T. Górecki and M. ?uczak, Using derivatives in time series classification, Data Mining and Knowledge Discovery, vol.26, issue.2, pp.310-331, 2013.

T. Górecki and M. ?uczak, Non-isometric transforms in time series classification using dtw, Know.-Based Syst, vol.61, pp.98-108, 2014.

J. Lines, A. Bagnall, J. Lines, A. Bagnall, and A. Bagnall, Time series classification with ensembles of elastic distance measures, Data Min Knowl Disc, vol.29, pp.565-592, 2015.

C. A. Ratanamahatana and E. Keogh, Three Myths about Dynamic Time Warping Data Mining, Proceedings of the 2005 SIAM International Conference on Data Mining, pp.506-510, 2005.

H. Deng, G. C. Runger, E. Tuv, and V. Martyanov, A time series forest for classification and feature extraction, Inf. Sci, vol.239, pp.142-153, 2013.

G. R. Mustafa-gokce-baydogan and E. Tuv, A Bag-of-Features Framework to Classify Time Series, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.10, pp.2104-2111, 2017.

M. Baydogan, G. Runger, and E. B. Keogh-mustafa-gokce-baydogan, Time series representation and similarity based on local autopatterns, Data Mining and Knowledge Discovery, vol.30, pp.476-509, 2016.

E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra, Dimensionality reduction for fast similarity search in large time series databases, KAIS, vol.3, pp.263-286, 2001.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu, A symbolic representation of time series, with implications for streaming algorithms, Pro. of the 8th ACM SIGMOD workshop -DMKD '03, 2003.

Q. Lei, J. Yi, R. Vaculin, L. Wu, and I. S. Dhillon, Similarity preserving representation learning for time series clustering, IJCAI'19, pp.2845-2851, 2019.

J. Lin, R. Khade, and Y. Li, Rotation-invariant similarity in time series using bag-of-patterns representation, Journal of Intelligent Information Systems, vol.39, issue.2, pp.287-315, 2012.

P. Senin and S. Malinchik, Sax-vsm: Interpretable time series classification using sax and vector space model, ICDM'13, pp.1175-1180, 2013.

P. Schäfer, The BOSS is concerned with time series classification in the presence of noise, Data Min Knowl Disc, vol.29, pp.1505-1530, 2015.

L. Ye and E. Keogh, Time series shapelets: A New Primitive for Data Mining, Proc. KDD '09, p.947, 2009.

J. Lines, L. M. Davis, J. Hills, and A. Bagnall, A shapelet transform for time series classification, Proc. KDD '12, pp.289-297, 2012.

J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-thieme, Learning time-series shapelets, Proc. KDD '14, pp.392-401, 2014.

T. Rakthanmanon and E. Keogh, Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets, Proceedings of the 2013 SIAM International Conference on Data Mining, pp.668-676, 2013.

Z. Fang, P. Wang, and W. Wang, Efficient learning interpretable shapelets for accurate time series classification, Proc, pp.497-508, 2018.

J. Lines, J. Hills, and A. Bagnall, The Collective of Transformation-Based Ensembles for Time-Series Classification, IEEE Transactions on Knowledge and Data Engineering, vol.27, issue.9, pp.2522-2535, 2015.

J. Lines, S. Taylor, and A. Bagnall, Hive-cote: The hierarchical vote collective of transformation-based ensembles for time series classification, ICDM, pp.1041-1046, 2016.

A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, Ts-chief: A scalable and accurate forest algorithm for time series classification, ArXiv, 1906.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, MOA: Massive Online Analysis, 2010.

K. Ueno, A. Xi, E. Keogh, and D. J. Lee, Anytime classification using the nearest neighbor algorithm with applications to stream mining, Proceedings -IEEE International Conference on Data Mining, ICDM, pp.623-632, 2006.

H. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, Deep learning for time series classification: a review, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02365025

F. Karim, S. Majumdar, H. Darabi, and S. Chen, LSTM Fully Convolutional Networks for Time Series Classification, IEEE Access, vol.6, pp.1662-1669, 2017.

J. Wang, Z. Wang, J. Li, and J. Wu, Multilevel Wavelet Decomposition Network for Interpretable Time Series Analysis, KDD, p.10, 2018.

A. Dempster, F. Petitjean, and G. I. Webb, ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels, 2019.

J. Zuo, K. Zeitouni, and Y. Taher, Exploring interpretable features for large time series with se4tec, EDBT 2019, pp.606-609, 2019.

C. Yeh, Y. Zhu, L. Ulanova, and N. Begum, ICDM, Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets, 2016.

A. Bostrom and A. J. Bagnall, Binary shapelet transform for multiclass time series classification, T. Large-Scale Data-and Knowledge-Centered Systems, vol.32, pp.24-46, 2017.

J. Gama, I. Zliobait, E. , A. Bifet, M. Pechenizkiy et al., A Survey on Concept Drift Adaptation, A Survey on Concept Drift Adap-tation. ACM Comput. Surv. 1, 1, Article, vol.1, 2013.

J. Lines and A. Bagnall, Alternative quality measures for time series shapelets, Proc. IDEAL'12, pp.475-483, 2012.

J. Zuo, K. Zeitouni, and Y. Taher, ISETS: Incremental Shapelet Extraction from Time Series Stream, ECML PKDD 2019

H. A. Dau, E. Keogh, K. Kamgar, C. M. Yeh, Y. Zhu et al., The ucr time series classification archive, 2018.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances, Data Mining and Knowledge Discovery, vol.31, issue.3, pp.606-660, 2017.

S. Gharghabi, S. Imani, A. Bagnall, A. Darvishzadeh, and E. Keogh, An Ultra-Fast Time Series Distance Measure to allow Data Mining in more Complex Real-World Deployments, Tech. Rep, 2018.

A. Mueen, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan et al., The fastest similarity search algorithm for time series subsequences under euclidean distance, 2017.