
T max

t∈[0,T ]
‖∂2

ttϕ(·, t)‖L1 + 4 max
t∈[0,T ]

‖∂tϕ(·, t)‖L1

)
+RL

(
T max

t∈[0,T ]
‖∂2

xxϕ(·, t)‖L1 + 2 max
t∈[0,T ]

‖∂xϕ(·, t)‖L1 + 4‖ϕ‖L∞ + 2T‖∂xϕ‖L∞
)
,

making use of the bounds:∣∣∣∣∣A−
� τ ′

τ

�
R
|ρ∆ − κ|∂tϕdx dt

∣∣∣∣∣ ≤ R
(
T max

t∈[0,T ]
‖∂2

ttϕ(·, t)‖L1 + 2 max
t∈[0,T ]

‖∂tϕ(·, t)‖L1

)
∆t,∣∣∣∣∣B −

� τ ′

τ

�
R

Φ∆(ρ∆, κ)∂xϕdx dt

∣∣∣∣∣ ≤ RL
(
T max

t∈[0,T ]
‖∂2

xxϕ(·, t)‖L1∆x,+2 max
t∈[0,T ]

‖∂xϕ(·, t)‖L1∆t

)
∣∣∣∣C − �

R
|ρ∆(x, τ)− κ|ϕ(x, τ) dx+

�
R
|ρ∆(x, τ ′)− κ|ϕ(x, τ ′) dx

∣∣∣∣ ≤ 2R max
t∈[0,T ]

‖∂tϕ(·, t)‖L1∆t,∣∣∣∣∣D − 2

� τ ′

τ
Rs∆(t)(κ, q∆(t))ϕ(0, t) dt

∣∣∣∣∣ ≤ RL (4‖ϕ‖L∞∆t+ T‖∂xϕ‖L∞∆x) ; |E| ≤ 2RTL‖∂xϕ‖L∞∆x.

(ii) In this case, the constant Cϕ,ψ
2 reads

Cϕ,ψ
2 = R‖ϕ‖L1

(
T‖ψ′′‖L∞ + 4‖ψ′‖L∞

)
+ ‖Q‖L∞‖ψ‖L∞

(
2 + T‖ϕ′‖L∞

)
+RL‖ψ‖L∞

(
2‖ϕ′‖L1 + T‖ϕ′‖L1 + T‖ϕ′′‖L1

)
.
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4 NUMERICAL APPROXIMATION OF THE MODEL

Following the proof of (4.8), de�ne for all n ∈ N and j ∈ Z,

ψn =
1

∆t

� tn+1

tn
ψ(t) dt , and ϕj+1/2 =

1

∆x

� xj+1

xj

ϕ(x) dx ,

multiply the scheme (4.2) by ϕj+1/2ψ
n, then take the sum over n ∈ {k, . . . ,m− 1} and j ≥ 0. Since

the proof is very similar to the one of (i), we omit the details. �

The �nal step is to obtain compactness for the sequences (ρ∆)∆ and (y∆)∆ in order to pass to the
limit in (4.8)-(4.9). We start with (y∆)∆.

Proposition 4.4. For all t ∈ [0, T ],

y∆(t) = y0 +

� t

0
ω

(�
R
ρ∆(x, u)µ(x) dx

)
du . (4.11)

Consequently, there exists y ∈ C([0, T ]) such that up to an extraction, (y∆)∆ converges uniformly to
y on [0, T ].

Proof. For all t ∈ [0, T ], if t ∈ [tn, tn+1) for some n ∈ {0, . . . , N}, then we can write

y∆(t)− y0 =

n−1∑
k=0

� tk+1

tk
sk+1 du+

� t

tn
sn+1 du

=

n−1∑
k=0

� tk+1

tk
ω

∑
j∈Z

�
R
ρkj+1/2µj+1/2∆x

 du+

� t

tn
ω

∑
j∈Z

�
R
ρnj+1/2µj+1/2∆x

 du

=

� t

0
ω

(�
R
ρ∆(x, u)µ(x) dx

)
du .

Let us also point out that from (4.1), we get that for all ∆ and almost every t ∈ (0, T ),

s∆(t) = ω

(�
R
ρ∆(x, t)µ(x) dx

)
. (4.12)

Combining (4.11) and (4.12), we obtain that for all ∆,

‖ẏ∆‖L∞ = ‖s∆‖L∞ ≤ ‖ω‖L∞ and ‖y∆‖L∞ ≤ |y0|+ T‖ω‖L∞ .

The sequence (y∆)∆ is therefore bounded in W1,∞((0, T )). Making use of the compact embedding
of W1,∞((0, T )) in C([0, T ]), we get the existence of y ∈ C([0, T ]) such that up to the extraction of
subsequence, (y∆)∆ converges uniformly to y on [0, T ]. �

The presence of a time dependent �ux in the conservation law of (2.1) complicates the obtaining of
compactness for (ρ∆)∆. In particular, the techniques used in [10, 11] to derive localizedBV estimates
don't apply here since our problem lacks time translation invariance. In the present situation, it
would be possible to derive weak BV estimates ([6, 23]). We choose di�erent options. Similarly
to what we did in Section 3, we propose two ways to obtain compactness, which will lead to two
convergence results.
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4 NUMERICAL APPROXIMATION OF THE MODEL

4.3 Compactness via one-sided Lipschitz condition technique

First, we choose to adapt techniques and results put forward by Towers in [32]. With this in mind,
we suppose in this section that f ∈ C2([0, R]) and strictly concave. Therefore,

∃α > 0, ∀ρ ∈ [0, R], f ′′(ρ) ≤ −α. (4.13)

Though this assumption is stronger than the nondegeneracy one (3.5), since f is bell-shaped, these
two assumptions are similar in their spirit. We will also assume, following [32], that

the numerical �ux chosen in (4.2) is either the Engquist-Osher one or the Godunov one. (4.14)

To be precise, the choice made for the numerical �ux at the interface � i.e. when j = 0 in (4.3) �
does not play any role. What is important is that away from the interface, one chooses either the
Engquist-Osher �ux or the Godunov one. We denote for all n ∈ {0, . . . , N + 1} and j ∈ Z,

Dn
j = max

{
ρnj−1/2 − ρ

n
j+1/2, 0

}
.

We will also use the notation
Ẑ = Z\{−1, 0, 1}.

In [32], the author dealt with a discontinuous in both time and space �ux and the speci�c "vanishing
viscosity" coupling at the interface. The discontinuity in space was localized along the curve {x = 0}.
Here, we deal with only a discontinuous in time �ux, but we also have a �ux constraint along the
curve {x = 0} since we work in the bus frame. The applicability of the technique of [32] for our case
with moving interface and �ux-constrained interface coupling relies on the fact that one can derive
a bound on Dn

j as long as the "interface" does not enter the calculations for Dn
j i.e. j ∈ Ẑ. This is

what the following lemma points out under Assumptions (4.13)-(4.14). For readers' convenience and
in order to highlight the generality of the technique of Towers [32], let us provide the key elements
of the argumentation leading to compactness.

Lemma 4.5. Let n ∈ {0, . . . , N − 1} and j ∈ Ẑ. Then if a =
λα

4
, we have

Dn+1
j ≤ max

{
Dn
j−1,D

n
j ,D

n
j+1

}
− a

(
max

{
Dn
j−1,D

n
j ,D

n
j+1

})2
(4.15)

and

Dn+1
j ≤ 1

min{|j| − 1, n+ 1}a
. (4.16)

Proof.(Sketched) Inequality (4.16) is an immediate consequence of inequality (4.15), see [32, Lemma
4.3]. Obtaining inequality (4.15) however, is less immediate. Let us give some details of the proof.
First, note that by introducing the function ψ : z 7→ z − az2, inequality (4.15) can be stated as:

Dn+1
j ≤ ψ

(
max

{
Dn
j−1,D

n
j ,D

n
j+1

})
. (4.17)

Then, one can show � only using the monotonicity of both the scheme and the function ψ � that
under the assumption

inequality (4.17) holds when (ρnj+3/2 − ρ
n
j+1/2), (ρnj−1/2 − ρ

n
j−3/2) ≤ 0, (4.18)

it follows that inequality (4.17) holds for all cases. And �nally in [32, Page 23], the author proves
that if the �ux considered is either the Engquist-Osher �ux or the Godunov �ux, then (4.18) holds.
�
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4 NUMERICAL APPROXIMATION OF THE MODEL

The following lemma is an immediate consequence of inequality (4.16).

Lemma 4.6. Fix 0 < ε < X. Let i, J ∈ N∗ such that ε ∈ Ki+1/2 and X ∈ KJ−1/2. Then if ∆x/ε

is su�ciently small, there exists a constant B = B

(
R,X,

1

a
,
1

ε

)
, nondecreasing with respect to its

arguments, such that for all n ≥ i− 1,

J−1∑
j=i

|ρnj+1/2 − ρ
n
j−1/2|,

−i−1∑
j=−J+1

|ρnj+1/2 − ρ
n
j−1/2| ≤ B (4.19)

and
J−2∑
j=i

|ρn+1
j+1/2 − ρ

n
j+1/2|,

−i−2∑
j=−J+1

|ρn+1
j+1/2 − ρ

n
j+1/2| ≤ 2λLB. (4.20)

Proposition 4.7. There exists ρ ∈ L∞(R× (0, T )) such that up to the extraction of a subsequence,
(ρ∆)∆ converges almost everywhere to ρ in R× (0, T ).

Proof. Fix 0 < ε < X and t > λε. Denote by Ω(X, ε) = (−X,−ε) ∪ (ε,X). Introduce i, J, n ∈ N
such that ε ∈ Ki+1/2, X ∈ KJ−1/2 and t ∈ [tn, tn+1). Remark that

(n+ 1)∆t > t > λε ≥ λ(i ∆x) = i∆t,

i.e. n ≥ i − 1. Then if we suppose that ∆x/ε is su�ciently small, we can use Lemma 4.6. From
(4.19), we get

TV(ρ∆(t)|Ω(X,ε)) ≤ 2B (4.21)

and from (4.20), we deduce

�
Ω(X,ε)

|ρ∆(x, t+ ∆t)− ρ∆(x, t)|dx ≤ 4LB∆t. (4.22)

Combining (4.21)-(4.22) and the L∞ bound (4.6), a functional analysis result ([24, Theorem A.8])
ensures the existence of a subsequence which converges almost everywhere to some ρ on Ω(X, ε)×
(λε, T ). By a standard diagonal process we can extract a further subsequence (which we do not
relabel) such that (ρ∆)∆ converges almost everywhere to ρ on R× (0, T ). �

Theorem 4.8. Fix ρ0 ∈ L1(R; [0, R]) and y0 ∈ R. Suppose that f ∈ C2 satis�es Assumptions
(2.2)-(2.7)-(4.13). Suppose also that in (4.3), we use the Engquist-Osher �ux or the Godunov one
when j 6= 0 and any other monotone consistent and Lipschitz numerical �ux when j = 0. Then
under the CFL condition (4.5), the scheme (4.1) � (4.3) converges to an admissible weak solution to
Problem (2.1).

Proof. We have shown that � up to the extraction of a subsequence � y∆ converges uniformly on
[0, T ] to some y ∈ C([0, T ]) and that ρ∆ converges a.e. on R× (0, T ) to some ρ ∈ L∞(R× (0, T )).
We now prove that this couple (ρ, y) is an admissible weak solution to Problem (2.1) in the sense of
De�nition 2.1.

Recall that for all ∆ and t ∈ [0, T ],

y∆(t) = y0 +

� t

0
ω

(�
R
ρ∆(x, u)µ(x) dx

)
du .
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When letting ∆ → 0, the dominated convergence theorem ensures that y satis�es (2.6). Apply
inequality (4.8) with τ = 0, τ ′ = T , ϕ ∈ C∞c (R∗ × [0, T )), ϕ ≥ 0 and κ ∈ [0, R] to obtain

� T

0

�
R
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕdx dt+

�
R
|ρ0

∆ − κ|ϕ(x, 0) dx ≥ −Cϕ
1 (∆x+ ∆t).

Then the a.e. convergence of (s∆)∆ to ẏ � coming from (4.12) � and the a.e. convergence of (ρ∆)∆

to ρ ensure that when letting ∆→ 0, we get

� T

0

�
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

�
R
|ρ0(x+ y0)− κ|ϕ(x, 0) dx ≥ 0,

and consequently ρ ∈ C([0, T ];L1
loc(R)), see Remark 2.2. Now, we pass to the limit in (4.8) and

(4.9) using the a.e. convergence of (s∆)∆ to ẏ and of (ρ∆)∆ to ρ as well as the continuity of Q
and ω. Consequently, for all test functions ϕ ∈ C∞c (R × R+), ϕ ≥ 0 and κ ∈ [0, R], the following
inequalities hold for almost every 0 ≤ τ < τ ′ ≤ T :

� τ ′

τ

�
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

�
R
|ρ(x, τ)− κ|ϕ(x, τ) dx

−
�
R
|ρ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

� τ ′

τ
Rẏ(t)(κ, q(t))ϕ(0, t) dt ≥ 0.

To conclude, note that the expression in the left-hand side of the previous inequality is a continuous
function of (τ, τ ′) which is almost everywhere greater than the continuous function 0. By continuity,
this expression is everywhere greater than 0, which proves that ρ satis�es the entropy inequalities
(2.4). Using similar arguments, one shows that ρ also satis�es the constraint inequalities (2.5). This
shows that the couple (ρ, y) is an admissible weak solution to (2.1), and that concludes the proof of
convergence. �

We proved than in the L∞ framework, the scheme converges to an admissible weak solution, but
note that there is no guarantee of uniqueness in this construction. Also stress that we cannot extend
this result to general consistent monotone numerical �uxes beyond hypothesis (4.14).

4.4 Compactness via global BV bounds

The following result is the discrete version of Lemma 2.3 so it is consistent that the proof uses the
discrete analogous arguments of the ones we used in the proof of Lemma 2.3.

Lemma 4.9. Introduce for all ∆ > 0 the function ξ∆ de�ned for all t ∈ [0, T ] by

ξ∆(t) =

�
R
ρ∆(x, t)µ(x) dx .

Then ξ∆ has bounded variation and consequently, so does s∆.

Proof. Since µ ∈ BV(R), there exists a sequence of smooth functions (µ`)`∈N ⊂ BV(R) ∩C∞c (R)
such that

‖µ` − µ‖L1 −→
`→+∞

0 and TV(µ`) −→
`→+∞

TV(µ).

Introduce for all ` ∈ N and t ∈ [0, T ], the function ξ∆,`(t) =

�
R
ρ∆(x, t)µ`(x) dx and let K > 0 such

that
∀` ∈ N, ‖µ`‖L1 ,TV(µ`) ≤ K.
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For all ` ∈ N and t, s ∈ [0, T ], if t ∈ [tk, tk+1) and s ∈ [tm, tm+1), we have

|ξ∆,`(t)− ξ∆,`(s)| =
∣∣∣ξ∆,`(t

k)− ξ∆,`(t
m)
∣∣∣

=

∣∣∣∣�
R
ρ∆(x, tk)µ`(x) dx−

�
R
ρ∆(x, tm)µ`(x) dx

∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈Z

(ρkj+1/2 − ρ
m
j+1/2)µ`j+1/2∆x

∣∣∣∣∣∣ , µ`j+1/2 =
1

∆x

� xj+1

xj

µ`(x) dx

=

∣∣∣∣∣∣
∑
j∈Z

k−1∑
τ=m

(ρτ+1
j+1/2 − ρ

τ
j+1/2)µ`j+1/2∆x

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k−1∑
τ=m

∑
j∈Z

(
Fτ+1
j (ρτj−1/2, ρ

τ
j+1/2)− Fτ+1

j+1 (ρτj+1/2, ρ
τ
j+3/2)

)
µ`j+1/2∆t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k−1∑
τ=m

∑
j∈Z

Fτ+1
j+1 (ρτj+1/2, ρ

τ
j+3/2)(µ`j+3/2 − µ

`
j+1/2)∆t

∣∣∣∣∣∣
≤ RL

k−1∑
τ=m

TV(µ`)∆t ≤ RLK(|t− s|+ 2∆t).

Consequently, for all ` ∈ N, ∆ > 0 and t, τ ∈ [0, T ], the triangle inequality yields:

|ξ∆(t)− ξ∆(τ)| ≤ 2R‖µ− µ`‖L1 +RLK(|t− τ |+ 2∆t).

Letting `→ +∞, we get that for all ∆ > 0 and t, τ ∈ [0, T ],

|ξ∆(t)− ξ∆(τ)| ≤ RLK(|t− τ |+ 2∆t),

which leads to

TV(ξ∆) =
N∑
k=0

∣∣∣ξ∆(tk+1)− ξ∆(tk)
∣∣∣ ≤ 3RLK(T + ∆t).

This proves that ξ∆ ∈ BV([0, T ]). Since ω is Lipschitz continuous, s∆ also has bounded variation.
�

Theorem 4.10. Fix ρ0 ∈ L1(R; [0, R]) ∩BV(R) and y0 ∈ R. Suppose that f satis�es (2.2)-(2.7)-
(3.6) and that Q satis�es (3.7). Suppose also that in (4.3), we use the Godunov �ux when j = 0
and any other monotone consistent and Lipschitz numerical �ux when j 6= 0. Then under the CFL
condition (4.5), the scheme (4.1) � (4.3) converges to a BV-regular solution to Problem (2.1).

Proof. All the hypotheses of Lemma A.4 are ful�lled. Consequently, there exists a constant Cε > 0
such that for all n ∈ {0, . . . , N − 1},

TV
(
ρ∆(tn+1)

)
≤ TV(ρ0) + 4R+ Cε

(
n∑
k=0

∣∣∣qk+1 − qk
∣∣∣+

n∑
k=0

∣∣∣sk+1 − sk
∣∣∣)

≤ TV(ρ0) + 4R+ Cε(1 + ‖Q′‖L∞)
n∑
k=0

∣∣∣sk+1 − sk
∣∣∣ . (4.23)
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4 NUMERICAL APPROXIMATION OF THE MODEL

Making use of Lemma 4.9, we obtain that for all n ∈ {0, . . . , N},

n∑
k=0

|sk+1 − sk| =
n∑
k=0

|s∆(tk+1)− s∆(tk)| ≤ ‖ω‖L∞
n∑
k=0

|ξ∆(tk+1)− ξ∆(tk)| ≤ 3RLK‖ω‖L∞(T + ∆t).

where the constant K was introduced in the proof of Lemma 4.9. The two last inequalities imply
that for all t ∈ [0, T ], we have

TV(ρ∆(t)) ≤ TV(ρ0) + 4R+ 3Cε(1 + ‖Q′‖L∞)‖ω‖L∞RLK(T + ∆t). (4.24)

Therefore, the sequence (ρ∆)∆ is uniformly in time bounded in BV(R). Using [22, Appendix], we
get the existence of ρ ∈ C([0, T ];L1

loc(R)) such that

∀t ∈ [0, T ], ρ∆(t) −→
∆→0

ρ(t) in L1
loc(R).

Following the proof of Theorem 4.8, we show that (ρ, y) is an admissible weak solution. Then
passing to the limit in (4.24), the lower semi-continuity of the BV semi-norm ensures that (ρ, y) is
also BV-regular. �

Remark 4.3. Note the complementarity of the hypotheses made in the above theorem with the
ones of Theorem 4.8. Recall that in Theorem 4.8, we needed the Godunov �ux only away from the
interface.
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5 NUMERICAL SIMULATIONS

5 Numerical simulations

In this section we present some numerical tests performed with the scheme analyzed in Section 4.
In all the simulations we take the uniformly concave �ux f(ρ) = ρ(1− ρ) (the maximal car velocity
and the maximal density are assumed to be equal to one). Following the hypotheses of Theorem
4.10, we choose the Godunov �ux at the interface, and the Rusanov one away from the interface.
We will use weight functions of the kind

µk(x) = 2k1[
0; 1

2k

](x),

for one (in Section 5.1) or several (in Section 5.3) values of k ∈ N∗.

5.1 Validation of the scheme

In this section, consider a two-lane road on which a bus travels with a speed given by the function

ω(ρ) =


α

(β + ρ)2
if 0 ≤ ρ ≤ 0.6

1− ρ if 0.6 ≤ ρ ≤ 1,

where α and β are chosen so that ω(0) = 0.7 and ω(0.6) = 0.4, as illustrated in Figure 1 (left).
The set-up of the experiment is the following. Consider a domain of computation [0, 11], the weight
function µ4 and the following data:

ρ0(x) = 0.51[0.5;1](x), y0 = 1.5, Q(s) = 0.75×
(

1− s
2

)2

.

The idea behind the choice of Q is that in average (between the two lanes), the presence of the slow
vehicle reduces by 25% the maximum tra�c �ow. As we can see in Figure 1 (right), the slow vehicle
nearly always travels at maximum velocity. It makes sense because even though we can see that
cars are overtaking it (Figure 1, right and Figure 2), the density ξ ahead of it is never su�ciently
important to make it go slower.

Figure 1: Evolution in time of the bus velocity ẏ∆ and of the subjective density ξ∆, with ∆x = 0.01.
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5 NUMERICAL SIMULATIONS

Figure 2: The numerical solution at di�erent �xed times, red dashed lines correspond to the slow
vehicle initial position; for an animated representation of the solution, see https://utbox.univ-
tours.fr/s/BoTnsEqmrjndy66

Remark 5.1. The function ω we chose above is not of the form as required in [27, 28]. Once
again, let us stress that the particular form ω(ρ) = min {Vbus; 1− ρ}, where Vbus is the maximum
bus velocity, is crucial for the well-posedness result of [27, 28] to hold. Indeed, it is essential in the
analysis of [27, 28] that the velocity of the bus be constant (equal to Vbus) across the nonclassical
shocks. Our nonlocal model is not bound to this restriction.

5.2 Convergence analysis

We also perform a convergence analysis for this test. In the Table 1, we computed the relative errors

Eρ,∆ = ‖ρ∆ − ρ∆/2‖L1((0,T );L1(R)) and Ey,∆ = ‖y∆ − y∆/2‖L∞ ,

for di�erent number of space cells at the �nal time T = 13. We see (Figure 3) that those ratio
converge with convergence orders approximately equal to 0.76 for the car density and approximately
equal to 1.1 for the slow moving vehicle position.

5.3 Comparisons with experiments on the local model

Now we confront the numerical tests performed with our model with the tests done by the authors
in [14] approximating the original problem of [20]. We deal with a road of length 1 parametrized by
the interval [0, 1] and choose the weight function µ3. Moreover,

ω(ρ) = min{0.3; 1− ρ} and Q(s) = 0.6×
(

1− s
2

)2

.
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Number of cells Eρ,∆ (×10−2) Ey,∆ (×10−3)

160 24.053 48.0643
320 15.731 15.939
640 9.647 7.698
1280 6.197 3.715
2560 3.226 1.777
5120 1.936 0.889
10240 1.055 0.443

Table 1: Measured errors (T = 13).

Figure 3: Rates of convergence for ρ∆

(in black) and y∆ (in green), with T =
13.

First, consider the initial datum

ρ0(x) =

{
0.4 if x < 0.5
0.5 if x > 0.5

y0 = 0.5. (5.1)

The numerical solution is composed of two classical shocks separated by a nonclassical discontinuity,
as illustrated in Figure 4 (left). Next, we choose

ρ0(x) =

{
0.8 if x < 0.5
0.5 if x > 0.5

y0 = 0.5. (5.2)

The values of the initial condition create a rarefaction wave followed by a nonclassical and classical
shocks, as illustrated in Figure 4 (right).

Figure 4: Evolution in time of the numerical density corresponding to initial data (5.1) (left) and
(5.2) (right), with ∆x = 0.001.

Finally, still following [14], we consider

ρ0(x) =

{
0.8 if x < 0.5
0.4 if x > 0.5

y0 = 0.4. (5.3)
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5 NUMERICAL SIMULATIONS

Here the solution is composed of a rarefaction wave followed by nonclassical and classical shocks on
the density that are created when the slow vehicle approaches the rarefaction and initiates a moving
bottleneck, as illustrated in Figure 5.

Figure 5: Evolution in time of the numerical density corresponding to initial data (5.3), with ∆x =
0.001.

With these three tests, we can already see � in a qualitative way � the resemblance between the
numerical approximations to the solutions to our model and the numerical approximations of [14].
One way to quantify their proximity is for example to evaluate the L1 error between the car densities
and the L∞ error between the bus positions. More precisely, denote by (ρ∆, y∆) the approximation
of the BV-regular solution to (2.1) obtained with the scheme (4.1) � (4.3), and denote by (ρ∆, y∆)
the couple obtained with this same scheme but

replacing sn+1 = ω

∑
j∈Z

ρnj+1/2µj+1/2∆x

 by sn+1 = ω
(
ρn1/2

)
.

Let us precise that this is not the scheme the authors of [14] proposed. However, this scheme is
consistent with the problem

∂tρ+ ∂x (F (ẏ(t), ρ)) = 0 R× (0, T )

ρ(x, 0) = ρ0(x+ y0) x ∈ R

F (ẏ(t), ρ)|x=0 ≤ Q(ẏ(t)) t ∈ (0, T )

ẏ(t) = ω (ρ(0+, t)) t ∈ (0, T )

y(0) = y0

(5.4)
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5 NUMERICAL SIMULATIONS

and behaves in a stable way in the calculations we performed. Therefore, the couple (ρ∆, y∆) is
expected to give a reasonable approximation of the solution to (5.4). With this in mind, for the case
(5.3) and still with the weight function µ3, we computed in Table 2 the measured errors

E1
∆ = ‖ρ∆ − ρ∆‖L1((0,T );L1(R)) and E∞∆ = ‖y∆ − y∆‖L∞ .

Number of cells E1
∆ (×10−4) E∞∆ (×10−3)

160 32.672 18.519
320 14.236 7.341
640 5.837 3.701
1280 3.833 4.879
2560 3.207 6.405
5120 2.922 7.144
10240 2.776 7.501
20480 2.698 7.674
40960 2.658 7.759

Table 2: Measured errors at time T = 0.7245.

These calculations indicate that for a su�ciently large number of cells J ≥ 40960,

E1
∆ ' 2.7× 10−4 and E∞∆ ' 7.6× 10−3.

This indicates the discrepancy between our nonlocal and the local model (5.4) of [20]. The idea is
now to �x the number of cells J = 40960 and to make the length of the weight function support
go to zero. In Table 3, we have computed, for di�erent weight functions, the error between the
approximations of the two models. This error corresponds, as in the above calculation, to the
residual error observed starting from a su�ciently small ∆x.

weight function E1
∆ E∞∆

µ1 6.810× 10−3 5.489× 10−2

µ2 1.105× 10−3 1.972× 10−2

µ3 2.658× 10−4 7.759× 10−3

µ4 9.232× 10−5 2.913× 10−3

µ5 6.190× 10−5 9.110× 10−4

Table 3: Measured errors at time T = 0.7245

Remark 5.2. The previous simulations show a closeness between our model as µ→ δ0+ and (5.4).
Let us however point that the nonlocality in space for the slow vehicle introduces an undesirable
artefact into the model. In the rarefaction regime one may observe that the large vehicle may move
a bit faster that the surrounding �ow. The situation where this e�ect becomes truly perceptible is
when considering initial data of the type

ρ0(x) =

{
1 if x < xb

0 if x > xb.
(5.5)

Indeed, for such data, there exists a small time interval [0, δ] in which ẏ(t) > v(ρ(y(t)+)) = 0, which
would suggest that the slow vehicle moves forward while the cars in front of it do not. This time
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interval is in fact quite small due to the narrowness of the support of the weight function. The
local model does not develop such phenomena. This qualitative artefact precludes us from giving
a microscopic interpretation to the model, which main output is the global in�uence of the slow
vehicle on the �ow; however, let us stress that the phenomenon becomes quantitatively negligible for
larger times. Indeed, Ole��nik estimate on decay of positive waves ensures that data of the type (5.5)
evolve into rarefaction waves and do not appear while driving: the classical LWR model precludes
the formation of rarefaction waves focused at positive time. The modi�cation of the classical LWR
brought by the constraint may produce nonclassical waves at positive times; while these waves are
downward jumps in density like in (5.5), they are situated precisely at the location of the constraint
and not slightly behind it, like in (5.5).

Even if we are unable, at this time, to rigorously link our problem (2.1) with µ→ δ0+ and the original
problem (5.4) of the authors in [20], this last experiment corroborates the conjecture that the local
model (5.4) is the singular limit of our model in the case ω is of the form ω(ρ) = min {Vbus; 1− ρ}.
The other interesting question is whether the local model is well posed beyond this particular choice
of ω.

Acknowledgements. The author is most grateful to Boris Andreianov for his constant support and
many enlightening discussions.
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A On BV bounds for limited �ux models

We focus on the study of the following class of models:
∂tρ+ ∂x (F (s(t), ρ)) = 0 R× (0, T )

ρ(x, 0) = ρ0(x) x ∈ R

F (s(t), ρ)|x=0 ≤ q(t) t ∈ (0, T ),

(A.1)

where s ∈ BV([0, T ]; [0,Σ]) for some Σ > 0 and q ∈ BV([0, T ];R+). We suppose that F ∈
C1([0,Σ]× [0, R]) and that for all s ∈ [0,Σ], F (s, ·) is bell-shaped i.e.

∀s ∈ [0,Σ], F (s, 0) = 0, F (s,R) ≤ 0 and ∃! ρs ∈ (0, R), ∂ρF (s, ρ) (ρs − ρ) > 0 for a.e. ρ ∈ (0, R).
(A.2)

This framework covers the particular case when F takes the form:

F (s(t), ρ) = f(ρ)− s(t)ρ,

with bell-shaped f : [0, R] → R+, which our model (2.1) is based on. This class of models is well
known, especially when the �ux function is not time dependent, cf. [17, 6]. In this appendix, we
establish in passing the well-posedness of Problem (A.1), but our main interest lies in the BV in
space regularity of the solutions. More precisely, we aim at obtaining a bound on the total variation
of the solutions to (A.1), using a �nite volume approximation which allows for sharp control of
the variation at the constraint. Note that the alternative o�ered by wave-front tracking would be
cumbersome because of the explicit time-dependency in (A.1). In the general case, entropy solutions
to limited �ux problems like (A.1) do not belong to L∞((0, T );BV(R)), see [1]. We will show that
it is the case under a mild assumption on the constraint function q � see Assumption (A.8) below �
and provided that

ρ0 ∈ L1(R; [0, R]) ∩BV(R).

Throughout the appendix, for all s ∈ [0,Σ] and a, b ∈ [0, R], we denote by

Φs(a, b) = sign(a− b)(F (s, a)− F (s, b))

the classical Kruºkov entropy �ux associated with the Kruºkov entropy ρ 7→ |ρ−κ|, for all κ ∈ [0, R],
see [25].

A.1 Equivalent de�nitions of solution and uniqueness

Let us �rst recall the following de�nition.

De�nition A.1. A bounded function ρ ∈ L∞(R× (0, T )) is an admissible weak solution to (A.1) if

(i) the following regularity is ful�lled: ρ ∈ C([0, T ];L1
loc(R));

(ii) for all test functions ϕ ∈ C∞c (R × R+), ϕ ≥ 0 and κ ∈ [0, R], the following entropy inequalities
are veri�ed for all 0 ≤ τ < τ ′ ≤ T :

� τ ′

τ

�
R
|ρ− κ|∂tϕ+ Φs(t)(ρ, κ)∂xϕdx dt+

�
R
|ρ(x, τ)− κ|ϕ(x, τ) dx

−
�
R
|ρ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

� τ ′

τ
Rs(t)(κ, q(t))ϕ(0, t) dt ≥ 0,
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where
Rs(t)(κ, q(t)) = F (s(t), κ)−min {F (s(t), κ), q(t)} ;

(iii) for all test functions ψ ∈ C∞([0, T ]), ψ ≥ 0 and some given ϕ ∈ C∞c (R) which veri�es ϕ(0) = 1,
the following weak constraint inequalities are veri�ed for all 0 ≤ τ < τ ′ ≤ T :

−
� τ ′

τ

�
R+

ρ∂t(ϕψ) + F (s(t), ρ)∂x(ϕψ) dx dt−
�
R+

ρ(x, τ)ϕ(x)ψ(τ) dx

+

�
R+

ρ(x, τ ′)ϕ(x)ψ(τ ′) dx ≤
� τ ′

τ
q(t)ψ(t) dt .

De�nition A.2. An admissible weak solution ρ will be calledBV-regular if it veri�es ρ ∈ L∞((0, T );BV(R)).

As we pointed out before, this notion of solution is well suited for passage to the limit of a.e.
convergent sequences of exact or approximate solutions. However, it is not so well-adapted to prove
uniqueness. An equivalent notion of solution, based on explicit treatment of traces of ρ at the
constraint, was introduced by the authors of [7]. This notion of solution leads to the following
stability estimate.

Theorem A.3. Fix s1, s2 ∈ BV([0, T ]; [0,Σ]), ρ1
0, ρ

2
0 ∈ L1(R; [0, R])∩BV(R) and q1, q2 ∈ BV([0, T ];R+).

Denote by ρ1 a BV-regular solution to (A.1) with data ρ1
0, q

1, s1 and ρ2 an admissible weak solution
to (A.1) with data ρ2

0, q
2, s2. Suppose that the �ux functions (t, ρ) 7→ F (s1(t), ρ), F (s2(t), ρ) satisfy

(A.2). Then for a.e. t ∈ (0, T ), we have:

‖ρ1(t)− ρ2(t)‖L1 ≤ ‖ρ1
0 − ρ2

0‖L1 + 2

� t

0
|q1(τ)− q2(τ)|dτ + 2

� t

0
‖F (s1(τ), ·)− F (s2(τ), ·)‖L∞ dτ

+

� t

0

∣∣∣∣∂ρF (s1(τ), ·)− ∂ρF (s2(τ), ·)
∣∣∣∣
L∞

TV(ρ1(τ)) dτ .

(A.3)

In particular, Problem (A.1) admits at most one BV-regular solution.

Proof. Since our interest to details lies rather on the numerical approximation point of view, we
do not fully prove this statement but we give the essential steps leading to this stability result.

• De�nition of solution. First, the authors of [7] introduce a subset of R2 called germ, which can be
seen as the set of all the possible traces of a solution to (A.1). Then, they say that ρ is a solution to
(A.1) if it satis�es entropy inequalities away from the interface � i.e. with ϕ ∈ C∞c (R∗×R+) in the
entropy inequalities � and if the couple constituted of left-side and the right-side traces of ρ belongs
to this so-called germ.
• Equivalence of the two de�nitions. The next step is to prove that this latter de�nition of solution is
equivalent to De�nition A.1. This part is done using good choices of test functions, see [7, Theorem
3.18] or [6, Proposition 2.5, Theorem 2.9].
• First stability estimate. One �rst shows that if s1 = s2, then for a.e. t ∈ (0, T ), one has

‖ρ1(t)− ρ2(t)‖L1 ≤ ‖ρ1
0 − ρ2

0‖L1 + 2

� t

0
|q1(τ)− q2(τ)|dτ . (A.4)

The proof starts with the classical doubling of variables method of Kruºkov [25, Theorem 1] and
then uses the germ structure, what the authors of [7] called
L1-dissipativity, see [7, De�nition 3.1] and [6, Lemma 2.7].
• Proof of estimate (A.3). The proof is based upon estimate (A.4) and elements borrowed from
[8, 18]. Most details can be found in the proof of [21, Theorem 2.1]. �
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Remark A.1. Though the de�nition of solutions with the germ explicitly involves the traces of
ρ, we did not discuss the existence of such traces. A �rst way to ensure such existence is to deal
with BV-regular solutions. That way, traces do exist and are to be understood in the sense of BV
functions. Outside the BV framework, existence of strong traces for solutions to (A.1) is ensured
provided an assumption on the fundamental diagram like (3.5), see [2, 29]. Finally, if one does not
want to impose such a condition on the �ux, (which is our case in this appendix), one can follow
what the authors of [7] proposed (in Section 2) and consider the "singular mapping traces."

A.2 Existence of BV-regular solutions

We now turn to the proof of the existence of BV-regular solutions by the means of a �nite volume
scheme.

Fix ρ0 ∈ L1(R; [0, R]). For a �xed spatial mesh size ∆x and time mesh size ∆t, let xj = j∆x,
tn = n∆t. We de�ne the grid cells Kj+1/2 = (xj , xj+1) and N ∈ N∗ such that T ∈ [tN , tN+1). We
write

R× [0, T ] ⊂
N⋃
n=0

⋃
j∈Z
Pnj+1/2, Pnj+1/2 = Kj+1/2 × [tn, tn+1).

We choose to discretize the initial data ρ0 and the functions s, q with
(
ρ0
j+1/2

)
j
, (sn)n and (qn)n

where for all j ∈ Z and n ∈ {0, . . . , N}), ρ0
j+1/2, s

n and qn are their mean values on each cell

Kj+1/2 and [tn, tn+1). Following [6], the marching formula of the scheme is the following: for all
n ∈ {0, . . . , N − 1} and j ∈ Z:

ρn+1
j+1/2 = ρnj+1/2 −

∆t

∆x

(
Fnj+1(ρnj+1/2, ρ

n
j+3/2)− Fnj (ρnj−1/2, ρ

n
j+1/2)

)
, (A.5)

where

Fnj (a, b) =

{
Fn(a, b) if j 6= 0

min {Fn(a, b), qn)} if j = 0,
(A.6)

Fn being a monotone consistent and Lipschitz numerical �ux associated to F (sn, ·). We then de�ne

ρ∆(x, t) = ρnj+1/2 if (x, t) ∈ Pnj+1/2 and s∆(t), q∆(t) = sn, qn if t ∈ [tn, tn+1).

Let ∆ = (∆x,∆t). For the convergence analysis, we will assume that ∆ → 0, with λ = ∆t/∆x,
verifying the CFL condition

λ sup
s∈[0,Σ]

(∥∥∥∥∂Fs∂a

∥∥∥∥
L∞

+

∥∥∥∥∂Fs∂b

∥∥∥∥
L∞

)
︸ ︷︷ ︸

L

≤ 1, (A.7)

where Fs = Fs(a, b) is the numerical �ux � associated to F (s, ·) � we use in the scheme (A.5). From
now, the analysis of the scheme follows the same path as in Section 4. In that order, we prove
that the scheme (A.5)-(A.6) is L∞ stable, satis�es discrete entropy inequalities similar to (4.7) and
approximate entropy/constraint inequalities similar to (4.8)-(4.9). Only the compactness for (ρ∆)∆

is left to obtain since the L1
loc compactness for the sequences (s∆)∆ and (q∆)∆ is clear. One way to

do so is to derive uniform BV bounds.
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Lemma A.4. We suppose that ρ0 ∈ L1(R; [0, R]) ∩BV(R) and that q veri�es the assumption

∃ε > 0, ∀t ∈ [0, T ], ∀s ∈ [0,Σ], q(t) ≤ max
ρ∈[0,R]

F (s, ρ)− ε := qε(s). (A.8)

Then there exists a constant Cε = Cε(‖∂sF‖L∞) nondecreasing with respect to its argument such
that for all n ∈ {0, . . . , N − 1},

TV(ρ∆(tn+1)) ≤ TV(ρ0) + 4R+ Cε

(
n∑
k=0

|qk+1 − qk|+
n∑
k=0

|sk+1 − sk|

)
, (A.9)

where ρ∆ =
(
ρnj+1/2

)
n,j

is the �nite volume approximation constructed with the scheme (A.5)-(A.6),

using the Godunov numerical �ux when j = 0 in (A.6).

Proof. Fix n ∈ {0, . . . N − 1}. With this set up we can follow the proofs of [13, Section 2] to obtain
the following estimate:∑
j∈Z
|ρn+1
j+1/2 − ρ

n+1
j−1/2| ≤ TV(ρ0) + 4R+ 2

n∑
k=0

∣∣∣(ρ̂sk+1(qk+1)− ρ̂sk(qk)
)
−
(
qρsk+1(qk+1)− qρsk(qk)

)∣∣∣ ,
where for all k ∈ {0, . . . , n}, the couple

(
ρ̂sk(qk), qρsk(qk)

)
∈ [0, R]2 is uniquely de�ned by the

conditions
F (sk, ρ̂sk(qk)) = F (sk, qρsk(qk)) = qk and ρ̂sk(qk) > qρsk(qk).

Denote by Ω(ε) the open subset

Ω(ε) =
⋃

s∈[0,Σ]

Ωs(ε)

where for all s ∈ [0,Σ], Ωs(ε) = (qρs(qε(s)), ρ̂s(qε(s))). By Assumption (A.8), the continuous function
(s, ρ) 7→ |∂ρF (s, ρ)| is positive on the compact subset [0,Σ]×[0, R]\Ω(ε). Hence, it attains its minimal
value C0 > 0. Consequently, for all s ∈ [0,Σ], if one denotes by Is : [0, qρs(qε(s))] → [0, qε(s)] the
increasing part of F (s, ·), this function carries out a C1-di�eomorphism. Moreover,

∀q ∈ [0, qε(s)],
∣∣∣(I−1

s )
′
(q)
∣∣∣ ≤ 1

C0
.

Then, for all k ∈ {0, . . . , n},∣∣∣qρsk+1(qk+1)− qρsk(qk)
∣∣∣ =

∣∣∣(I−1
sk+1)(qk+1)− qρsk(qk)

∣∣∣
≤ 1

C0
|qk+1 − qk|+

∣∣∣(I−1
sk+1)(qk)− qρsk(qk)

∣∣∣
=

1

C0
|qk+1 − qk|+

∣∣∣(I−1
sk+1)(qk)− (I−1

sk+1) ◦ Isk+1

(
qρsk(qk)

)∣∣∣
≤ 1

C0

(
|qk+1 − qk|+

∣∣∣qk − Isk+1

(
qρsk(qk)

)∣∣∣)
=

1

C0

(
|qk+1 − qk|+

∣∣∣F (sk, qρsk(qk)
)
− F

(
sk+1, qρsk(qk)

)∣∣∣)
≤ 1

C0

(
|qk+1 − qk|+ ‖∂sF‖L∞ |sk+1 − sk|

)
≤ 1 + ‖∂sF‖L∞

C0

(
|qk+1 − qk|+ |sk+1 − sk|

)
.
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Using the same techniques, one can show that the same inequality holds when considering
∣∣∣ρ̂sk+1(qk+1)− ρ̂sk(qk)

∣∣∣.
Therefore, inequality (A.9) follows with

Cε = 4×
(

1 + ‖∂sF‖L∞
C0

)
.

�

Remark A.2. Recall we suppose that F : [0,Σ]× [0, R] is continuously di�erentiable, but if we look
in the details of the proof above, we actually need F = F (s, ρ) to be continuously di�erentiable with
respect to s and

∀s ∈ [0,Σ], F (s, ·) ∈ C1([0, R]\{ρs}), ρs = argmax
ρ∈[0,R]

F (s, ρ).

Corollary A.5. Fix ρ0 ∈ L1(R; [0, R]) ∩ BV(R), s ∈ BV([0, T ], [0,Σ]) and q ∈ BV([0, T ],R+).

Suppose that q veri�es Assumption (A.8). Let ρ∆ =
(
ρnj+1/2

)
n,j

be the �nite volume approximate

solution constructed with the scheme (A.5)-(A.6), using the Godunov numerical �ux when j = 0 in
(A.6), and any other monotone consistent and Lipschitz numerical �ux when j 6= 0. Then there
exists ρ ∈ C([0, T ];L1

loc(R)) such that

∀t ∈ [0, T ], ρ∆(t) −→
∆→0

ρ(t) in L1
loc(R).

Proof. Since s and q have bounded variation, inequality (A.9) leads to an uniform in time BV
bound for the sequence (ρ∆)∆. Then the result from [22, Appendix] establish the compactness
statement. �

Theorem A.6. Fix ρ0 ∈ L1(R; [0, R]) ∩ BV(R), s ∈ BV([0, T ]; [0,Σ]), F ∈ C1([0,Σ] × [0, R])
verifying (A.2) and q ∈ BV([0, T ];R+). Suppose that in (A.6), we use the Godunov �ux when
j = 0 and any other monotone consistent and Lipschitz numerical �ux when j 6= 0. Finally, suppose
that q satis�es (A.8). Then under the CFL condition (A.7), the scheme (A.5)-(A.6) converges to
an admissible weak solution ρ, to (A.1), which is also BV-regular. More precisely, there exists a
constant Cε = Cε(‖∂sF‖L∞) nondecreasing with respect to its argument such that

∀t ∈ [0, T ], TV(ρ(t)) ≤ TV(ρ0) + 4R+ Cε (TV(q) + TV(s)) . (A.10)

Proof. From the scheme (A.5), one can derive approximate entropy/constraint inequalities analo-
gous to (4.8)-(4.9) of Section 4. Let ρ be the limit to the �nite volume scheme, the compactness of
(ρ∆)∆ coming from the last corollary. We already know that ρ ∈ C([0, T ];L1

loc(R)). By passing to
the limit in the approximate entropy/constraint inequalities veri�ed by (ρ∆)∆ we get that ρ satis�es
the entropy/constraint inequalities of De�nition A.1. This shows that ρ is an admissible weak solu-
tion to Problem (A.1). Finally, from (A.9), the lower semi-continuity of the BV semi-norm ensures
that ρ ∈ L∞([0, T ];BV(R)) and veri�es (A.10). This concludes the proof. �

Corollary A.7. Fix ρ0 ∈ L1(R; [0, R]) ∩ BV(R), s ∈ BV([0, T ]; [0,Σ]), F ∈ C1([0,Σ] × [0, R])
verifying (A.2) and q ∈ BV([0, T ];R+). Suppose that q satis�es Assumption (A.8). Then Problem
(A.1) admits a unique BV-regular solution ρ. Moreover, ρ satis�es the bound (A.10).

Proof. Uniqueness comes from Theorem A.3, the existence and theBV bound comes from Theorem
A.6. �

Remark A.3. Under the hypotheses of Corollary A.7, if we prove the existence of an other admis-
sible weak solution ρ to (3.1) (by another method, splitting for instance), then Theorem A.3 ensures
that ρ = ρ.
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