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ANOSOV REPRESENTATIONS WITH LIPSCHITZ LIMIT SET

BEATRICE POZZETTI, ANDRÉS SAMBARINO, AND ANNA WIENHARD

Abstract. We study Anosov representation for which the image of the bound-

ary map is the graph of a Lipschitz function, and show that the orbit growth

rate with respect to an explicit linear function, the unstable Jacobian, is in-
tegral. Several applications to the orbit growth rate in the symmetric space

are provided. We further study regularity of the limit curves of θ-positive

representations as introduced by Guichard-W. [27].
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1. Introduction

Let Γ Ă PGLdpRq be a discrete subgroup. Following Guivarc’h, Benoist [4] has
shown that if Γ contains a proximal element and acts irreducibly on Rd then its
action on projective space PpRdq has a smallest closed invariant set. This is usually
called Benoist’s limit set or simply the limit set of Γ on PpRdq and denoted by LΓ.

In contrast with the negatively curved situation, the limit set of a subgroup Γ
whose Zariski closure has rank ě 2 need not be a fractal object. Examples of
this phenomena are provided, for example, by Benoist [5] in his work on strictly
convex divisible sets, showing that these groups have a C1-sphere as limit set, or
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by Labourie [33] where he proved that the limit set of a Hitchin representation is
a C1-curve. We refer the reader to P.-S.-W [36] and to Zhang-Zimmer [45] for new
examples of infinite co-volume Zariski-dense groups whose limit set is a proper C1

submanifold.
Intermediate phenomena can also ocur. The easiest example could be by consid-

ering two different hyperbolizations ρ, η : π1S Ñ PSL2pRq of a closed surface S with
genus ě 2. The limit set of the representation pρ, ηq : π1S Ñ PSL2pRq ˆ PSL2pRq

in BH2 ˆ BH2 is a Lipschitz circle that is never C1 . This Lipschitz property can be
easily deduced from the fact that the Hölder map ξ : BH2 Ñ BH2 conjugating the
action ρ with η is order preserving.

This actually fits in the broader framework of what is now known as maximal
representations, introduced in Burger-Iozzi-W. [10, Theorem 8]. These are a class
of representations of π1S into an Hermitian Lie group, that have maximal Toledo
invariant, a notion that generalizes the characterization, proved by Goldman [23],
of the Teichmüller space of S as those representation with maximal Euler number.

It is proved by Burger-Iozzi-Labourie-W. [9] that maximal representations have
Lipschitz limit set in the Shilov boundary of the target group (see Section 9 for
further detail).

The main object of this paper are discrete groups whose limit set is a Lipschitz
manifold, i.e. it is locally the graph of a Lipschitz map. The groups we will consider
verify a stronger form of “quasi-isometrically embedded”, called projective Anosov
which we now define.

Let τ be an inner product on Rd and for g P GLdpKq denote by

σ1pgq ě ¨ ¨ ¨ ě σdpgq

the singular values of g associated to τ, that is, the square roots of the eigenvalues
of gg˚, where g˚ is the adjoint operator of g. Given g P PGLdpKq one can consider
a lift g̃ P GLdpKq with det g̃ P t´1, 1u, we define then σipgq “ σipg̃q.

Let Γ be a finitely generated group, fix a finite symmetric generating set and
denote by | | the associated word length on Γ. Let ρ : Γ Ñ PGLdpKq be a homomor-
phism, then the following are equivalent:

i) There exist positive constants c, µ such that for all γ P Γ one has

σ2

σ1
pρpγqq ď ce´µ|γ|,

ii) The group Γ is hyperbolic and there exist equivariant maps

pξρ, ξ
˚
ρ q : BΓ Ñ PpRdq ˆ PppRdq˚q

such that for every x ‰ y P BΓ one has ker ξ˚pyq‘ξpxq “ Rd; and the bundle
over UΓ whose fiber is (the induced on the quotient of) hompξpxq, ker ξ˚pyqq
is contracting for the associated canonical flat bundle automorphism.

If either condition is satisfied we will say that ρ is a projective Anosov represen-
tation.

Remark 1.1. The implication ii)ñi) comes from Labourie [33] and Guichard-W.
[26]. The implication i)ñii) is due to Kapovich-Leeb-Porti [31], see also Guéritaud-
Guichard-Kassel-W. [24] and Bochi-Potrie-S. [6] for different approaches.
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Recall that if panqnPN Ă R` is a sequence of positive numbers then the critical
exponent of the Dirichlet series

s ÞÑ
ÿ

nPN

asn

is defined by

infts :
ÿ

nPN

asn ă 8u “ supts :
ÿ

nPN

asn “ 8u.

Inspired by Potrie-S. [35, Theorem B], the main purpose of this work is to prove
the following result, whose scope of application is considerable broader.

Theorem A. Let Γ be a word-hyperbolic group such that BΓ is topologically a sphere
of dimension p. Let ρ : Γ Ñ PSLdpRq be a strongly irreducible projective Anosov
representation such that ξρpBΓq is locally the graph of a Lipschitz map. Then the
Dirichlet series

s ÞÑ
ÿ

γPΓ

˜

σ1 ¨ ¨ ¨σp`1

σp`1
1

`

ρpγq
˘

¸s

has critical exponent equal to 1. Furthermore, if p “ 1 the same holds replacing
strong irreducibility with weak irreducibility.

We say that a projective Anosov representation ρ is weakly irreducible if the
vector space span

`

ξρpBΓq
˘

is Rd. Let us introduce some more standard notation
before explaining some consequences of such equality.

Let E “ tpa1, . . . , adq P R
d :

ř

i ai “ 0u and fix p P J1, dK. Denote by εp P E˚ the
coordinate function εppaq “ ap and the pth-root ap “ εp ´ εp`1. Consider the set
of simple roots defined by Π “ tak : k P J1, d´ 1Ku and

E` “ ta P E : a1 ě ¨ ¨ ¨ ě adu

the associated Weyl chamber. The Cartan projection a : PGLdpRq Ñ E` is defined
by

apgq “
`

log σ1pgq, . . . , log σdpgq
˘

,

note that this map depends on the choice of τ.
Consider a representation ρ : Γ Ñ PGLdpRq, then the entropy of a given linear

form ϕ P E˚ is denoted by hρpϕq and is defined as the critical exponent of the
Dirichlet series

s ÞÑ
ÿ

γPΓ

e
´sϕ

´

a
`

ρpγq
˘

¯

.

For each simple root ap, we denote the associated fundamental weight by

ωppaq “
p
ÿ

1

ai.

We introduce the pth-unstable Jacobian Jup P E˚ defined by

Jup “ pp` 1qωa1
´ ωap`1

,

so that Theorem A states that if ρ is projective Anosov and ξρpBΓq is a Lipschitz
manifold of dimension p, then hρpJ

u
pq “ 1 (provided the corresponding irreducibility

assumptions hold).
We proceed to explain some applications of Theorem A before explaining the

main ideas of its proof.
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Maximal representations. Let GR be a Hermitian Lie group. By definition, its
symmetric space XGR

carries a GR-invariant symplectic form Ω. Given a closed genus
g ě 2 surface and a representation ρ : π1S Ñ GR, its Toledo invariant is defined by

Tpρq “

ż

S

f˚Ω,

for a(ny) ρ-equivariant map f̃ : S̃ Ñ XGR
. It is proved by Burger-Iozzi-W. [10] that

|Tpρq| ď p2g ´ 2q rankpGRq. One says that ρ is maximal if its Toledo invariant is
maximal in modulus.

We obtain the following entropy one result for maximal representations.

Theorem 1.2. Let GR be a classical simple Hermitian Lie group of tube type. Let
ρ : Γ Ñ GR be a maximal representation, and let ǎ denote the root associated to the
stabilizer of a point in the Shilov boundary of GR. Then hρpǎq “ 1.

We give the precise linear form on E˚, where we denote by εk P E˚ the k-th
coordinate function.

Target group ρ : π1S Ñ GK maximal
Spp2p,Rq hρp2εpq “ 1
SUpp, pq hρp2εpq “ 1
SO˚p4pq hρp2εpq “ 1

SO0
p2, pq hρpε1 ´ ε2q “ 1

Theorem 1.2 also holds for the exceptional Hermitian Lie group of tube type if
the respresentation is Zariski-dense, and we expect it to hold unconditionally. We
refer the reader to §9 for a slightly more general statement, further explanations
and consequences, in particular concerning a sharp upper bound on the exponential
orbit growth rate for the action on the symmetric space (see Proposition 9.9).

θ-positive representations. In [27] Guichard-W. introduced the notion of θ-
positivity for a subset θ of the simple roots of a real semisimple Lie group GR,
and used such notion to define θ-positive representations, a class of representations
that encompasses Hitchin representations, maximal representations and includes a
new class of representations into the group SOpp, qq of elements preserving a sym-
metric bilinear form Q of signature pp, qq in Rp`q. The definition of positivity is
rather involved and we postpone it to §10. In that Section we prove the following
result:

Theorem 1.3. Let ρ : Γ Ñ SOpp, qq be a θ-Anosov representation that is θ-positive.
Then the images of the boundary maps ξk : BΓ Ñ IskpR

p,qq are C1 submanifolds for
each 1 ď k ă p´ 1, and the image ξp´1pBΓq is Lipschitz.

We will prove the two parts of Theorem 1.3 separately, respectively in Corollary
10.2 and Proposition 10.3. Theorem A implies then the following:

Corollary 1.4. Let ρ : Γ Ñ SOpp, qq be a θ-Anosov representation that is θ-positive
and weakly irreducible, then hρpakq “ 1 for every k ď p´ 1.

Applying ideas from Potrie-S. [35], this corollary gives the following rigid upper
bound for the critical exponent of the action of a positive representation in the
symmetric space Xp,q of SOpp, qq (see Theorem 10.5). Endow Xp,q with a SOpp, qq-
invariant Riemannian metric such that the totally geodesic copy of H2 induced
by the representation Λ : SL2pRq Ñ SOpp, qq that stabilizes a subspace of Rd of
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signature pp, p ´ 1q, has constant curvature -1. Denote by d the induced distance
in Xp,q.

For a representation ρ : Γ Ñ SOpp, qq and x0 P Xp,q denote by h
Xp,q
ρ the critical

exponent of the Dirichlet series

s ÞÑ
ÿ

γPΓ

e´sdpx0,ρpγqx0q.

Theorem 1.5. Let Γ be the fundamental group of a surface and let ρ : Γ Ñ SOpp, qq
be θ-positive. Then

hXp,qρ ď 1.

Furthermore if equality is achieved at a totally reducible representation η then η
splits as W ‘V with W having signature pp, p´1q and η|W has Zariski closure the
irreducible POp2, 1q in POpp, p´ 1q and η|V lies in a compact group.

Observe that the argument from [35] does not apply directly since the Anosov-
Levi space of a θ-positive representation has codimension one (instead of 0, which
is the case treated in [35]), see §10.

Hp,q-convex-cocompact representations. Generalizing work of Mess [34] and
Barbot-Mérigot [2], Danciger–Guéritaud–Kassel [16] introduced a class of represen-
tations called Hp,q-convex cocompact.

The subspace of PpRdq consisting of negative definite lines for the form Q is
called the pseudo-Riemannian hyperbolic space and denoted by

Hp,q´1 “ t` P PpRdq : Q|`´t0u ă 0u.

The cone of isotropic lines is usually denoted by BHp,q´1.
Instead of the original definition of convex-cocompactness, we recall the charac-

terization given by [16, Theorem 1.11].

Definition 1.6. A projective Anosov representation ρ : Γ Ñ POpp, qq is Hp,q´1-
convex cocompact if for every pairwise distinct triple of points x, y, z P BΓ, the
restriction Q|ξpxq‘ξpyq‘ξpzq has signature p2, 1q.

Before stating the main consequence in this case let us introduce some more
notation. Consider a representation Λ : POpp, 1q Ñ POpp, qq such that its image
stabilizes a p ` 1-dimensional subspace V of Rd where Q|V has signature pp, 1q.
Endow the symmetric space Xp,q with a POpp, qq-invariant Riemannian metric such
that the totally geodesic copy of Hp in Xp,q induced be Λ has constant curvature
´1. Then one has the following upper bound.

Proposition 1.7. Assume that BΓ is homeomorphic to a p´ 1-dimensional sphere
and let ρ : Γ Ñ POpp, qq be strongly irreducible and Hp,q´1-convex-cocompact, then

hXp,qρ ď p´ 1.

One expects this upper bound to be rigid in the following sense: if the upper
bound is attained then Γ is necessarily a co-compact lattice in POpp, 1q and the
given representation preserves a totally geodesic copy of Hp of the type induced by
Λ. However, only the case p “ 2 is known due to Collier-Tholozan-Toulisse [14],
this actually fits in the framework of the maximal representations.

Section 8 contains more information on Hp,q-convex cocompact representations,
in particular the relation with recent work by Glorieux-Monclair [20].
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C1-dichotomy for closed surface groups. In the case of fundamental groups of
surfaces, or more generally of lattices in PSL2pRq, we deduce from our main result
an interesting dichotomy for the regularity of the image of the boundary map.

Recall that an element g P PGLdpRq is proximal if the generalized eigenspace
associated to its greatest eigenvalue (in modulus) has dimension 1. A representation
Λ : G Ñ PGLdpRq of a given group G is proximal if its image contains a proximal
element.

Corollary 1.8. Let Λ : PSL2pRq Ñ PSLdpRq be a (possibly reducible) proximal
representation such that ^2Λ is also proximal. Let S be a closed surface of genus
ě 2 and let ρ0 : π1S Ñ PSL2pRq be discrete and faithful. Then we have the folloqing
dichotomy:

i) If the top two weights spaces of Λ belong to the same irreducible factor,
then for every small deformation π1S Ñ PSLdpRq of Λρ0 the image of the
boundary map to projective space is C1.

ii) Otherwise, for every weakly irreducible small deformations π1S Ñ PSLdpRq
of Λρ0 the image of the boundary map to projective space is not Lipschitz.

The regular case, item i) in Corollary 1.8, is inspired by Labourie [33], who
treated the case (of arbitrary deformations) of the irreducible representations, and
was proven in P.-S.-W [36, Proposition 9.4]. The novelty of this paper is item
ii), inspired by Barbot [1] who proved it for d “ 3. We believe both items placed
together give a clearer picture.

Observe that it is easy to obtain similar results for other group G by considering
suitable linear representations. On the other hand the double proximality assump-
tion is necessary: the composition of a maximal representation not in the Hitchin
component and the irreducible linear representation of Spp2n,Rq of highest weight
wn is proximal but its second exterior power is not proximal; it is possible to check
that no small Zariski dense deformation satisfies either (i) or (ii).

We refer the reader to §7 for further explanations and consequences for hyper-
convex representations.

1.1. Two main ingredients of the proof of Theorem A. The proof of Theorem
A goes by proving indepently both inequalities. One inequality (Corollary 1.9)
follows from a general result on Hausdorff dimension of limit sets (for projective
Anosov representations) which we now explain. The other inequality follows from
an improvement on a result by Quint [40, Théorème 8.1] concerning the existence
of pρpΓq, ϕq-Patterson-Sullivan measures. Its discussion is postponed to Subsection
1.1.2.

1.1.1. The affinity exponent and the unstable Jacobian. Recall that for a metric
space pΛ, dq and for s ą 0 one defines

HspΛq “ inf
ε
t
ÿ

UPU

diamUs : U is a covering of Λ with sup
UPU

diamU ă εu

and that the Hausdorff dimension of Λ is defined by

dimHffpΛq “ infts : HspΛq “ 0u “ supts : HspΛq “ 8u. (1.1)
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Given a representation ρ : Γ Ñ PGLdpRq, we consider, in analogy with Falconer’s
work [18], the piecewise Dirichlet series

ΦAff
ρ psq “

ÿ

γPΓ

ˆ

σ2

σ1

`

ρpγq
˘

¨ ¨ ¨
σp´1

σ1

`

ρpγq
˘

˙ˆ

σp
σ1

`

ρpγq
˘

˙s´pp´2q

: s P rp´ 2, p´ 1s.

As in Falconer [18], one directly observes that

hAff
ρ “ infts : ΦAff

ρ psq ă 8u “ supts : ΦAff
ρ psq “ 8u P p0,8s,

this critical exponent is usually called the affinity exponent (or affinity dimension),
probably because the target group in Falconer’s work was the affine group Affpdq “
GLdpRq ¸ R

d.
Let ρ : Γ Ñ PGLdpRq be a projective Anosov representation and denote by

dimHffpξpBΓqq

the Hausdorff dimension of ξpBΓq Ă PpRdq associated to a POpdq-invariant metric.
This is independent of the choice of chosen inner product. Observe also that in this
case, the terms in the sum of ΦAff

ρ psq can be bounded above by ce´µs|γ| and thus

hAff
ρ ă 8.

The second main result of this paper is the following (see §3 for a statement for
arbitrary local fields):

Theorem B. Let ρ : Γ Ñ PGLdpRq be a projective Anosov representation, then

dimHff

`

ξpBΓq
˘

ď hAff
ρ .

Theorem B gives relations between the Hausdorff dimension of the limit set of a
projective Anosov representation and the orbit growth rate with respect to explicit
linear functionals on the Weyl chamber. Recall that we denote by hρpJ

u
p´1q the

critical exponent of the Dirichlet series

s ÞÑ
ÿ

γPΓ

ˆ

σ1 ¨ ¨ ¨σp
σp1

pρpγqq

˙s

appearing in Theorem A. Theorem B provides directly the following corollary:

Corollary 1.9. Let ρ : Γ Ñ PGLdpRq be projective Anosov and assume furthermore
that dimHffpξpBΓqq ě p´ 1. Then

dimHffpξpBΓqq ď phρpJ
u
pq.

Observe that Ju1 “ a1, and thus, since dimHffpξpBΓqq ě 0 we obtain as conse-
quence Glorieux-Monclair-Tholozan [22, Theorem 4.1] and P.-S.-W. [36, Proposi-
tion 4.1].

1.1.2. On the existence of Patterson-Sullivan measures. Let tu1, . . . , udu be a τ -
orthonormal basis of Rd and denote by A “ exp diag E the group of determinant one
matrices, diagonal in this ordered basis. Denote also by N the group of unipotent
upper triangular matrices and recall that the Iwasawa decomposition of PGLdpRq
states that every g P PGLdpRq can be uniquely written as a (non-commutative)
product

g “ kgagng,

where kg P K “ POpτq, ag P A and ng P N.
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Recall that a full flag of Rd is a collection of subspaces pViq
d
i“0 with Vi Ă Vi`1

and dimVi “ i. The space of full flags of Rd is denoted by F, it is a K-homogeneus
space and the stabilizer in K of the flag e “ pu1 ‘ ¨ ¨ ¨ ‘ uiq

d
i“1 is denoted by M.

Given a flag x P F, we will denote by xp the associated p-dimensional subspace.
The Iwasawa cocycle introduced by Quint [40] is the cocycle b : PGLdpRqˆF Ñ E

defined such that, if g P PGLdpRq and x “ kxe P F then

gkx “ k
`

exp diag bpg, xq
˘

n,

where the right hand side is the Iwasawa decomposition of gkx. It is the higher rank
analog of the more studied Busemann cocycle in negative curature (see for example
Quint [40, Lemma 6.6]).

A more hands-on definition is the following (see Lemma 4.9). For p P Π “ J1, dK
one has

ωp
`

bpg, xq
˘

“ log
}gv1 ^ ¨ ¨ ¨ ^ gvp}

}v1 ^ ¨ ¨ ¨ ^ vp}
(1.2)

where tv1, . . . , vpu is any basis of the p-dimensional space xp of x and } } is the
norm on ^pRd induced by τ .

Notice that ωp
`

bpg, xq
˘

, the sum of the first p coordinates of bpg, xq, only depends
on xp, so it is actually more natural to consider the Iwasawa cocycle defined on
partial flags. Given θ Ă Π denote by Fθ the space of partial flags with dimension
jumps only in θ. Consider also the subspace Eθ of E defined by

Eθ “
č

pRθ

ker ap.

The fundamental weights tωp|Eθ : p P θu span its dual pEθq
˚ so Riesz Theorem

gives an Iwasawa cocycle

bθ : PGLdpRq ˆ Fθ Ñ Eθ.

We recall the following definition from [40].

Definition 1.10. Given a discrete subgroup ∆ ă PGLdpRq and ϕ P pEθq
˚ a p∆, ϕq-

Patterson-Sullivan measure on Fθ is a finite Radon measure µ such that for every
g P ∆ one has

dg˚µ

dµ
pxq “ e´ϕ

`

bθpg
´1,xq

˘

.

The core of the second inequality in Theorem A is the following result (see
also Theorem 5.14). Given θ Ă Π denote by i θ “ td ´ p : p P θu. We say that
px, yq P Fθ ˆ Fi θ, are transverse if for every p P θ one has that xp X yd´p. A
complementary hyperplane of Fθ is a subset of Fθ of the form

tx P Fθ : x is not transverse to y0u

for a given y0 P Fi θ.

Theorem C. Let ρ : Γ Ñ PGLdpRq be a proyective Anosov representation and con-
sider θ Ă Π such that a1 P θ. Let ϕ P pEθq

˚. If there exists a pρpΓq, ϕq-Patterson-
Sullivan measure on Fθ whose support is not contained on a complementary sub-
space, then

hρpϕq ď 1.
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A similar result has been earlier proved by Quint [40, Théorème 8.1], inspired on
a classical result by Sullivan [43]. However, Quint’s theorem does not require the
representation to be Anosov and the obtained inequality is not enough for what we
need.

We refer the reader to §5 for a version of Theorem C where the target group is
an arbitrary semi-simple group over a local field.

Recently Dey–Kapovich developed Patterson-Sullivan theory for Anosov repre-
sentations [DK19]. There are important differences between their approach and
ours: while we consider Hausdorff dimension with respect to the Riemannian dis-
tance on the flag manifold and measures quasi-invariant with respect to a functional
that doesn’t induce a norm on the Weyl chamber, they consider distances on the
flag varieties which are induced from Finsler metrics on the symmetric space. In
particular our results seem complementary.

1.2. Plan of the paper. In §2 we introduce some required preliminaries, and recall
some needed results from Bochi-Potrie-S. [6] and P.-S.-W. [36]. Section 3 deals with
the affinity exponent and Hausdorff dimension for Anosov representations, in it we
prove Theorem B for any local field.

Section §4 is basically a reminder on (more or less) standard definitions on semi-
simple algebraic groups over a local field.

In §5 we recall objets from higher rank Patterson-Sullivan Theory and in sub-
section 5.3 we prove Theorem 5.14 (a broader version of Theorem C).

Section §6 glues the pieces to complete the proof of Theorem A. The remaining
sections deal with applications of this result, as explained earlier in this introduc-
tion.

Acknowledgements. We would like to thank J.-F. Quint for pointing us to Fal-
coner’s work and suggesting to consider the affinity exponent.

2. Preliminaries

We recall in this section the notions we will need concerning Anosov represen-
tations and cone types. We refer the reader to [36] and the references therein for
more details.

Throughout the paperK will denote a local field with absolute value |¨| : KÑ R`.
If K is non-Archimedean, we require that |ω| “ 1

q where ω denotes the uniformizing

element, namely a generator of the maximal ideal of the valuation ring O, and q is
the cardinality of the residue field O{ωO (this is finite because K is, by assumption,
local). This guarantees that the Hausdorff dimension of P1pKq “ 1.

2.1. Singular values and Anosov representations into PGLdpVKq. A K-norm
} } on a K vector space VK induces a norm on every exterior power of V ; the angle
between two vectors >pv, wq is the unique number in r0, πs such that

sin >pv, wq :“
}v ^ w}

}v}}w}

Given two points rvs, rws P PV , we define their distance as

dprvs, rwsq :“ sin >pv, wq,
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and given any two subspaces P,Q ă V we define their minimal angle as

>pP,Qq “ min
vPP zt0u

min
wPQzt0u

>pv, wq.

An element a P GLpVKq is a semi-homothecy (for a norm } ¨ }) if there exists a
a-invariant K-orthogonal1 decomposition V “ V1 ‘ ¨ ¨ ¨ ‘ Vk and σ1, ¨ ¨ ¨ , σk P R`
such that for every i P J1, kK and every vi P Vi one has

}avi} “ σi}vi}.

The numbers σi are called the ratios of the semi-homothecy a.
Following Quint [38, Théorème 6.1], we fix a maximal abelian subgroup of di-

agonalizable matrices A Ă GLpVKq, a compact subgroup K Ă GLpVKq such that, if
N is the normalizer of A in GLpVKq, then N “ pN XKqA, and a K-norm } } on V
preserved by K, and such that A acts on V by semi-homothecies. Let e1 ‘ ¨ ¨ ¨ ‘ ed
be the eigenlines of A (here d “ dimV ) and choose the Weyl chamber A` con-
sistsing of those elements a P A whose corresponding semi-homothecy ratios verify
σ1paq ě ¨ ¨ ¨ ě σdpaq.

For every g P GLpVKq we choose a Cartan decomposition g “ kgaglg with ag in
A`, kg, lg P K, and denote by

σ1pgq ě σ2pgq ě ¨ ¨ ¨ ě σdpgq

the semi-homotecy ratios of the Cartan projection ag P A
` (these do not depend

on the choice of the Cartan decomposition once K and } ¨ } are fixed). In order to

simplify notation we will often write σi
σj
pgq “ σipgq

σjpgq
.

We define, for p P J1, d´ 1K,

uppgq “ kg ¨ ep P V.

The set tuppgq : p P J1, d´1Ku is an arbitrary orthogonal choice of the axes (ordered
in decreasing length) of the ellipsoid tAv : }v} “ 1u, and, by construction, for every
v P g´1uppgq one has }gv} “ σppgq}v}. Let

Uppgq “ u1pgq ‘ ¨ ¨ ¨ ‘ uppgq “ kg ¨ pe1 ‘ ¨ ¨ ¨ ‘ epq.

If g is such that σppgq ą σp`1pgq, then we say that g has a gap of index p. In that
case the decomposition

Ud´ppg
´1q ‘ g´1pUppgqq

is orthogonal (cfr. [36, Remark 2.4]) and, if K is Archimedean, the p-dimensional
space Uppgq is independent of the Cartan decomposition of g.

We will denote by Π “ ta1, . . . , ad´1u the root system of PGLpVKq, and, given
a subset θ Ă Π, by Fθ the associated partial flag manifold. Given θ Ă Π we also
denote by Uθpgq the partial flag Uθpgq “ tUppgq : ap P θu. The θ-basin of attraction
of g

Bθ,αpgq “ tx
θ P FθpK

dq : min
apPθ

>
`

xp, Ud´ppg
´1q

˘

ą αu (2.1)

is the complement of the α-neighborhood of Uθ
c

pg´1q. When θ consists of a single
root a we will write Ba,αpgq instead of Btau,αpgq

1Recall that for K non-Archimedean a decomposition V “ V1 ‘ ¨ ¨ ¨ ‘ Vk is ortogonal if, for
every vi P Vi, it holds }

ř

vi} “ maxi }vi}.
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Remark 2.1. If g has a gap of index p, then Ud´ppg
´1q is well defined if K is

Archimedean, and any two possible choices have distance at most
σp`1

σp
pgq if K is

non-Archimedean. It follows that, also in the non-Archimedean case, Bθ,αpgq only
depends on K provided α is bigger than the minimal singular value gap.

We recall for later use the following lemma, which explains the choice of the term
basin of attraction:

Lemma 2.2 (Bochi-Potrie-S. [6, Lemma A.6]). For every g P PGLdpKq, and x P
Ba1,αpgq it holds

dpU1pgq, g ¨ xq ď
1

sinpαq

σ2

σ1
pgq.

2.2. Anosov representations. Let Γ be a word-hyperbolic group with identity
element e, fix a finite symmetric generating set SΓ. For γ P Γ ´ teu denote by |γ|
the least number of elements of SΓ needed to write γ as a word on S, and define the
induced distance dΓpγ, ηq “ |γ

´1η|. A geodesic segment on Γ is a sequence tαiu
k
0 of

elements in Γ such that dΓpαi, αjq “ |i´ j|.

Definition 2.3. A representation ρ : Γ Ñ PGLdpKq is ap-Anosov2 if there exist
positive constants c, µ such that for all γ P Γ one has

σp`1

σp

`

ρpγq
˘

ď ce´µ|γ|. (2.2)

An a1-Anosov representation will be called projective Anosov.

The following result was proven in Bochi-Potrie-S. [6] for K “ R, the same
arguments also give the result for any local field:

Proposition 2.4 ([6, Lemma 2.5]). Let ρ : Γ Ñ PGLdpKq be a projective Anosov
representation. Then there exists ηρ ą 0 and L P N such that for every geodesic
segment tαiu

k
0 in Γ through e with |α0|, |αk| ě L one has

>

´

U1

`

ρpαkq
˘

, Ud´1

`

ρpα0q
˘

¯

ą ηρ.

Proposition 2.4 is a key ingredient in the construction of boundary maps:

Proposition 2.5 ([6, Lemma 4.9]). Let ρ : Γ Ñ PGLdpKq be projective Anosov and
pαiq

8
0 Ă Γ a geodesic ray based at the identity converging to x P BΓ then

ξ1
ρpxq :“ lim

iÑ8
U1

`

ρpαiq
˘

ξd´1
ρ pxq :“ lim

iÑ8
Ud´1

`

ρpαiq
˘

exist, do not depend on the ray and define continuous ρ-equivariant transverse maps
ξ1
ρ : BΓ Ñ PpKdq, ξd´1

ρ : BΓ Ñ P
`

pKdq˚
˘

. Furthermore, there are positive constants
C, µ depending only on ρ such that

d
´

U1

`

ρpαkq
˘

, ξ1
ρpxq

¯

ď Ce´µk

The following Lemma from concerning properties of boundary maps will be pre-
cious in Section 3.1:

Lemma 2.6 (Bochi-Potrie-S. [6, Lemma 3.9]). Let ρ : Γ Ñ PGLdpKq be projective
Anosov, then there exist constants ν P p0, 1q, a0 ą 0 and a1 ą 0 such that for every
γ, η P Γ one has

dΓpγ, ηq ě νp|γ| ` |η|q ´ a0 ´ a1| log d
`

U1pρpγqq, U1pρpηqq
˘

|.

2In the language of Bochi-Potrie-S. [6, Section 3.1] a ap-Anosov representation is called p-

dominated.



12

3. Hausdorff dimension of the limit set and the affinitiy exponent

Generalizing the definition given in the introduction, we define the affinity ex-
ponent hAff

ρ of a projective Anosov representation ρ : Γ Ñ PGLpVKq as the critical
exponent of the broken Dirichlet series

ΦAff
ρ psq “

ÿ

γPΓ

ˆ

σ2

σ1

`

ρpγq
˘

¨ ¨ ¨
σp´1

σ1

`

ρpγq
˘

˙dK ˆσp
σ1

`

ρpγq
˘

˙s´dKpp´2q

s P rdKpp´ 2q, dKpp´ 1qs

where the dimension dK of P1pKq is 1 unless K “ C in which case dC “ 2.
The goal of the section is to prove the following result:

Theorem 3.1. Let K be a local field. If ρ : Γ Ñ PGLpVKq is a1-Anosov then

dimHff

`

ξ1
ρpBΓq

˘

ď hAff
ρ .

The proof of Theorem 3.1 is elementary and based on the construction of a good
cover of the image of the limit map (explicitely constructed in § 3.1) which we show,
in § 3.2 to be contained in ellipses of controlled axis.

3.1. Coarse Cone types. In P.-S.-W. [36, Section 2.3.1] we used cone types at
infinity to construct well behaved coverings of the boundary of the group. For the
purposes of this paper a coarse version of these sets will be more useful, which we
now introduce.

Recall that a sequence pαiq
8
0 is a pc0, c1q-quasigeodesic if for every pair i, j it

holds
1

c0
|i´ j| ´ c1 ď dΓpαi, αjq ď c0|i´ j| ` c1.

We associate to every element γ a coarse cone type at infinity, consisting of end-
points at infinity of quasi geodesic rays based at γ´1 passing through the identity:

Cc0,c18 pγq “
!

rpαiq
8
0 s P BΓ| pαiq

8
0 is a pc0, c1q-quasigeodesic with α0 “ γ´1, e P tαiuq

)

.

Bc1peq

γ´1 Γ

C
c0,c1
8 pγq

Figure 1. The coarse cone type at infinity, the black broken lines are
pc0, c1q-quasigeodesics. All endpoints of geodesic rays from γ´1 inter-
secting the ball Bc1peq clearly belong to C

c0,c1
8 pγq

Hyperbolicity of Γ lets us understand the overlaps of coarse cone types; this will
be crucial in Section 5.3 to guarantee bounded overlap of suitable covers of the limit
set.
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Proposition 3.2. Let Γ be word-hyperbolic. For every c0, c1 there exists C ą 0
such that if

γCc0,c18 pγq X ηCc0,c18 pηq ‰ H

then
dΓpγ, ηq ď

ˇ

ˇ|γ| ´ |η|
ˇ

ˇ` C.

Proof. Assume that x P γCc0,c18 pγqXηCc0,c18 pηq. Since Γ is hyperbolic, by the Morse
Lemma, there exists K ą 0 (only depending on c0, c1 and the hyperbolicity constant
of Γ) such that γ is at distance at most K from a geodesic ray from e to x. The
same holds then for η, and, using the hyperbolicity of Γ again, we can assume, up
to making the constant K worse (but still depending on c0, c1 only), that the two
rays agree. This implies that there exist g0 and g1 on a geodesic ray from e to x
such that dpγ, g0q ď K and dpη, g1q ď K. Since g0 and g1 lie in a geodesic we have
dpg0, g1q ď

ˇ

ˇ|g0| ´ |g1|
ˇ

ˇ and thus

dpγ, ηq ď 4K `
ˇ

ˇ|γ| ´ |η|
ˇ

ˇ.

�

Our next goal is to show that, for an Anosov representation, the intersections of
Cartan’s basins of attraction Bθ,αpρpγqq with the image of the boundary map are
contained in the image of a suitably big coarse cone type of γ. Let now θ Ă Π be
a subset containing the first root a1. We will denote by πθ,1 : FθpK

dq Ñ PpKdq

the canonical projection. Recall from (2.1) that, for every α, we asociate to each
g P PGLpVKq a basin of attraction Bθ,αpgq Ă Fθ. We will now use Lemma 2.6 to
show that, for every α, there exist c0, c1 such that the intersection of a θ-basin of
attraction Bθ,αpρpγqq is contained in a pc0, c1q-coarse cone type.

Proposition 3.3. Let ρ : Γ Ñ PGLpVKq be projective Anosov and consider α ą 0.
There exist c0, c1 only depending on α and ρ such that for every θ Ă Π containing
a1, and every γ P Γ

pξ1q´1 pπθ,1 pBθ,αpρpγqqqq Ă Cc0,c18 pγq.

Proof. It is enough to show that if ξ1pxq P πθ,1pBθ,αpρpγqqq and |γ| is big enough,
then there is a quasi-geodesic ray from γ´1 to x that passes through the identity
whose constants only depend on α and ρ. Consider a quasigeodesic ray tαiu con-
verging to x, and fix 1 ą α1 ą α. Since, by assumption, ξ1pxq P Ba1,αpρpγqq, we
can find a constant L depending on ρ only, such that for every i ą L it holds
U1pρpαiqq P Ba1,α1pρpγqq (the uniformity of L follows from the last statement in
Proposition 2.5). By definition we have >pU1pρpαiqq, Ud´1pρpγ

´1qqq ą α1, and

thus, in particular, dpU1pρpαiqq, U1pρpγ
´1qq ą α1. Let now pαiq

´|γ|S
i“0 be a geodesic

segment with α0 “ e, α´|γ|S “ γ. Up to further enlarging α1 and L (depending on
the representation only) we have also that dpU1pρpα´Lqq, U1pρpαLqq ą α1. Lemma
2.6 implies that the sequence pαiq

8
i“´|γ|S

obtained as concatenation of the geodesic

between γ´1 and the identity and the ray from the identity to x is a quasi geodesic
ray, thus the result. �

Corollary 3.4. Let ρ : Γ Ñ PGLpVKq be projective Anosov and consider α ą 0.
There exists C only depending on α and ρ such that for every θ Ă Π containing a1,
if

ξ1pBΓq X πθ,1

´

ρpγq ¨Bθ,αpρpγqq X ρpηq ¨Bθ,αpρpηqq
¯

‰ H
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then

dpγ, ηq ď
ˇ

ˇ|γ| ´ |η|
ˇ

ˇ` C.

Proof. This follows immediately combining Proposition 3.3 and Proposition 3.2. �

In particular we can use basins of attraction to construct coverings of the image
of the boudary map with bounded overlap:

Proposition 3.5 (Cfr. P.-S.-W. [36, Lemma 2.21]). Let ρ : Γ Ñ PGLpVKq be
projective Anosov. There exists α small enough so that, for every T ą 0, the family
of open sets

UT :“ tρpγq ¨Ba1,αpρpγqq : |γ| “ T u

defines an open covering of ξ1pBΓq. Furthermore there exists a constant C depending
on α (and ρ) such that for every x P BΓ and every T , ξpxq is contained in at most
C elements of UT .

Proof. Let x P BΓ, let tγiu be a geodesic ray based at the identity representing x.
Propositions 2.4 and 2.5 guarantee that there exists α “ αρ such that

>ρpγ´1
T qξ1pxq, Ud´1pρpγ

´1
T qq ą α,

therefore ξ1pxq P ρpγT qBa1,αpρpγT qq. The second statement is a direct consequence
of Corollary 3.4. �

3.2. Ellipses. The purpose of this section is to prove that for a projective Anosov
representation, the set ρpγq ¨ Ba1,αpρpγqq is coarsely contained in an ellipsoid with
axes of size

σ2

σ1
pρpγqq, . . . ,

σd
σ1
pρpγqq.

Definition 3.6. Let V be a d-dimensional K-vector space with K-norm } ¨ }. Let

u1 ‘ ¨ ¨ ¨ ‘ ud

be a K-orthogonal decomposition and let v “
ř

viui be the associated decomposi-
tion of v P V , for suitable vi P K. Choose positive real numbers a2 ě . . . ad ě 1. If
K is Archimedean, an ellipsoid about Ku1 is the projectivisation of

tv P V : |v1|
2 ě

d
ÿ

2

pai|vi|q
2u

for some ai ą 0. If, instead, K is non-Archimedean, an ellipsoid about Ku1 is the
projectivisation of

"

v P V : |v1| ě max
2ďiďd

pai|vi|q

*

The vector spaces u1 ‘ ui are the axes of the ellipsoid and the size of the axis
u1 ‘ ui is 1{ai. We need the following covering lemma.

Lemma 3.7. Let E be an ellipsoid with axis of size 1 ě β2 ě . . . ě βd. For every
p P J2, dK, E can be covered by

22p

ˆ

β2 ¨ ¨ ¨βp´1

βp´2
p

˙dK

balls of radius
?
dβp.
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Proof. We consider the affine chart of PpV q corresponding to u1 “ 1. The ellipsoid
E is contained in the product of the balls t|vi| ď βiu Ă K (it agrees with such
product if K is non-Archimedean). If K is Archimedean, the ball t|vi| ď βiu is

contained in the union of
Q

βi
βp

UdK
balls of radius βp. Since the product of d balls of

radius βp is contained in a ball of radius
?
dβp we obtain that E can be covered by

R

β2

βp

VdK

¨ ¨ ¨

R

βp´1

βp

VdK

balls of radius
?
dβp.

If, instead, K is non-Archimedean, the ball t|vi| ď βiu can be decomposed in

q

Y

logqp
βi
βp
q

]

balls of radius βp, and hence E can be covered with

q

Y

logq

´

β2
βp

¯]

. . . q

Y

logq

´

βp´1
βp

¯]

balls of radius βp.
�

Proposition 3.8. Consider α ą 0. For every g P PGLpVKq one has that the image
of the corresponding Cartan’s basin of attraction g ¨ Ba1,αpgq is contained in the
ellipsoid about U1pgq with axes u1pgq ‘ uipgq of size

1

sinα

σi
σ1
pgq.

Proof. Assume first that K is Archimedean. By definition of Ba1,αpgq, for every
v P Kd with K ¨ v P Ba1,αpgq one has

|v1|
2 ě psinαq2

d
ÿ

1

|vi|
2,

where pv1, ¨ ¨ ¨ , vdq are the coefficients in the decomposition of v with respect to the
orthogonal splitting V “

À

g´1uipgq.
Since the coefficients wi of gv in the decomposition induced by the orthogonal

decomposition V “
À

uipgq satisfy |wi| “ σipgq|vi|, one has

|w1|
2 “ σ1pgq

2|v1|
2 ě σ1pgq

2psinαq2
d
ÿ

i“2

|vi|
2

“ σ1pgq
2psinαq2

d
ÿ

i“2

1

σipgq2
|wi|

2.

One concludes that gv lies on the corresponding ellipsoid. The non-Archimedean
case follows analogously. �

3.3. The lower bound on the affinity exponent. We now have all the ingre-
dients needed to prove Theorem 3.1:

Proof. For each T ą 0 denote by UT the covering of ξ1pBΓq given by Proposition 3.5.
By definition, U “ Uγ P UT is of the form ρpγq ¨ Ba1,αpρpγqq for some γ satisfying
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|γ| “ T. Proposition 3.8 applied to ρpγq implies that ρpγq ¨Ba1,αpρpγqq is contained
in an ellipsoid about Ku1pρpγqq of axes with sizes

1

sinα

σ2

σ1
pρpγqq, . . . ,

1

sinα

σd
σ1
pρpγqq.

Furthermore, since ρ is Anosov, we deduce from Lemma 2.2 that supUPUT diamU
is arbitrarily small as T goes to infinity. Recall that the s-capacity Hs was defined
by Equation (1.1). Applying the covering Lemma 3.7 to these ellipses and any
p P J2, dK, we obtain

HspξpBΓqq ď 22p

˜ ?
d

sinα

¸s

inf
T

ÿ

γ:|γ|ěT

ˆ

σ2

σ1

`

ρpγq
˘

¨ ¨ ¨
σp´1

σ1

`

ρpγq
˘

˙dK ˆσp
σ1

`

ρpγq
˘

˙s´dKpp´2q

.

By definition, the affinity exponent hAff
ρ is such that for all s ą hAff

ρ the broken
Dirichlet series

ÿ

γPΓ

ˆ

σ2

σ1

`

ρpγq
˘

¨ ¨ ¨
σp´1

σ1

`

ρpγq
˘

˙dK ˆσp
σ1

`

ρpγq
˘

˙s´dKpp´2q

: s P rdKpp´ 2q, dKpp´ 1qs

is convergent and thus for all s ą hAff
ρ we have

2p

˜ ?
d

sinα

¸s

inf
T

ÿ

γ:|γ|ěT

ˆ

σ2

σ1

`

ρpγq
˘

¨ ¨ ¨
σp´1

σ1

`

ρpγq
˘

˙dK ˆσp
σ1

`

ρpγq
˘

˙s´dKpp´2q

“ 0.

As a result we conclude that for all s ą hAff
ρ the s-capacity HspξpBΓqq vanishes,

hence
hAff
ρ ě dimHffpξpBΓqq.

This completes the proof. �

The following generalization of Corollary 1.9 is also immediate:

Corollary 3.9. Let ρ : Γ Ñ PGLpVKq be projective Anosov. If dimHff

`

ξpBΓq
˘

ě

pp´ 1qdK, then
dimHffpξpBΓqq ď dKpp´ 1qhρpJ

u
p´1q.

Proof. Observe that, for every p with dKpp ´ 1q ď hAff
ρ , and for every s P rdKpp ´

1q, dKps, the broken Dirichlet series defining the affinity exponent

ΦAff
ρ psq “

ÿ

γPΓ

ˆ

σ2

σ1

`

ρpγq
˘

¨ ¨ ¨
σp
σ1

`

ρpγq
˘

˙dK ˆσp`1

σ1

`

ρpγq
˘

˙s´dKpp´1q

is smaller than or equal to the series associated to the unstable Jacobian

Φ
Jup´1
ρ psq “

ÿ

γPΓ

ˆ

σ2

σ1

`

ρpγq
˘

¨ ¨ ¨
σp
σ1

`

ρpγq
˘

˙
s

dKpp´1q

.

The result follows as Φ
Jup
ρ psq ď Φ

Jup´1
ρ psq. �

4. Semi-simple algebraic groups

Let G be a connected semi-simple K-group, GK the group of its K-points, A a
maximal K-split torus and XpAq the group of its K˚-characters. Consider the real
vector space E˚ “ XpAqbZ R and E its dual. For every χ P XpAq, we denote by χω

the corresponding linear form on E.
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4.1. Restricted roots and parabolic groups. Let Σ be the set of restricted
roots of A in g, the set Σω is a root system of E˚. Let Σ` be a system of positive
roots and Π the associated subset of simple roots. Let E` be the Weyl chamber
determined by the positive roots pΣωq`.

Let W be the Weyl group of Σ, it is isomorphic to the quotient of the normalizer
NGK

pAKq of AK in GK by its centralizer ZGK
pAKq. Let i : E Ñ E be the opposition

involution: if u : E Ñ E is the unique element in the Weyl group with upE`q “ ´E`

then i “ ´u.
A subset θ Ă Π determines a pair of opposite parabolic subgroups Pθ and P̌θ

whose Lie algebras are defined by

pθ “
à

aPΣ`Yt0u

ga ‘
à

aPxΠ´θy

g´a,

and

p̌θ “
à

aPΣ`Yt0u

g´a ‘
à

aPxΠ´θy

ga.

The group P̌θ is conjugated to the parabolic group Pi θ. Let

lθ “ pθ X p̌θ

be the Lie algebra of the associated Levi group.
The K-flag space associated to θ is FθpGKq “ GK{Pθ,K, the GK orbit of the

pair prPθ,Ks, rP̌θ,Ksq is the unique open orbit for the action of GK in the product

FθpGKq ˆ Fi θpGKq. This orbit is denoted by F
p2q
θ pGKq.

For y P Fi θpGKq denote by

Annpyq “ tx P FθpGKq : px, yq R FθpGKq
p2qu (4.1)

the closed submanifold of flags in FθpGKq that are not transverse to y.
Denote by p¨, ¨q a W -invariant inner product on E, p¨, ¨q the induced inner product

on E˚ and define

xχ, ψy “
2pχ, ψq

pψ,ψq

and let tωauaPΠ be the dual basis of Π, i.e. xωa, by “ δab. The linear form ωa is the
fundamental weight associated to a.

4.2. Cartan decomposition. Let ν : AK Ñ E be defined, for z P AK, as the
unique vector in E such that for every χ P XpAq one has

χωpνpzqq “ log |χpzq|.

Denote by A`K “ ν´1pE`q.
Let K Ă GK be a compact group that contains a representative for every element

of the Weyl group W. This is to say, such that the normaliser NGK
pAKq verifies

NGK
pAKq “ pNGK

pAKq X KqAK. One has GK “ KA`KK and if z, w P A`K are such
that z P KwK then νpzq “ νpwq. There exists thus a function

a : GK Ñ E`

such that for every g1, g2 P GK one has that g1 P Kg2K if and only if apg1q “ apg2q.
It is called the Cartan projection of GK.

In the case of GK “ PGLpVKq this is nothing but the ordered list of semihomotecy
ratioes defined in Section 2.1.
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4.3. Representations of GK. Let Λ : G Ñ PGLpV q be a finite dimensional ra-
tional3 irreducible representation and denote by φΛ : g Ñ slpV q the Lie algebra
homomorphism associated to Λ. Then the weight space associated to χ P XpAq is
the vector space

Vχ “ tv P V : φΛpaqv “ χpaqv @a P AKu

and if Vχ ‰ 0 then we say that χω P E˚ is a restricted weight of Λ. Theorem 7.2 of
Tits [44] states that the set of weights has a unique maximal element with respect
to the order χ ě ψ if χ´ψ is positive on E`. This is called the highest weight of Λ
and denoted by χΛ.

Definition 4.1. Let θΛ be the set of simple roots a P Π such that χΛ ´ a is still a
weight of Λ.

Remark 4.2. The subset θΛ is the subset of simple roots such that the following
holds: Consider a P Σ`, n P g´a and v P χΛ, then φΛpnqv “ 0 if and only if
a P xΠ´ θΛy.

Definition 4.3. We denote by } }Λ a good norm on V invariant under ΛK and
such that ΛAK consists on semi-homotecies, if K is Archimedean the existence of
such a norm is classical, if K is non-Archimedean then this is the content of Quint
[38, Théorème 6.1].

For every g P GK one has

log }Λg}Λ “ χΛpapgqq. (4.2)

If g “ kgzglg with k, l P K and zg P A`K then for all v P Λpl´1
g qVχΛ one has

}Λgpvq}Λ “ }Λg}Λ}v}Λ.
Denote by WχΛ

the ΛAK-invariant complement of VχΛ
. Note that the stabilizer

in GK of WχΛ
is P̌θ,K, and thus one has a map of flag spaces

pξΛ, ξ
˚
Λq : F

p2q
θΛ
pGKq Ñ G

p2q
dimVχΛ

pV q. (4.3)

This is a proper embedding which is an homeomorphism onto its image. Here

G
p2q
dimVχΛ

pV q is the open PGLpVKq-orbit in the product of the Grassmannian of

pdimVχΛq-dimensional subspaces and the Grassmannian of pdimV ´ dimVχΛq-
dimensional subspaces.

One has the following proposition by Tits (see also Humphreys [30, Chapter
XI]).

Proposition 4.4 (Tits [44]). For each a P Π there exists a finite dimensional
rational irreducible representation Λa : G Ñ PSLpVaq, such that χΛa is an integer
multiple of the fundamental weight ωa and dimVχΛa

“ 1. All other weights of Λa

are of the form

χa ´ a´
ÿ

bPΠ

nbb,

where nb P N.

We will fix from now on such a set of representations and call them, for each
a P Π, the Tits representation associated to a.

3i.e. a rational map between algebraic varieties.
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4.4. The center of the Levi group Pθ,K X P̌θ,K. We now consider the vector
subspace

Eθ “
č

aPΠ´θ

ker aω

together with the unique projection πθ : E Ñ Eθ, that is invariant under the
subgroup Wθ of the Weyl group spanned by reflections associated to roots in Π´θ:

Wθ “ tw PW : wpvq “ v @v P Eθu.

The dual space pEθq
˚ is canonically the subspace of E˚ of πθ-invariant linear

forms and it is spanned by the fundamental weights of roots in θ

pEθq
˚ “ tϕ P E˚ : ϕ ˝ πθ “ ϕu “ xωa : a P θy.

Since π2
θ “ πθ, the pre-composition with πθ induces a projection E˚ Ñ pEθq

˚

denoted by

ϕ ÞÑ ϕθ :“ ϕ ˝ πθ.

The following examples will be relevant in Section 7 and 8 respectively:

Example 4.5. Let GK “ PGLpVKq, consider p P J2, d´2K and let θ “ ta1, ap, ad´1u,
so that

Eθ “ tpa1, . . . , adq P E : a2 “ ¨ ¨ ¨ “ ap and

ap`1“ ¨ ¨ ¨ “ ad´1u

is three dimensional. Using the fact that the fundamental weights ωi (for i “
1, p, d´ 1) belong to pEθq

˚ one checks that the projection is

ε1pπθpaqq “ a1,

εipπθpaqq “
a2 ` ¨ ¨ ¨ ` ap

p´ 1
“
ωp ´ ω1

p´ 1
paq for every i P J2, pK,

εipπθpaqq “
ap`1 ` ¨ ¨ ¨ ` ad´1

d´ p´ 1
“
ωd´1 ´ ωp
d´ p´ 1

paq for every i P Jp` 1, d´ 1K,

εdpπθpaqq “ ad.

One has then that

aθp “
ωp ´ ω1

p´ 1
´
ωd´1 ´ ωp
d´ p´ 1

and that aθp|E`´t0u ě ap|E`´t0u.

Example 4.6. Consider the group SOpp, qq of transformations in PSLp`qpRq pre-
serving a signature pp, qq bilinear form with p ă q. One has that

E “ tpa1, . . . , apq : ai P Ru

equipped with the root system

Σω “ tεi : i P J1, pKu Y ta ÞÑ ai ´ aj : i, j P J1, pKu.

A Weyl chamber can be chosen as

E` “ ta P E : ai ě ai`1 @i P J1, p´ 1K and ap ě 0u

and the associated set of simple roots

Π “ tai : i P J1, p´ 1Ku Y tεpu.
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Consider then θ “ tai : i P J1, p ´ 1Ku, so that Eθ “ ker εp and thus ai P pEθq
˚ for

i P J1, p´ 2K. Moreover,
aθp´1 “ εp´1

and one has that aθp´1|E`´t0u ě ap´1|E`´t0u.

4.5. Gromov product. Recall from S. [42] that the Gromov product4 based at K
is the map

p¨|¨qK : F
p2q
θ pGKq Ñ Eθ

defined to be the unique vector px|yqK P Eθ such that

χappx|yqKq “ ´ log sin >} }Λa
pξΛax, ξ

˚
Λa
yq

for all a P θ, where χa is the fundamental weight associated to the Tits representa-
tion Λa of a. Note that

max
aPθ

χappx|yqKq “ max
aPθ

|χappx|yqKq| “ ´ log min
aPθ

sin >} }Λa
pξΛax, ξ

˚
Λa
yq. (4.4)

On has the following remark from Bochi-Potrie-S. [6].

Remark 4.7 ([6, Remark 8.11]). Let Λ : G Ñ PGLpV q be a finite dimensional

rational irreducible representation, if px, yq P F
p2q
θΛ
pGKq then

pξΛx|ξ
˚
Λyq} }Λ “ χΛppx|yqKq.

where } }Λ denotes the (stabilizer of the) inner product on V such that ΛK is
orthogonal (see Definition 4.3).

4.6. Iwasawa cocycle and its relation to representations of G. Another im-
portant decomposition of Lie groups that will play a role in our work is the Iwasawa
decomposition:

GK “ KAKUΠ,K,

where PΠ,K is the minimal parabolic subgroup, and UΠ,K is its unipotent radical.
For general local field K the decomposition of an element is not necessarily unique,
but if z1, z2 P AK are such that z1 P Kz2UΠ,K, then νpz1q “ νpz2q.

Quint used the Iwasawa decomposition to define the Iwasawa cocycle

bΠpg, xq “ νpzq

where x “ krPθ,Ks P FθpGKq with k P K, g P GK and gk has Iwasawa decomposition
gk “ lzu

Quint [40] proves the following lemma.

Lemma 4.8 (Quint [40, Lemmas 6.1 and 6.2]). The map pθ ˝ bΠ factors trough a
map bθ : GK ˆ FθpGKq Ñ Eθ. The map bθ verifies the cocycle relation: for every
g, h P GK and x P Fθ,KpGKq one has

bθpgh, xq “ bθpg, hxq ` bθph, xq.

One also has the following behavior of bθ under the representations of G.

Lemma 4.9 (Quint [40, Lemma 6.4]). Let Λ : G Ñ PGLpV q be a proximal irre-
ducible representation, then for every x P FθΛpGKq and g P GK one has

χΛ

`

bθΛpg, xq
˘

“ log
}Λpgqv}Λ
}v}Λ

,

where v P ξΛpxq ´ t0u.

4This is the negative of the defined in S. [42].
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4.7. Cartan attractors and Cartan’s attracting basins. Consider g P GK and
let g “ kgzglg be a Cartan decomposition. Given θ Ă Π, the Cartan attractor of g
in FθpGKq is defined by

Uθpgq “ UKθ pgq “ kgrPθ,Ks,

and the Cartan basin of g is defined, for α ą 0, by

Bθ,αpgq “ tx P FθpGKq :
`

x|Ui θpg
´1q

˘

K
ă αu.

Remark 4.10. If Λ : G Ñ PGLpV q is a rational irreducible representation with
θΛ Ă θ then

ξΛpUθpgqq “ U
} }Λ
dimVχΛ

`

Λpgq
˘

.

Notice that the flag Uθpgq is an arbitrary choice of a “most expanding” flag of
type θ for g, however, it is clear from the definition that given α ą 0 there exists a
constant Kα such that if y P FθpGKq belongs to Bθ,αpgq then for all a P θ one has

|χa

`

apgq ´ bθpg, yq
˘

| ď Kα. (4.5)

4.8. The PSLdpKq case. Given a good norm τ on Kd, and considering the exterior
power representations of PSLdpKq, one sees that Lemma 4.9 provides the following
computation for the Iwasawa cocycle b : PSLdpKq ˆ FpKdq Ñ E associated to
a maximal compact group stabilizing τ. For p P J1, dK and given g P PSLdpKq,
x P FpKdq one has

ωppbpg, xqq “ log
}gv1 ^ ¨ ¨ ¨ ^ gvp}

}v1 ^ ¨ ¨ ¨ ^ vp}
(4.6)

where tv1, . . . , vpu is any basis of the p-dimensional space xp of x and } } is the
norm on ^pKd induced by τ .

Notice that, by definition, the number ωppbpg, xqq only depends on xp, so in
order to simplify notation we will also denote it by ωppbpg, x

pqq.

5. Patterson-Sullivan measures in non-Anosov directions

An interesting quantity associated to a discrete subgroup Γ ă GK is its critical
exponent hXΓ which measures the exponential orbit growth rate of orbit points in
balls (in the symmetric space of GK) as the radius grows. The theory of Quint’s
growth indicator function, which we briefly recall in Section 5.1 allows to deduce
information on hXΓ from information on the critical exponent of linear forms φ on
the Weyl chamber E, that are often easier to handle with the aid of Patterson-
Sullivan measures. When the discrete group Γ ă GK is the image of an Anosov
representation ρ : Γ Ñ GK, and the form φ belongs to the dual of the Levi-Anosov
subspace Eθρ , then the thermodynamical formalism applies (see the Theorem 5.12).

In this section we will, instead, be interested in studying forms φ that do not
belong to pEθρq

˚. Our main result is Theorem 5.14 in which we show that, provided
a representation ρ is Anosov with respect to some root, the existence of Patterson-
Sullivan measure in any flag manifold, and thus also in non-Anosov directions φ,
have strong implications on the critical exponent of φ.
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5.1. Quint’s growth indicator. We recall here some definitions from Quint [39,
40].

Let Γ Ă GK be a discrete subgroup, its Quint growth indicator function [39]
ΨΓ : E` Ñ R` Y t´8u is defined as follows. Given a norm } } on E and an open

cone C Ă E` let h
} }

C be the critical exponent of the Dirichlet series

s ÞÑ
ÿ

gPΓ:apgqPC

e´s}apgq}

and define ΨΓ : E` Ñ t´8u Y r0,8q by

ΨΓpvq “ }v} inf
vPC

h
} }

C ,

where the infimum is taken over all open cones containing v. One can easily check
that ΨΓ does not depend on the chosen norm } } and is 1-positively-homogenous.

Dually one considers the growth on linear forms. The limit (or Benoist [4]) cone
LΓ of Γ is defined as the limit points of sequences tnapgnq where ptnqnPN Ă R`
converges to 0 and pgnqnPN Ă Γ. Denote its dual cone by

pLΓq
˚ “ tϕ P E˚ : ϕ|LΓ ´ t0u ě 0u,

and, for ϕ P pLΓq
˚ let hΓpϕq be the critical exponent of the Dirichlet series

ÿ

gPΓ

e´sϕ
`

apgq
˘

,

that is

hΓpϕq “ lim sup
tÑ8

1

T
log #tγ P Γ|ϕ

´

a
`

ρpγq
˘

¯

ă tu.

One has the following.

Lemma 5.1. It holds

hΓpmintφ1, . . . , φkuq “ maxthΓpφ1q, . . . , hΓpφkqu.

Proof. One inequality is clear. For the other one, one has

hΓpmintφ1, . . . , φkuq ď limtÑ8
1
t log

k
ÿ

i“1

#tγ P Γ|φipapρpγqqq ă tu

ď limtÑ8
1
t log kmaxi #tγ P Γ|φipapρpγqqq ă tu

“ maxthΓpφ1q, . . . , hΓpφkqu

�

One can then define the subset

DΓ “ tϕ P pLΓq
˚ : hΓpϕq P p0, 1su.

The next lemma is clear from the definitions, but is very useful in applications:

Lemma 5.2. If φ belongs to DΓ, then φ` ψ P DΓ for every ψ P pLΓq
˚.

The following result from Quint [39] allows to deduce information on te critical
exponent of various norms in terms of growth of linear functions, that are often
easier to compute:
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Proposition 5.3 (Quint [39]). One has that

DΓ “ tϕ P E˚ : @v P E` ϕpvq ě ΨΓpvqu,

and thus it is a convex set. Moreover, for any 1-positively-homogenous function
Θ : E` Ñ R the critical exponent hΓpΘq of the Dirichlet series

s ÞÑ
ÿ

gPΓ

e´sΘ
`

apgq
˘

can be computed as hΓpΘq “ sup
vPE`

ΨΓpvq

Θpvq
.

The importance of the set DΓ is provided by the following theorem: it is possible
to compute the orbit growth rate with respect to various norms studying properties
of the set DΓ:

Theorem 5.4 (Quint [39]). If the Zariski closure of Γ is semi-simple then ΨΓ is
concave, consequently for every norm } } on E one has

h
} }

Γ “ inft}ϕ}˚ : ϕ P DΓu

where } }˚ is the induced operator norm on E˚.

Remark 5.5. Recall that, if we endow the symmmetric space (or the affine build-
ing) X associated to GK with a GK-invaraint Riemannian metric, there exists an
Euclidean norm } }X on E such that for every g P GK one has

dXprKs, grKsq “ }apgq}X .

Theorem 5.4 provides then the following formula for the critical exponent of a
discrete group with reductive Zariski-closure in the symmetric space X:

hXΓ “ inft}φ}˚X : φ P DΓu.

The topological boundary QΓ of DΓ will be called Quint’s indicator set of Γ. We
will also denote by

QΓ,θ “ QΓ X pEθq
˚.

Let us record here a useful direct consequence of the convexity of DΓ.

Lemma 5.6. Let Γ Ă GK be a discrete subgroup and let φ, ϕ P pLΓq
˚, then

hΓpφ` ϕq ď
hΓpφqhΓpϕq

hΓpφq ` hΓpϕq

We end this subsection with the following definition from Quint [40].

Definition 5.7. Given θ Ă Π and ϕ P pEθq
˚ a pΓ, ϕq-Patterson-Sullivan measure

on FθpGKq is a finite Radon measure µ such that for every g P Γ one has

dg˚µ

dµ
pxq “ e´ϕ

`

bθpg
´1,xq

˘

.
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5.2. Anosov representations with values in GK. Let Γ be a discrete group and
fix θ Ă Π.

Definition 5.8. A representation ρ : Γ Ñ GK is θ-Anosov if there exist constants
c ě 0 and µ ą 0 such that for every γ P Γ and a P θ one has

a
´

a
`

ρpγq
˘

¯

ě µ|γ| ´ c.

If ρ : Γ Ñ GK is θ-Anosov and Λa is as in Proposition 4.4, then Λaρ : Γ Ñ
PGLpVKq is projective Anosov. In particular subsection 2.2 applies to arbitrary GK
and one obtains the following result.

Theorem 5.9 (Kapovich-Leeb-Porti [32]). If ρ : Γ Ñ GK is θ-Anosov then Γ is
word-hyperbolic and there exist continuous equivariant maps ξθρ : BΓ Ñ FθpGKq

and ξi θ
ρ : BΓ Ñ Fi θpGKq such that the product map pξθρ , ξ

i θ
ρ q : Bp2qΓ Ñ F

p2q
θ pGKq is

transverse.

We will sometime use the notation introduced in [36] and, if x P BΓ is a point,
denote by

xθρ :“ ξθρpxq P FθpGKq

the image of x via the boundary map. If θ “ taku consists of a single root we will

also write ξkρ and xkρ instead of ξ
taku
ρ and x

taku
ρ .

If θ Ă Π contains the root a, we denote by πa : FθpGKq Ñ FapGKq the natural
projection. It is easy to deduce from Corollary 3.4 the following more general
statement:

Corollary 5.10. Let ρ : Γ Ñ GK be a-Anosov and consider α ą 0. There exists C
only depending on α and ρ such that for every θ Ă Π containing a, if

ξa
ρpBΓq X πa

´

ρpγq ¨Bθ,αpρpγqq X ρpηq ¨Bθ,αpρpηqq
¯

‰ H

then

dpγ, ηq ď
ˇ

ˇ|γ| ´ |η|
ˇ

ˇ` C.

Definition 5.11. Given a representation ρ : Γ Ñ GK we define its Anosov-Levi
space as pEθρq

˚ where

θρ “ ta P Π : ρ is a-Anosovu.

It is spanned by the fundamental weights tωa : a P θρu.

A more precise description of the indicator set of ρ can be given on its Anosov-
Levi space. The following is a combination of Bridgeman-Canary-Labourie-S. [8,
Theorem 1.3], Potrie-S. [35, Proposition 4.11] and S. [41].

Theorem 5.12. Let ρ : Γ Ñ GK be a representation, then QρpΓq,θρ is an analytic
co-dimension 1 embedded sub-manifold of pEθρq

˚ that varies analytically with ρ;
moreover its restriction to the dual of the vector space spanned by the periods is
strictly convex.
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5.3. When some wall is not attained. The purpose of this subsection is to
explore QρpΓq in directions that are not controlled by the roots with respect to
which ρ is Anosov.

Definition 5.13. Let ρ : Γ Ñ GK be an a-Anosov representation. Consider θ Ă Π
with a P θ and let µϕ be a

`

ρpΓq, ϕ
˘

-Patterson-Sullivan measure on FθpGKq for some
ϕ P pEθq

˚. We say that ρ is µϕ-irreducible if for every y P Fi θpGKq one has

µϕ
`

Annpyq
˘

ă µϕ
`

FθpGKq
˘

.

It is clear that if ρpΓq is Zariski dense in GK then it is µϕ-irreducible for any
Patterson-Sullivan measure. Even assuming Zariski-density, the following result is
a refinement of Quint [40, Théorème 8.1] when θ contains a root with respect to
which ρ is Anosov. Indeed, in the general case treated by Quint, one needs to
control the mass of shadows on the flag space associated to Π´ θ, and, as a result,
the existence of a pρpΓq, ϕq-Patterson Sullivan measure only ensures that ϕ` ρθc is
in DρpΓq, where ρθc is a suitable form that is non-negative on the Weyl chamber.
In our case, the Anosov condition with respect to one root in θ permits to control
ϕ directly.

Theorem 5.14. Let ρ : Γ Ñ GK be an a-Anosov representation. Consider θ Ă Π
with a P θ and let µϕ be a

`

ρpΓq, ϕ
˘

-Patterson-Sullivan measure on FθpGKq for some
ϕ P pEθq

˚. Assume ρ is µϕ-irreducible, then

ϕ P DρpΓq.

The rest of the section is devoted to the proof of this result. We begin with the
following lemma from Quint [40]. Quint assumes that the representation is Zariski
dense, an hypothesis that is too strong for the appliations we have in mind. We
observe however that for the proof to work only µϕ-irreducibility is needed. We
sketch the proof for completeness.

Lemma 5.15 ([40, Lemme 8.2]). Let ρ : Γ Ñ GK be a representation, µϕ be a
`

ρpΓq, ϕ
˘

-Patterson-Sullivan measure on FθpGKq. Assume ρ is µϕ-irreducible, then
there exists α0 ą 0 such that for every given 0 ă α ă α0 there exist k ą 0 only
depending on α, such that for every γ P Γ one has

k´1e´ϕ
`

apρpγqq
˘

ď µϕ
´

ρpγqBθ,αpρpγqq
¯

ď ke´ϕ
`

apρpγqq
˘

.

Proof. Observe that µϕ-irreducibility guarantees that there exist α, k ą 0 such that
for every γ P Γ, µφpBθ,αpρpγqqq ě k: indeed otherwise there would be a sequence of
reals αn Ñ 0 and elements γn P Γ with µφpBθ,αnpρpγnqqq ď 1{n. We can assume,
up to extracting a subsequence, that the complement of Bθ,αnpρpγqq converges to
Annpyq for some y P Fi θ, and this contraddicts µϕ-irreducibility.

The result then follows from the definition of pρpΓq, φq-Patterson-Sullivan mea-
sure using Equation (4.5). �

The rest of the proof of Theorem 5.14 is similar to the argument showing that
if there exists a Patterson-Sullivan density of a given exponent, then this exponent
must be greater than the critical exponent (see for example Sullivan [43] and Quint’s
notes [37, Theorem 4.11]):
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Proof of Theorem 5.14. We have to show that for every s ą 0 one has

ÿ

γPΓ

e´p1`sqϕ
`

apρpγqq
˘

ă 8.

Corollary 5.10 implies that given α ą 0 there exists N P N, such that if t ą 0 and

Γt “ tγ P Γ : t ď |γ| ď t` 1u,

then for every x P BΓ one has

#
!

γ P Γt : π´1
a pξa

ρpxqq X ρpγqBθ,αpρpγqq ‰ H
)

ď N,

Lemma 5.15 now yields for every t ě 0

8 ą µϕ
´

π´1
a

`

ξa
ρpBΓq

˘

¯

ě C
ÿ

γPΓt

e´ϕ
`

apρpγqq
˘

, (5.1)

where C is independent of t. This is to say, there exists K ą 0 independent of
t P R` such that

ÿ

γPΓt

e´ϕ
`

apρpγqq
˘

ă K.

Since ϕ P pLρpΓqq
˚ and ρ is a-Anosov there exist positive δ, δ1 and C such that

ϕ
`

apρpγqq
˘

ě δ1a
`

ρpγq
˘

ě δ|γ| ´ C.

One concludes that for every s ą 0 one has

ÿ

γPΓ

e´p1`sqϕ
`

apρpγqq
˘

ď

8
ÿ

n“0

ÿ

γPΓn

e´ϕ
`

apρpγqq
˘

e´sapρpγqq

ď KeC
8
ÿ

n“0

e´δsn ă 8,

as desired.
�

6. Anosov representations with Lipschitz limit set

In this section we will prove Theorem A. We will hence fix some notation through-
out this section.

Assumption 6.1. The group Γ will be a word-hyperbolic group whouse boundary
BΓ is homeomorphic to a sphere of dimension dΓ. We will also fix a projective
Anosov representation ρ : Γ Ñ PSLdpRq such that the sphere ξ1

ρpBΓq is a Lipschitz

submanifold of PpRdq, i.e. it is locally the graph of a Lipschitz map. Note that we
have restricted ourselves to K “ R.
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6.1. The p-th Jacobian. Given a line ` contained in a p`1-dimensional subspace
V of Rd, the space of infinitesimal deformations of ` inside V

T`PpV q Ă T`PpR
dq

carries a natural volume form induced by the choice of a scalar product τ on
Rd. Namely, if one considers the τ -orthogonal decomposition V “ ` ‘ `KV , then
one canonically identifies T`PpV q “ homp`, `KV q and thus one can define Ω`,V P

^ppTlPpV qq by

Ω`,V pϕ1, . . . , ϕpq “
v ^ ϕ1pvq ^ ¨ ¨ ¨ ^ ϕppvq

}v}p`1

for any v P `´ t0u.

Definition 6.2. The linear form Jup P pEta1,ap`1uq
˚ defined by

Jup “ pp` 1qω1 ´ ωp`1

is called the p-th unstable Jacobian.

Lemma 6.3. Given g P PSLdpRq and a partial flag p`, V q P Fta1,ap`1upR
dq, one has

g˚Ωg`,gV “ exp
´

´ Jup
`

bta1,ap`1upg, p`, V qq
˘

¯

Ω`,V .

Proof. This is an explicit computation using equation (4.6) and the definition of
Ω`,V .

Indeed, whenever ϕ1, . . . , ϕp P homp`, `KV q are linearly independent, the vectors
tv, ϕ1pvq, ¨ ¨ ¨ , ϕppvqu form a basis of V and thus:

g˚Ωg`,gV pϕ1, . . . , ϕpq “ Ωg`,gV pgϕ1, . . . , gϕpq

“
gv ^ pgϕ1qpgvq ^ ¨ ¨ ¨ ^ pgϕpqpgvq

}gv}p`1

“
gv ^ gpϕ1pvqq ^ ¨ ¨ ¨ ^ gpϕppvqq

}gv}p`1

“
gv ^ gpϕ1pvqq ^ ¨ ¨ ¨ ^ gpϕppvqq

v ^ ϕ1pvq ^ ¨ ¨ ¨ ^ ϕppvq

v ^ ϕ1pvq ^ ¨ ¨ ¨ ^ ϕppvq

}v}p`1

}v}p`1

}gv}p`1

“ exp
`

ωp`1pbta1,ap`1upg, V qq ´ pp` 1qω1pbta1,ap`1upg, `qq
˘

Ω`,V .

�

6.2. Existence of a JudΓ
-Patterson-Sullivan measure. Let us prove the follow-

ing proposition.

Proposition 6.4. Under assumption 6.1, there exists a pρpΓq, JudΓ
q-Patterson-Su-

llivan measure on Fta1,adΓ
u.

Proof. It follows from Rademacher’s theorem [17, Theorem 3.2] that ξ1
ρpBΓq has

a well defined Lebesgue measure class (cfr. [19, Section 3.2]), and that Lebesgue
almost every point ξ1

ρpxq P ξ
1
ρpBΓq has a well defined tangent space, this defines a

dΓ ` 1 dimensional vector subspace xdΓ`1
ρ P FtadΓ`1upR

dq such that

Tξ1
ρpxq

`

ξ1
ρpBΓq

˘

“ hompξ1
ρpxq, x

dΓ`1
ρ {ξ1

ρpxqq. (6.1)
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Consider the ρ-equivariant measurable map ζρ : ξ1
ρpBΓq Ñ Fta1,adΓ`1upR

dq defined

by

ζρpξ
1
ρpxqq “ pξ

1
ρpxq, x

dΓ`1
ρ q. (6.2)

We can then define a volume form on ξ1
ρpBΓq via

ξ1
ρpxq ÞÑ Ωζρpξ1

ρpxqq
.

This form is defined Lebesgue almost everywhere and thus defines a Lebesgue mea-
sure on ξ1

ρpBΓq, which we will denote by νρ. Lemma 6.3 implies directly that the
push-forward pζρq˚νρ is the desired measure. �

6.3. When BΓ is a circle. Recall from the introduction that we say that ρ is
weakly irreducible if the vector space span

`

ξ1
ρpBΓq

˘

is the whole space.

Lemma 6.5. Under assumption 6.1 together with weakly irreducibility of ρ and
dΓ “ 1, one has that ρ is µϕ-irreducible for any pρpΓq, ϕq-Patterson-Sullivan mea-
sure on Fta1,a2upR

dq whose projection is absolutely continuous with νρ.

Proof. If this were not the case, there would exist pW0, P0q P Ftad´2,ad´1upR
dq such

that AnnpW0, P0q would have full µϕ-mass; as ρ is projective Anosov we can further-
more assume that P0 “ ξd´1

ρ pxq for some x P BΓ and thus the condition ξ1
ρpyq Ă P0

only occurs for y “ x.
Hence, since the projection of µϕ is absolutely continuous w.r.t. to νρ one has

that for µϕ-almost every ξ1
ρpxq P ξ

1
ρpBΓq the vector space x2

ρ from subsection 6.2
intersects W0.

Let us choose a scalar product τ on Rd, and the induced distance function of
PpRdq. Let us denote by rW0s the quotient vector space Rd{W0, it is a 2-dimensional
vector space and every line ` R W0 defines a line r` ‘W0s in rW0s. Moreover, for
every δ ą 0 the double quotient projection

π :
 

` P PpRdq : >τ p`,W0q ą δ
(

Ñ P
`

rW0s
˘

,

defined by πp`q “
“

r`‘W0s
‰

, is Lipschitz.

We denote by Uδ Ă ξ1
ρpBΓq the relative open subset defined by

Uδ “ t` P ξ
1
ρpBΓq : >τ p`,W0q ą δu

and consider the Lipschitz map π|Uδ : Uδ Ñ PprW0sq. Since, by assumption, for
µϕ-almost every ξ1

ρpxq P ξ
1
ρpBΓq the plane x2

ρ intersects W0, one concludes from
equation (6.1) that π|Uδ has zero derivative νρ-almost everywhere.

Since Lipschitz maps are absolutely continuous, and in particular satisfy the
fundamental theorem of calculus, we deduce that π|ξ1

ρpBΓq is constant. This implies
that

ξ1
ρpBΓq ĂW0 ‘ ξ

1
ρpxq,

for any x P BΓ, which contradicts the weak irreducibility assumption. �

We can now prove Theorem A when dΓ “ 1:

Corollary 6.6. Let Γ be a word-hyperbolic group such that BΓ is homeomorphic
to a circle. Let ρ : Γ Ñ PGLdpRq be a weakly irreducible a1-Anosov representation
such that ξ1

ρpBΓq is a Lipschitz curve. Then

a1 P QρpΓq.
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Proof. Note that a1 “ Ju1 is the first unstable Jacobian. Since ξ1
ρpBΓq is a Lipschitz

circle, it has Hausdorff dimension 1 and thus Corollary 1.9 implies that ha1
ρ ě 1.

On the other hand, Lemma 6.4 provides a pρpΓq, Ju1 q-Patterson-Sullivan measure
µJu1 on Fta1,a2upVRq that projects to the Lebesgue measure on ξ1

ρpBΓq. Since ρ is

weakly irreducible, Lemma 6.5 implies that it is µJu1 -irreducible, thus Theorem
5.14 applies to give

a1 “ Ju1 P DρpΓq,

this is to say hρpa1q ď 1 which concludes the proof.
�

Before proceeding to arbitrary dΓ let us record a direct consequence of Corollary
6.6. Let us say that ρ is coherent if the first root arising in span

`

ξ1
ρpBΓq

˘

is a1.

Corollary 6.7. Let Γ be a word-hyperbolic group such that BΓ is homeomorphic to
a circle. Let ρ : Γ Ñ GK be an a-Anosov representation and assume there exists
proximal, real representation Λ : GK Ñ PGLpVRq with first root a, such that Λ ˝ ρ is
coherent, then

a P QρpΓq.

6.4. When BΓ has arbitrary dimension. Recall that a subgroup Γ Ă PGLpVKq
is strongly irreducible if any finite index subgroup acts irreducibly. It is well known
that this is equivalent to the fact that the connected component of the identity of
the Zariski closure of Γ acts irreducibly on Kd.

We will need the following lemma (that does not require assumption 6.1).

Lemma 6.8. Let η : Γ Ñ PGLdpRq be a strongly irreducible a1-Anosov representa-
tion. Assume that there exists p P J1, d´ 1K and a measurable η-equivariant section
ζ : BΓ Ñ Fta1,apupR

dq. Then η is µϕ-irreducible for any pρpΓq, ϕq-Patterson-Sullivan

measure on FθpK
dq.

Proof. Otherwise we would be able to find a subspace W0 P Ftad´pupR
dq such that

for almost every5 ξ1
ρpxq P ξ

1
ρpBΓq one has ζpxqpXW0 ‰ t0u. Since ζ is η-equivariant,

we would find a p-dimensional subspace V such that for every γ P Γ,

ηpγqV XW0 ‰ t0u.

This implies that for every g in the Zariski closure of ηpΓq it holds that dim gV X
W0 ě 1. The contradiction comes from Labourie [33, Proposition 10.3] stating that
the identity component of such a Lie group cannot act irreducibly. �

We can now prove Theorem A for arbitrary dΓ.

Corollary 6.9. Under assumption 6.1 together with strong irreducibility of ρ one
has

JudΓ
P QρpΓq.

Proof. Since ξ1
ρpBΓq is a Lipschitz sphere, it has Hausdorff dimension dΓ and thus

Corollary 1.9 implies that hρpJ
u
dΓ
q ě 1. Lemma 6.4 guarantees the existence of a

pρpΓq, JudΓ
q-Patterson-Sullivan measure. Moreover, the equivariant map from equa-

tion (6.2) allows us to apply Lemma 6.8 and thus we are in the hypothesis of
Theorem 5.14, consequently hρpJ

u
dΓ
q ď 1, which concludes the proof. �

5with respect to the pushed forward measure π˚µϕ, where π : Fta1,apupR
dq Ñ PpRdq consist

con forgetting the p-th coordinate,
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7. p1, 1, pq-hyperconvex representations and a C1-dichotomy for
surface groups

In this section we will consider projective Anosov representations whose image
of the boundary map is a C1 submanifold. In the second part of the section we will
prove Corollary 1.8 providing a a C1-dichotomy for surface groups.

7.1. (1,1,p)-hyperconvex representations.

Definition 7.1. A ta1, apu-Anosov representation ρ : Γ Ñ PGLdpRq is p1, 1, pq-
hyperconvex if, for every pairwise distinct x, y, z P BΓ, the sum

ξ1pxq ` ξ1pyq ` ξd´ppzq

is direct.

Example 7.2. Examples of Zariski dense hyperconvex representations can be
obtained by deforming Sk ˝ ι, where Sk denotes the k-th symmetric power and
ι : Γ Ñ POp1, pq is the inclusion of a co-compact lattice, see P.-S.-W. [36, Corollary
7.6].

Hyperconvex representations were introduced by Labourie [33] for surface groups
and further studied by Zhang-Zimmer [45] when the boundary of Γ is a topologi-
cally a sphere and by P.-S.-W. [36] for arbitrary hyperbolic groups. In both [36,
Proposition 7.4] and [45, Theorem 1.1] one finds the following result.

Theorem 7.3 (P.-S.-W. and Zhang-Zimmer). Assume that BΓ is topologically a
sphere of dimension p ´ 1 and let ρ : Γ Ñ PGLdpRq be a p1, 1, pq-hyperconvex
representation. Then ξ1

ρpBΓq is a C1-sphere.

Theorem A then gives:

Corollary 7.4. Assume that BΓ is topologically a sphere of dimension p´1 and let
ρ : Γ Ñ PSLdpRq be strongly irreducible and p1, 1, pq-hyperconvex. Then hρpJ

u
pq “ 1.

Remark 7.5. This generalizes Potrie-S. [35, Corollary 7.1]. Observe however that,
since the limit set ξ1pBΓq is a C1-submanifold of PpRdq, the arguments of [35] adapt
directly to give a version of Corollary 7.4 without requiring strong irreducibility.

Glorieux-Monclair-Tholozan [22] recently showed the following.

Theorem 7.6 (Glorieux-Monclair-Tholozan [22]). Let ρ : Γ Ñ PGLdpRq be an
a1-Anosov representation that preserves a propery convex domain, then

2hρpω1 ` ωd´1q ď dimHff

`

pξ1, ξd´1qpBΓq
˘

,

where pξ1, ξd´1q : BΓ Ñ PpRdq ˆ P
`

pRdq˚
˘

.

As an application of Corollary 7.4 we show that, for p1, 1, pq-hyperconvex repre-
sentations with p ă d´ 1 such bound can never be acheived (note that we do not
require the representation to preserve a convex set):

Proposition 7.7. Assume that BΓ is topologically a sphere of dimension p´ 1 and
let ρ : Γ Ñ PGLdpRq be strongly irreducible and p1, 1, pq-hyperconvex. If p ă d ´ 1,
then

2hρpω1 ` ωd´1q ă p1´ εqpp´ 1q,

where ε ą 0 only depends on the ta1, apu-Anosov constants of ρ.
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Proof. Since p ă d´ 1 the functional φ P E˚

φ “
ωp ´ ω1

p´ 1
´
ωd´1 ´ ω1

d´ 2

is non-zero, moreover observe that, for every v P E` one has

φpvq ě

ˆ

d´ p´ 1

d´ 2

˙

appvq.

Since ρ is ap-Anosov, the last computation implies that kerφX LρpΓq “ t0u this
is to say that φ P pLρpΓqq

˚, in particular φ has a well defined entropy hρpφq P p0,8q.
Moreover,

hρ

ˆ

p´ 1

d´ 2
ppd´ 1qω1 ´ ωd´1q

˙

“ hρ
`

Jup´1 ` pp´ 1qφ
˘

(7.1)

ď
hρpφq

hρpφq ` p´ 1
, (7.2)

where the equality comes from the equality between the corresponding linear forms
and the inequality follows from Lemma 5.6 together with Corollary 7.4 stating that
hρpJ

u
p´1q “ 1.

Finally, observe that

pp´ 1q

2
pω1 ´ ωd´1q “

1

2

´p´ 1

d´ 2
ppd´ 1qω1 ´ ωd´1q `

p´ 1

d´ 2
ppd´ 1qωd´1 ´ ω1q

¯

“
1

2

`

Jup´1 ` pp´ 1qφ`
`

Jup´1 ` pp´ 1qφ
˘

˝ i
˘

,

where i : E Ñ E is the opposition involution. Together with equation 7.1 and
Lemma 5.6, this yields

2

pp´ 1q
hρpω1 ´ ωd´1q ď 2

hρ
`

Jup´1 ` pp´ 1qφ
˘

hρ
`

pJup´1 ` pp´ 1qφq ˝ i
˘

hρ
`

Jup´1 ` pp´ 1qφ
˘

` hρ
`

pJup´1 ` pp´ 1qφq ˝ i
˘

ď hρ
`

Jup´1 ` pp´ 1qφ
˘

ď
hρpφq

hρpφq ` p´ 1
ă 1,

since entropy is i-invariant.
To conclude the proof we observe that the functional φ belongs to the Anosov-

Levi space of every ta1, apu-Anosov representation, its entropy thus varies continu-
ously (Theorem 5.12) and hence

η ÞÑ
hηpφq

hηpφq ` p´ 1

is bounded away from 1 on compact subsets of Xta1,apu

`

Γ,PGLdpRq
˘

.
�

C1-dychotomy. Now we prove Corollary 1.8. As we will later see (Section 9 and
Section 10) there are many projective Anosov representations of surface groups
where the image of the boundary map is Lipschitz. However, when we embed the
surface group into PSL2pRq and look small deformations of representations

Γ Ñ PSL2pRq Ñ PSLdpRq,
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where the PSL2pRq representation satisfies additional proximality assumptions, then
the image of the boundary map is never Lipschitz. We restate the dichotomy for
the reader’s convenience.

Corollary 7.8. Let Λ : PSL2pRq Ñ PSLdpRq be a (possibly reducible) proximal
representation such that ^2Λ is also proximal. Let S be a closed connected surface
of genus ě 2 and let ρ0 : π1S Ñ PSL2pRq be discrete and faithful. Then we have
the following dichotomy:

i) If the top two weights spaces of Λ belong to the same irreducible factor, then
for every small deformation ρ : π1S Ñ PSLdpRq of Λρ0 the curve ξ1

ρpBπ1Sq

is C1.
ii) Otherwise, for every weakly irreducible small deformation ρ : π1S Ñ PSLdpRq

of Λρ0 the curve ξ1
ρpBπ1Sq is not Lipschitz.

Proof. By the proximality assumptions on Λ, the representation

ρ :“ Λρ0 : π1S Ñ PSLdpRq

is ta1, a2u-Anosov.
Furthermore, if the first two weights of Λ belong to the same irreducible fac-

tor, the representation ρ is also p1, 1, 2q-hyperconvex, this is an open property in
X
`

π1S,PSLdpRq
˘

(P.-S.-W [36]) and thus Theorem 7.3 implies that every small

deformation of ρ has C1 limit set.
If, instead, the two top weights of Λ were belonging to different irreducible factors,

then it follows from the representation theory of SLp2,Rq that

hρpa1q “ hρpJ
u
1 q “ 2.

Note that the entropy if Ju1 is continuous on Xta1,a2u

`

π1S,PSLdpRq
˘

(Theorem 5.12),
in particular there exists a neighborhood U of ρ such that hηpJ

u
1 q ą 1 for every

η P U. Theorem A implies that no weakly irreducible representation in U can have
Lipschitz limit set. �

Along the same lines we can deduce that some natural Anosov representations
of hyperbolic lattices do not have Lipschitz boundary maps:

Corollary 7.9. Let Γ ă POp1, nq be a lattice, n ě 3 and ρ1 : Γ Ñ POp1,mq
strictly dominated by the lattice embedding ρ0. Then for any Zariski dense small
deformation of ρ0 ‘ ρ

n´1
1 , the limit set ξ1

ρpBΓq is not Lipschitz.

Examples of lattices Γ admitting such representations were constructed by Danciger-
Gueritaud-Kassel [15, Proposition 1.8].

8. Hp,q convex-cocompact representations

Generalizing work of Mess [34] and Barbot-Mérigot [2], Danciger–Guéritaud–
Kassel [16] introduced a class of representations called Hp,q-convex cocompact.
These form another interesting class of representations with Lipschitz boundary
map where Theorem A apply.

Let d “ p ` q with p, q ě 1 and let Q be a symmetric bilinear form on Rd of
signature pp, qq. The subspace of PpRdq consisting on negative definite lines is called
the pseudo-Riemannian hyperbolic space and denoted by

Hp,q´1 “ t` P PpRdq : Q|`´t0u ă 0u.
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The cone of isotropic lines is usually denoted by BHp,q´1.
Instead of the original definition of convex-cocompactness, we recall the charac-

terization given by [16, Theorem 1.11].

Definition 8.1. An a1-Anosov representation ρ : Γ Ñ POpp, qq is Hp,q´1-convex
cocompact if for every pairwise distinct triple of points x, y, z P BΓ, the restriction
Q|ξ1

ρpxq‘ξ
1
ρpyq‘ξ

1
ρpzq

has signature p2, 1q.

When Γ0 is a cocompact lattice in SOpp, 1q, Hp,1-convex cocompact represen-
tations of Γ0 are usually referred to as AdS-quasi-Fuchsian groups. Barbot [3]
proved that these groups form connected components of the character variety
X
`

Γ0,SOpp, 2q
˘

only consisting of Anosov representations. In [21] Glorieux-Monclair

prove that the limit set of an AdS-quasi-Fuchsian group is never a C1-submanifold,
except for Fuchsian groups.

The following is well known and easy to verify, see for example Glorieux-Monclair
[20, Proposition 5.2].

Proposition 8.2. Assume that BΓ is homeomorphic to a p´1-dimensional sphere.
If ρ : Γ Ñ POpp, qq is Hp,q-convex cocompact, then ξ1

ρpBΓq is a Lipschitz submanifold

of BHp,q´1.

Proof. The space BHp,q´1 admits a twofold cover that splits as the product Sp´1ˆ

Sq´1. It is furthermore immediate to verify that, since for every pairwise distinct
triple px, y, zq P BΓ, Q|ξ1

ρpxq‘ξ
1
ρpyq‘ξ

1
ρpzq

has signature p2, 1q, each one of the two lifts

of ξ1
ρpBΓq to Sp´1 ˆ Sq´1 is the graph of a 1-Lipschitz function f : Sp´1 Ñ Sq´1,

and, as such, is a Lipschitz submanifold of BHp,q´1. �

Theorem A then yields:

Corollary 8.3. Assume that BΓ is homeomorphic to a p ´ 1-dimensional sphere
and let ρ : Γ Ñ POpp, qq be Hp,q´1-convex cocompact, then

- if p “ 2 and ρ is weakly irreducible then hρpJ
u
1 q “ 1,

- if p ě 3 and ρ is strongly irreducible then hρpJ
u
p´1q “ 1.

One concludes the following upper bound for the entropy of the spectral radius
inspired by Glorieux-Monclair [20].

Corollary 8.4. Assume that BΓ is homeomorphic to a p ´ 1-dimensional sphere
and let ρ : Γ Ñ POpp, qq be Hp,q´1-convex cocompact. Then

- if p “ 2 and ρ is weakly irreducible then hρpω1q ď 1,
- for p ě 3 and ρ strongly irreducible, hρpω1q ď p´ 1.

Proof. Assume first p ď q and note that for every g P POpp, qq one has

ωp ´ ω1pλpgqq “ λ2pgq ` ¨ ¨ ¨ ` λppgq ě 0.

By definition, Jup´1 “ pω1 ´ ωp and thus

hρpω1q

p´ 1
“ hρ

`

pp´ 1qω1

˘

ď hρpJ
u
p´1q “ 1,

by Corollary 8.3. The only difference in the case q ă p is that Jup´1 “ pω1 ´ ωq,
but the same argument applies verbatim. �
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The entropy for the first fundamental weight has a particular meaning for pro-
jective Anosov representations into POpp, qq, notably for q ě 2. Fix o P Hp,q´1 and
consider

So “ tW ă Rd : o ĂW, dimW “ q and Q|W is negative definiteu.

This is a totally geodesic embedding of the symmetric space Xp,q´1 of POpp, q´ 1q
in the symmetric space Xp,q.

Given a projective Anosov representation ρ : Γ Ñ POpp, qq one defines the open
subset of Hp,q´1

Ωρ “ to P H
p,q´1 : Qpo, ξ1

ρpxqq ‰ 0@x P BΓu.

Carvajales [12] shows that, assuming Ωρ ‰ H, for every o P Ωρ one has

lim
tÑ8

log #tγ P Γ : dXp,q pS
o, ρpγqSoqu

t
“ hρpω1q

and provides an asymptotic for this counting function ([12, Theorem A]).
When ρ is moreover Hp,q´1-convex-cocompact, Glorieux-Monclair [20, Section

1.2] introduce a pseudo-Riemannian critical exponent δρ, and show, in particular,
that

δρ ď p´ 1

([20, Theorem 1.2]). Carvajales proves [12, Remarks 6.9 and 7.15] that δρ “ hρpω1q

so Corollary 8.4 provides a different proof of [20, Theorem 1.2] when Γ is assumed
to have boundary homeomorphic to a p´ 1-dimensional sphere.

We finish the section with a direct application of Theorem 5.4 and Corollary 8.3
allowing us to get a bound for the Riemannian critical exponent. We use freely the
notation from Remark 5.5.

Consider a representation Λ : POpp, 1q Ñ POpp, qq such that its imagie stabilizes
a p ` 1-dimensional subspace V of Rd where Q|V has signature pp, 1q. Endow the
symmetric space Xp,q with a POpp, qq-invariant Riemannian metric such that the
totally geodesic copy of Hp in Xp,q induced be Λ has constant curvature ´1. In
particular, if ι : Γ Ñ POpp, 1q is the lattice embedding, hXΛ˝ι “ p ´ 1. We show
that this is an upper bound for any strongly irreducible, Hp,q´1-convex-cocompact
representation:

Proposition 8.5. Assume that BΓ is homeomorphic to a p´ 1-dimensional sphere
and let ρ : Γ Ñ POpp, qq be strongly irreducible and Hp,q´1-convex-cocompact and,
then

hXρ ď p´ 1.

Proof. In view of Theorem 5.4 (or more precisely Remark 5.5), it suffices to recall
that DρpΓq is convex (Lemma 5.3) and that, by Corollary 8.3,

Jup´1 P QρpΓq.

See Potrie-S. [35, Section 1.1] for more details. �

9. Maximal Representations

An important class of representations that are in general only Anosov with re-
spect to one maximal parabolic subgroup, but admit boundary maps with Lipschitz
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image are maximal representations into Hermitian Lie groups. In this case the Lip-
schitz property for the image of the boundary map is a consequence of a positiv-
ity/causality property of the boundary map. We first describe the causal structure
on the Shilov boundary of a Hermitian symmetric space of tube type, introduce the
notion of a positive curve and show that the image of any positive curve (that is not
necessarily equivariant with respect to a representation) is a Lipschitz submanifold.
We then show how this applies to maximal representations and allows us to prove
Theorem 9.8, the main result of this section. We also deduce consequences for the
orbit growth rate on the symmetric space.

9.1. Causal structure and positive curves. Let GR be a simple Hermitian Lie
group of tube type. Examples to keep in mind are the symplectic group GR “
Spp2n,Rq or the orthogonal group GR “ SO0p2, nq. The Shilov boundary Š of
the bounded domain realization of the symmetric space associated to GR is a flag
variety GR{P̌ , where P̌ is a maximal parabolic subgroup determined by a specific
simple root tǎu. In the two cases that serve as our main examples, GR “ Spp2n,Rq
and GR “ SO0p2, nq, the parabolic subgroup P̌ in question is, respectively, the
stabilizer of a Lagrangian subspace L P L pR2nq and the stabilizer of an isotropic
line l P Is1pR

2,nq, so that ǎ “ an, resp. ǎ “ a1.
In general, for a simple Hermitian Lie group of rank n, there is a special set of

n strongly orthogonal roots b1, ¨ ¨ ¨ bn of the complexification gC, see [29, p.582-583].
The set of strongly orthogonal roots give rise to a (holomorphic) embedding of a
maximal polydisk. If the symmetric space is of tube type, the simple root ǎ is the
smallest strongly orthogonal root ǎ “ bn. All the other strongly orthogonal roots
are of the form bi “ bn ` ϕ, where ϕ P E˚ is non-negative on the Weyl-chamber.
We record the following for later use:

Lemma 9.1. Let a P E` then ǎpaq “ min
i“1,...,n

bipaq.

For Hermitian groups of tube type, the Shilov boundary carries a natural causal
structure: for every p P Š there is an open convex acute cone Cp Ă TpŠ which we
now define.

Recall that GR{P̌ can be identified as the space of parabolic subgroups of GR
that are conjugate to P̌ . Let us fix a point p̌ “ P̌ P Š, which one should think of as
a point at infinity. Then at any point p “ P P Š that is transverse to p̌, i.e. such
that the parabolic groups P and P̌ are opposite, the tangent space TpŠ is identified

with the Lie algebra ň of the unipotent radical of P̌ , and the cone Cp is an open

convex acute cone Č Ă ň invariant under the action of the connected component of
P X P̌ .

In the case of Spp2n,Rq this is the cone of positive definite symmetric matrices,
and in the case of SO0p2, nq it is the cone of vectors with positive first entry,
that are positive for the induced conformal class of Lorentzian inner products on
TP Is1pR

2,nq.
This invariant cone Č Ă ň in fact also gives rise to the notion of maximal triples

in Š via the exponential map. A triple pP,Q, P̌ q is said to be maximal if there
exists an s P Č such that Q “ exp s ¨P . Extending this by the action of G leads to
a notion of maximal triples in Š, which actually coincides exactly with those triples
which have maximal (generalized) Maslov index as introduced by Clerc-Ørsted [13].
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Definition 9.2. Let Š be the Shilov boundary of a Hermitian symmetric space of
tube type. A curve ξ : S1 Ñ Š is positive if the image of any positively oriented
triple is a maximal triple.

Proposition 9.3. Let ξ : S1 Ñ Š be a positive curve. Then ξpS1q is a Lipschitz
submanifold of Š.

Proof. Note that whenever we pick two points p1 “ P1, p2 “ P2 on the image of ξ,
the image ξpS1q can be covered by the two charts consisting of parabolic subgroups
that are transverse to p1 respectively p2.

In any of these charts the inverse image of ξ, under the exponential map

ni Ñ GR{Pi
s ÞÑ exppsqP̌j

gives a map ξ : RÑ ni such that for every t1 ă t2 we have ξpt2q´ξpt1q is contained
in the open convex acute cone Č, it then follows (see for example Burger-Iozzi-
Labourie-W. [9, Lemma 8.10]) that the restriction of ξ to any bounded interval has
finite length. As a result ξpS1q Ă Š is rectifiable. It is thus possible to reparametrize
S1 so that ξ is a Lipschitz map.

�

Remark 9.4. Note that we did not assume that the positive map is equivariant
with respect to a representation. This will be important in Section 10, where we
will apply Proposition 9.3 in this generality.

9.2. Maximal representations. Let now G denote an Hermitian semisimple Lie
group and let Γ denote the fundamental group of a closed hyperbolic surface S.
We consider representations ρ : Γ Ñ G that are maximal, i.e. they maximize the
Toledo invariant, whose definition was recalled in the introduction. Important for
us is that they can be characterized in terms of boundary maps by the following
theorem.

Theorem 9.5 (Burger-Iozzi-W. [10, Theorem 8]). A representation ρ : Γ Ñ G
is maximal if and only if there exists a continuous, ρ-equivariant, positive map
φ : BΓ Ñ Š.

In order to apply Corollary 6.7 we need to verify some weak irreducibility as-
sumption. Let us first treat the case when the Zariski closure of ρpΓq is simple.

Corollary 9.6. Let G be a simple Hermitian Lie group of tube type and let ǎ be the
root associated the Shilov boundary of G. If ρ : Γ Ñ G is a Zariski-dense maximal
representation then

ǎ P QρpΓq,

this is to say, hρpǎq “ 1.

Proof. Follows from Corollary 6.7 and Proposition 9.3 by considering the represen-
tation Λǎ from Proposition 4.4. �

In the remainder of this section we show how the case of maximal represen-
tations with semi-simple target group that are not necessarily Zariski-dense, can
be reduced to Corollary 9.6. To this aim, we will use a result from Burger-Iozzi-
W. [11] describing the Zariski closure H of a maximal representation: H splits as
H1 ˆ ¨ ¨ ¨ ˆHn, each factor is Hermitian, and the inclusion in H Ñ G is tight. In the
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following we will not need the definition of a tight homomorphism, and therefore
refer the interested reader to [11, Definition 1] for it.

The following lemma will then be useful:

Lemma 9.7. Let G be a classical simple Hermitian Lie group of tube type and
consider a tight embedding ι : H “ H1ˆ¨ ¨ ¨ˆHn Ñ G. If we denote by ι˚ : E`H Ñ E`G
the induced map, then

ǎG ˝ ι˚ “ min
i

ǎHi .

Proof. Denote by π : h1 ‘ ¨ ¨ ¨ ‘ hn Ñ g the associated Lie algebra homomorphism.
Let Ei be a Cartan subspace of Hi and EG a Cartan subspace of G such that
πpEiq Ă EG.

As ι is tight, and G is classical, the classification of Hamlet-Pozzetti [28] applies
and gives that we have an orthogonal decomposition EG “ B1 ‘ ¨ ¨ ¨ ‘ Bk so that
π|
À

Ei is a direct sum of maps πi : Ei Ñ Bi; furthermore, there are only few
possibilities for the linear map πi: if Hi has rank greater than one, then Bi “ Emii
for some mi and πi is a diagonal inclusion; instead, if Ei is one dimensional, or
equivalently Hi – PSL2pRq, then πi is induced from a direct sum of non-trivial
irreducible representations (of varying degrees). It is easy to check that the subspace
Bi is then the span of the real vectors in p associated to the strongly orthogonal roots
that do not vanish on πpEiq. Setting bi “ minj,bj |Ei‰0

bj , we have bi|πpEiq “ ǎHi .

And hence, with Lemma 9.1, we have ǎG “ minipǎHiq.
�

We can now prove the following:

Theorem 9.8. Let G be a Hermitian semi-simple Lie group such that all factors
of G that are of tube type are classical. Let θ Ă ∆ be the subset of simple roots
associated to the Shilov boundary of G. Then for every maximal representation
ρ : Γ Ñ G one has

θ Ă QρpΓq.

Proof. If G “ G1ˆ¨ ¨ ¨ˆGn then Š “ Š1ˆ¨ ¨ ¨ˆ Šn, and therefore θ “ tǎG1
, ¨ ¨ ¨ ǎGnu

(see Burger-Iozzi-W. [11, Lemma 3.2 (1)]). Furthermore ρ : Γ Ñ G is maximal if
and only if all ρi : Γ Ñ Gi are maximal (Burger-Iozzi-W. [10, Lemma 6.1 (3)]).
Therefore we can restrict to the case that G is simple.

Since every maximal representation factors through a representation into the
normalizer of a maximal tube type subgroup H ă G (Burger-Iozzi-W. [10, Theorem
5 (3)]), which is simple, has the same rank as G, and is such that ǎG “ ǎH, we can
restrict to the tube type case as the limit set in ŠG is contained in ŠH and coincides
with the limit set in ŠH. The maximal tube type domains are always classical
Hermitian symmetric spaces, except for the one exceptional Hermitian symmetric
space of tube type.

If now ρ is not Zariski dense, then the Zariski closure is reductive and of tube
type, so it is of the form H1 ˆ ¨ ¨ ¨ ˆ Hn and the representations into Hi are Zariski
dense and maximal. Therefore we have hρpǎHiq “ 1 for all i. As the inclusion
H1ˆ ¨ ¨ ¨ ˆHn Ñ G is tight, the result follows from Lemma 9.7 and Lemma 5.1. �

9.3. Application to the Riemannian critical exponent. Any simple Hermit-
ian Lie group G admits a diagonal embedding ι∆ : SLp2,Rq Ñ G, which is equi-
variant with the inclusion of a diagonal disk in a maximal polydisk. We say that a
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representation ρ : Γ Ñ G is diagonal-Fuchsian if it has the form ρ “ ι∆ ˝ ρ0 where
ρ0 : Γ Ñ SLp2,Rq is the lift of the holonomy of a hyperbolization.

Let K∆ ă G be the centralizer of the image of ι∆, which is compact. Then
a diagonal Fuchsian representation ρ can be twisted by a representation χ : Γ Ñ
K∆. We call the corresponding representation ρχ : Γ Ñ G a twisted diagonal
representation. Observe that the Riemannian critical exponent hX is constant on
twisted diagonal representations (the exact value hXdiag depends on the choice of the

normalization of the Riemannian metric)

Proposition 9.9. Let Γ be the fundamental group of a closed surface and let ρ :
Γ Ñ G be a maximal representation, then hXρ ď hXdiag.

Proof. Let b1, ¨ ¨ ¨ bn be the set of strongly orthogonal roots for GC. It is immediate
to verify that the limit cone Lρ0pΓq of a representation ρ0 in the Fuchsian locus is

concentrated in the span of the vertex of the Weyl chamber is
řn
i“1 b˚i , where b˚ is

the basis of E dual to tb1 ¨ ¨ ¨ bnu. We know from Corollary 9.6 that, for every ρ, the
growth rate hρpǎq “ 1. Thus, if we denote by pE`q˚ the cone of functionals that are
non-negative on the Weyl chamber, we get that ǎ`pE`q˚ Ă DρpΓq, and in particular
all the strongly orthogonal roots are in DρpΓq. A simple computation shows that the

affine simplex determined by the strongly orthogonal roots meets the ray R
řn
i“1 bi

orthogonally in a point (it is just the diagonal in a positive quadrant meeting the
span of the basis vectors), whose norm has to compute the Riemannian orbit growth
rate of any representation ρ0 in the Fuchsian locus: Qρ0pΓq is the affine hyperplane

orthogonal to R
řn
i“1 bi that contains ǎ. Remark 5.5 concludes the proof. �

Remark 9.10. Note that when G is Spp4,Rq, or more generally SO˝p2, nq, it fol-
lows from Collier-Tholozan-Toulisse [14] that the bound is furthermore rigid: the
equality is strict unless ρ is equal to ρ0 up to a character in the compact centralizer
of its image.

Note that for maximal representations into Spp2n,Rq n ě 3, every connected
component of the space of maximal representations contains a twisted diagonal
representation. However for Spp4,Rq there are exceptional components, discovered
by Gothen, where every representation is Zariski dense (see Bradlow-Garcia-Prada-
Gothen [7] and Guichard-W. [25]). In these components it is easy to verify that the
bound we provide is sharp, despite not being acheived.

In the special case of the Hitchin component of Spp2n,Rq, the bound of Proposi-
tion 9.9 is never attained, as the irreducible representations provide a better bound
that is furthermore rigid (Potrie-S. [35]).

10. θ-positive representations

Throughout this section we will write

G “ SOpp, qq

with p ă q. We consider the subset θ “ ta1, . . . , ap´1u of the simple roots discussed
in Example 4.6 and denote by Pθ the corresponding parabolic group, by Lθ its Levi
factor and by Uθ its unipotent radical.

The group G admits a θ-positive structure as defined by Guichard-W. [27]. This
means that for every b P θ there exists an L0

θ-invariant sharp convex cone cb in

ub “
ÿ

aPΣ`θ , a“b mod SpanpΠ´θq

ga.
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Here Σ`θ “ Σ`zSpanpΠ´θq. For b P ta1, . . . , ap´2u, the space ub is one dimensional
and the sharp convex cone cb “ R` Ă R consists of the positive elements, while
uap´1 “ R

q´p`2 endowed with a form qJ of signature p1, q´ p` 1q preserved by the

action of L0
θ “ Rp´2 ˆ SO0

p1, q ´ p ` 1q. The cone cap´1
consists precisely of the

positive vectors for qJ whose first entry is positive.
Following [27, §4.3] we denote by W pθq the subgroup of the Weyl group W

generated by the reflections tσiu
p´2
i“1 together with the longest element σp´1 of the

Weyl group Wap´1,ap of the subroot system generated by the last two simple roots.

W pθq is, in our case, a Weyl group of type Bp´1. We denote by w0
θ the longest

element of W pθq, and choose a reduced expression w0
θ “ σi1 . . . σil . Of course every

reflection σi appears at least once among the σik . We consider the map

Fσi1 ...σil : c0ai1 ˆ . . .ˆ c
0
ail

Ñ Uθ
pv1, . . . , vlq ÞÑ exppv1q . . . exppvlq

The θ-positive semigroup U`θ is defined as the image of the map Fσi1 ...σil , and

doesn’t depend on the choice of the reduced expression [27, Theorem 4.5].
A θ-positive structure on G gives rise to the notion of a positive triple in G{Pθ.

A pairwise transverse triple pF1, F2, F3q P pG{Pθq
3 such that StabpF3q “ Pθ is θ-

positive if F2 “ u ¨ F1 for some u P U`θ [27, Definition 4.6], and more generally
a triple is θ-positive if it lies in the G-orbit of a θ-positive triple. Let now Γg be
the fundamental group of a hyperbolic surface. A representation ρ : Γg Ñ G is
θ-positive if there exists a ρ-equivariant map BΓg Ñ G{Pθ sending positive triples
to θ-positive triples [27, Definition 5.3]. Guichard-Labourie-W. show that every
θ-positive representation is necessarily θ-Anosov [27, Conjecture 5.4], but since
the proof did not yet appear in print, in this section we will freely add this last
assumption, and only discuss θ-positive Anosov representations.

Theorem 10.1. Let ρ : Γ Ñ SOpp, qq be θ-positive and θ-Anosov. For every
1 ď k ď p´ 2 the representation ^kρ is p1, 1, 2q-hyperconvex.

Proof. We denote by ξ : BΓg Ñ G{Pθ the θ-positive continuous equivariant bound-
ary map, and by ξi : BΓg Ñ IsipR

p,qq the induced maps. By assumption, ξpyq “
s ¨ ξpxq for some element s in the positive semigroup of the unipotent radical of
the stabilizer of ξpzq. In turn s “ exppv1q . . . exppvlq with vt P c

0
ait

(recall that

it P t1, . . . , p´ 1u.
We set d “ p ` q. It follows from [36, Proposition 8.11] that, in order to check

that ^kρ is p1, 1, 2q-hyperconvex, it is enough to verify that the sum

ξkρ pxq `
`

ξkρ pyq X ξ
d´k`1
ρ pzq

˘

` ξd´k´1
ρ pzq

is direct, or, equivalently that the sum

ξkρ pxq ` s ¨
`

ξkρ pxq X ξ
d´k`1
ρ pzq

˘

` ξd´k´1
ρ pzq

is direct (recall that s belongs to the stabilizer of ξρpzq). Without loss of generality
we can assume that the form Q defining the group SOpp, qq is represented by

Q “

¨

˝

0 0 K
0 J 0

p´1qpK 0 0

˛

‚
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with

K “

¨

˚

˝

0 0 1

0 . .
.

0
p´1qp 0 0

˛

‹

‚

and J “

¨

˝

0 0 p´1qp´1

0 ´Idq´p 0
p´1qp´1 0 0

˛

‚

We can furthermore assume that ξlpzq “ xe1, . . . , ely and ξlpxq “ xed, . . . , ed´l`1y,
so that ξkpxq X ξd´k`1pzq “ ed´k`1. In order to check that the representation
is p1, 1, 2q-hyperconvex, we only have to verify that, given s as above, writing s ¨
ed´k`1 “

ř

αiei, the coefficient αd´k never vanishes. But we claim that such
coefficient is just

ř

it“k
vt ą 0. Indeed, by construction, if vt P c0am with m P

t1, . . . , p´2u, then exppvtq P SOpp, qq differs from the identity only in the positions
pt, t`1q and pd´t, d´t`1q where it is equal to vt (cfr. [27, §4.5]), while if vt P c

0
ap´1

we have

exppvtq “

¨

˚

˚

˚

˚

˝

Idp´2 0 0 0 0
0 1 vt qJpvq 0
0 0 Idq´p`2 Jv 0
0 0 0 1 0
0 0 0 0 Idp´2

˛

‹

‹

‹

‹

‚

.

The result is then immediate. �

In particular we deduce from [36, Proposition 7.4] the following

Corollary 10.2. Let ρ : Γ Ñ SOpp, qq be θ-positive Anosov. For every 1 ď k ď p´2
the image of ξkρ pBΓq is a C1 submanifold of IskpR

p,qq.

We now turn to the proof of the last statement in Theorem 1.3. Instead of
directly verifying that the map ξp´1

ρ has Lipschitz image, we will study properties

of the map ξθ0ρ : BΓg Ñ G{Pθ0 where

θ0 “ tap´2, ap´1u.

The flag manifold G{Pθ0 consists of nested pairs of isotropic subspaces of dimension
p´ 2 and p´ 1.

Proposition 10.3. Let ρ : Γ Ñ SOpp, qq be θ-positive Anosov. The image of the
map ξθ0ρ : BΓg Ñ G{Pθ0 is a Lipschitz submanifold of G{Pθ0 .

Proof. We fix a point z P BΓ and we assume without loss of generality that ξkρ pzq “

xe1, . . . , eky. We denote by A Ă G{Pθ0 the set of points transverse to ξp´2,p´1
ρ pzq.

We will show that the image of ξθ0ρ |BΓztzu is a Lipschitz submanifold of A. Denote
by Ap´2 Ă G{Pap´2

the set of isotropic subspaces of dimension p´ 2 transverse to

ξp´2
ρ pzq “ xe1, . . . , ep´2y, by Zp´1 the pp´ 1q-isotropic subspace Zp´1 :“ ξp´1

ρ pzq “

xe1, . . . , ep´1y, and by ZKp´1 its orthogonal with respect to the form Q defining
SOpp, qq. Observe that we have a smooth map

A ÞÑ Ap´2 ˆ Is1pZ
K
p´2{Zp´2q

pYp´2, Yp´1q ÞÑ pYp´2, rYp´1 X Z
K
p´2sq

whose image is the product of Ap´2 with the set IZ of isotropic lines transverse
to the image of ZKp´1. Indeed for every pair pYp´2, vq P Ap´2 ˆ IZ , the subspace

v ` Zp´2 has dimension p´ 1 and, dim
`

pv ` Zp´2q X Y
K
p´2

˘

“ 1 as Y Kp´2 and Zp´2

are transverse. We then have Yp´1 “ Yp´2 ` ppv ` Zp´2q X Yp´2q.
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We denote by ξZ : BΓztzu Ñ IZ the composition of the map ξp´2,p´1 and the
projection to the second factor in the product decomposition. The form Q induces
a form of signature p2, q ´ p ` 2q on ZKp´2{Zp´2, which gives rise to the notion
of positive curves (as introduced in Section 9). We claim that ξZ is a positive
curve. This amounts to showing that, if px, y, zq P BΓ is positively oriented, then
ξZpyq “ sZξZpxq for some positive element sZ in the unipotent radical of the
stabilizer of rZp´1s P Is1pZ

K
p´2{Zp´2q. Since the representation ρ is θ-positive,

we know that ξpyq “ s ¨ ξpxq for some element in the positive semigroup U`θ ,
and, as in the proof of Proposition 10.1 we can write s “ exppv1q . . . exppvlq with
vt P c

0
ait

. Observe that, for every vt P c
0
βit

, exppvtq induces an element exppvtq
Z in

the unipotent radical of the stabilizer of rZp´1s P Is1pZ
K
p´2{Zp´2q, and the element

exppvtq
Z is trivial unless βit “ ap´1, in which case exppvtq

Z belongs to the positive
semigroup of the unipotent radical of the stabilizer of rZp´1s. As at least one of
the vt in the decomposition of s belongs to such subgroup, we deduce that ξZ
is positive, as we claimed. It follows from Proposition 9.3 that ξZpBΓztzuq is a
Lipschitz submanifold of Is1pZ

K
p´2{Zp´2q.

As we know from Proposition 10.1 that ξp´2 is a C1-curve, we deduce that the
curve ξp´2,p´1 is Lipschitz, being the image of a monotone map between a C1-
submanifold and a Lipschitz submanifold. This concludes the proof. �

10.1. The critical exponent on the symmetric space is rigid. Let ι2p´1 :
POp1, 2q Ñ POpp, p ´ 1q Ñ POpp, qq be the composition of the the irreducible
representation of dimension 2p´ 1 with the standard embedding of POpp, p´ 1q Ñ
POpp, qq. We call any representation ρ : Γ Ñ POpp, qq, which is the composition of
a Fuchsion representation with ι2p´1, a pp, p´ 1q-Fuchsian representation.

Lemma 10.4. Let ρ : Γ Ñ POpp, qq be θ-positive Anosov. The barycenter of the
affine simplex in E˚θ determined by ta1, . . . , ap´2, εp´1u belongs to DρpΓq,θ.

Proof. Recall that, in the case of θ-positive representations in POpp, qq, the Levi-
Anosov subspace is Eθ :“ kerpapq. In particular, for every k ď p ´ 2 we have that
ak belongs to the dual of Eθ, and belongs to the boundary of DρpΓq,θ by Corollary
10.2. Furthermore εp´1 “ ap´1 ` ap belongs to DρpΓq,θ being the sum of a linear
form with entropy one (the form ap´1 has entropy one by Proposition 10.3) and
a linear form positive on the Weyl chamber (the root ap). In particular the form
corresponding to the barycenter of the affine simplex they determine in E˚θ belongs
to DρpΓq,θ. �

Theorem 10.5. Let Γ be the fundamental group of a surface and let ρ : Γ Ñ

POpp, qq be θ-positive Anosov. Then hXρ ď hXρ0
for any pp, p ´ 1q-Fuchsian repre-

sentation ρ0.
If equality is achieved at a totally reducible representation η then η splits as

W ‘ V where

(i) W has signature pp, p ´ 1q and η|W has Zariski closure the irreducible
POp2, 1q in POpp, p´ 1q

(ii) η|V lies in a compact group.

Proof. The inequality follows from Lemma 10.4, together with convexity of DρpΓq,θ

established by Theorem 5.12.
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Assume now that η is a totally reducible representation such that equality holds.
We can assume that p ě 3, as the result for p “ 2 was proven by Collier-Tholozan-
Toulisse [14, Theorem 4].

Let G “ ηpΓq
Z

be its Zariski closure. By definition, G is a real reductive group.
We consider G as an abstract group, denote by Λ : G Ñ SOpp, qq the inclusion
representation, and by

φ : gÑ sopp, qq

the associated Lie algebra morphism. Denote by aG a Cartan subspace of g.
Since hXη attains it maximal value, Theorem 5.12 forces the Quint indicator set

QηpΓq,θ to be the affine hyperplane of pEθq
˚ spanned by ∆. The strict convexity

guaranteed by Theorem 5.12 implies that G has real rank at most 2. Moreover we
have that φpaGq “ xp2pp´ 1q, 2pp´ 2q, . . . , 2, 0q, p0, . . . , 0, 1qy.

Denote by T “ xξ1
ηpBΓqy the vector space spanned by the projective limit curve

of η. Since η is totally reducible, the action of ηpΓq, and hence that of G, on T is
irreducible.

Fix then a Weyl chamber a`G and let χ P a˚G be the highest weight of φpgq|T.
Since η is a1-Anosov, the attracting eigenvector of every element in ηpΓq, and hence
of every purely loxodromic element of G, belongs to V . We therefore conclude that
for every a P a`G

χpaq “ λ1

`

φpaq
˘

.

We denote by LG
η Ă a`G Benoist’s limit cone of ηpΓq in G. As the representation

η is a2-Anosov, and thus LG
η avoids the only wall not ortogonal to the kernel of a1,

there exists a linear form µ P a˚G such that for every a P LG
η one has

µpaq “ a1

`

λ
`

φpaq
˘˘

.

Furthermore, as η is p1, 1, 2q-hyperconvex, for every x P BΓ the 2-dimensional space
ξa2pxq lies in T , and therefore pχ ´ µqpaq “ λ2pφpaqq, which implies that µ is a
simple root, and χ “ pp´ 1qµ.

For a weight ψ of the representation φpgq|T or of an irreducible factor of φpgq|TK,
denote by V ψ the associated weight space. We obtain from the description of φpaGq

that the weight spaces V χ´iµ for i P J0, 2p´2K are also 1-dimensional and contained
in T. The weight space decomposition of T has thus the form

T “
2p´2
à

i“0

V χ´iµ ‘ V 0 ‘ V q ‘ V ´q,

where V 0 consists on vectors in the kernel of φpa`G q (except V χ´pp´1qµ) and V q

corresponds to the eigenvalue εp
`

λ
`

φpaq
˘˘

. Here, V 0 as well as V q and V ´q could

be instead contained in TK, and therefore not appear in the decomposition.
Let now W denote the Weyl group of g. As the weight lattice of η|T is W -

invariant, and there is no other weight of η|T at distance p ´ 1 from the origin,
we deduce that W is reducible, and g splits as g1 ` g2. If µ is the root associated
to g1 we deduce from the fact that V χ´µ and thus gµ is one dimensional that
g1 “ slp2,Rq. As the action of g1 and g2 commute, and the highest weight space
for the restricted action of g1 is one dimensional, we furthermore deduce that g2

acts trivially on T . In particular T is an irreducible slp2,Rq module of dimension
2p ´ 1 and the signature of TK of the pp, qq-quadratic form preserved by sopp, qq
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is thus either negative or p1, q ´ pq. In the first case we conclude that φpgq|TK is
compact. Which is the desired result.

In order to conclude the proof we need to exclude the second case. We know
from Theorem 10.1 that for every 1 ď k ď p´ 2 and for every distinct x, y, z P BΓ
the sum

ξkpxq `
`

ξkpyq X ξd´k`1pzq
˘

` ξd´k´1pzq

is direct. With an inductive argument we deduce that for every 1 ď k ď p´ 2, and
for every γ P Γ the k-th eigenline belongs to T , and therefore the Anosov map ξ
would be the boundary of a Fuchsian representation composed with an embedding
of POp1, 2q Ñ POpp´ 1, pq Ñ POpp, qq. However, such an embedding can never be
positive because it has non-compact centralizer. �
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[44] J. Tits. Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconqe.

J. reine angew. Math., 247:196–220, 1971. (Cited on page 18.)

[45] T. Zhang and A. Zimmer. Regularity of limit sets of Anosov representations. https://arxiv.

org/abs/1903.11021 2019. (Cited on pages 2 and 30.)

https://arxiv.org/abs/1606.05512
https://arxiv.org/abs/1809.10639
https://arxiv.org/abs/1809.10639
https://arxiv.org/abs/1902.01844
https://arxiv.org/abs/1412.6398
https://arxiv.org/abs/1412.6398
http://front.math.ucdavis.edu/1403.7671
https://arxiv.org/abs/1902.01303v2
http://www.math.u-bordeaux1.fr/~jquint/publications/courszurich.pdf
http://www.math.u-bordeaux1.fr/~jquint/publications/courszurich.pdf
https://arxiv.org/abs/1903.11021
https://arxiv.org/abs/1903.11021


45

Beatrice Pozzetti

Ruprecht-Karls Universität Heidelberg
Mathematisches Institut, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

pozzetti@uni-heidelberg.de

Andrés Sambarino

Sorbonne Université
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