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ANOSOV REPRESENTATIONS WITH LIPSCHITZ LIMIT SET

BEATRICE POZZETTI, ANDRES SAMBARINO, AND ANNA WIENHARD

ABSTRACT. We study Anosov representation for which the image of the bound-
ary map is the graph of a Lipschitz function, and show that the orbit growth
rate with respect to an explicit linear function, the unstable Jacobian, is in-
tegral. Several applications to the orbit growth rate in the symmetric space
are provided. We further study regularity of the limit curves of #-positive
representations as introduced by Guichard-W. [27].
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1. INTRODUCTION

Let T'  PGL4(R) be a discrete subgroup. Following Guivarc’h, Benoist [1] has
shown that if I contains a proximal element and acts irreducibly on R? then its
action on projective space P(R?) has a smallest closed invariant set. This is usually
called Benoist’s limit set or simply the limit set of I' on P(R?) and denoted by L.

In contrast with the negatively curved situation, the limit set of a subgroup I'
whose Zariski closure has rank > 2 need not be a fractal object. Examples of
this phenomena are provided, for example, by Benoist [5] in his work on strictly
convex divisible sets, showing that these groups have a C'-sphere as limit set, or
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by Labourie [33] where he proved that the limit set of a Hitchin representation is
a C'-curve. We refer the reader to P.-S.-W [36] and to Zhang-Zimmer [15] for new
examples of infinite co-volume Zariski-dense groups whose limit set is a proper C*
submanifold.

Intermediate phenomena can also ocur. The easiest example could be by consid-
ering two different hyperbolizations p,n : m1.5 — PSLy(R) of a closed surface S with
genus > 2. The limit set of the representation (p,n) : 7.5 — PSLy(R) x PSLy(R)
in 0H? x 0H? is a Lipschitz circle that is never C!. This Lipschitz property can be
easily deduced from the fact that the Holder map ¢ : 0H? — 0H? conjugating the
action p with 7 is order preserving.

This actually fits in the broader framework of what is now known as mazimal
representations, introduced in Burger-Iozzi-W. [10, Theorem 8]. These are a class
of representations of m1S into an Hermitian Lie group, that have mazimal Toledo
invariant, a notion that generalizes the characterization, proved by Goldman [23],
of the Teichmiiller space of S as those representation with maximal Euler number.

It is proved by Burger-Iozzi-Labourie-W. [9] that maximal representations have
Lipschitz limit set in the Shilov boundary of the target group (see Section 9 for
further detail).

The main object of this paper are discrete groups whose limit set is a Lipschitz
manifold, i.e. it is locally the graph of a Lipschitz map. The groups we will consider
verify a stronger form of “quasi-isometrically embedded”, called projective Anosov
which we now define.

Let 7 be an inner product on R? and for g € GL4(K) denote by

o1(g) = -+ = 04(g)

the singular values of g associated to 7, that is, the square roots of the eigenvalues
of gg*, where ¢g* is the adjoint operator of g. Given g € PGL4(K) one can consider
a lift g € GL4(K) with det g € {—1,1}, we define then o;(g) = 7:(g).

Let T be a finitely generated group, fix a finite symmetric generating set and
denote by || the associated word length on I'. Let p: I — PGL4(KK) be a homomor-
phism, then the following are equivalent:

i) There exist positive constants ¢, u such that for all v € T one has

02

o, (P0)) < ce M,

ii) The group I is hyperbolic and there exist equivariant maps
(&, €5) : 0T = P(RY) x P((RY)*)

such that for every x # y € oI one has ker £*(y)@&(x) = RY; and the bundle
over Ul whose fiber is (the induced on the quotient of) hom(&(x), ker £*(y))
is contracting for the associated canonical flat bundle automorphism.

If either condition is satisfied we will say that p is a projective Anosov represen-
tation.

Remark 1.1. The implication ii)=1) comes from Labourie [33] and Guichard-W.
[26]. The implication i)=ii) is due to Kapovich-Leeb-Porti [31], see also Guéritaud-
Guichard-Kassel-W. [24] and Bochi-Potrie-S. [6] for different approaches.
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Recall that if (ay,)nen © Ry is a sequence of positive numbers then the critical
exponent of the Dirichlet series
5 Z a,

is defined by
inf{s : Z a; < oo} = sup{s: Z a; =
neN neN
Inspired by Potrie-S. [35, Theorem B], the main purpose of this work is to prove
the following result, whose scope of application is considerable broader.

Theorem A. Let[ be a word-hyperbolic group such that oI is topologically a sphere
of dimension p. Let p : I — PSL4(R) be a strongly irreducible projective Anosov
representation such that £,(01) is locally the graph of a Lipschitz map. Then the

Dirichlet series .
Op+1
s ) ( p+f’ (p(v)))

el
has critical exponent equal to 1. Furthermore, if p = 1 the same holds replacing
strong irreducibility with weak irreducibility.

We say that a projective Anosov representation p is weakly irreducible if the
vector space span (gp(ar)) is R?. Let us introduce some more standard notation
before explaining some consequences of such equality.

Let E = {(a1,...,aq) € R?: Y, a; = 0} and fix p € [1,d]. Denote by &, € E* the
coordinate function e,(a) = a, and the pth-root a, = €, — €p41. Consider the set
of simple roots defined by Il = {ay : k € [1,d — 1]} and

*={acE:a1 > > a4}
the associated Weyl chamber. The Cartan projection a : PGLg(R) — E* is defined
by
a(g) = (logoi(g), ... ,logaa(g)),
note that this map depends on the choice of 7.
Consider a representation p : [ — PGL4(R), then the entropy of a given linear

form ¢ € E* is denoted by h,(¢) and is defined as the critical exponent of the
Dirichlet series

. Z e—w( p(7) ))
~yel
For each simple root a,, we denote the associated fundamental weight by

a) = Zai.

We introduce the pth-unstable Jacobian g, € E* defined by
az = (p + 1)w31 — Wapy1s
so that Theorem A states that if p is projective Anosov and &,(dl) is a Lipschitz
manifold of dimension p, then h,(d;;) = 1 (provided the corresponding irreducibility
assumptions hold).
We proceed to explain some applications of Theorem A before explaining the
main ideas of its proof.



Maximal representations. Let Gg be a Hermitian Lie group. By definition, its
symmetric space Xg, carries a Gg-invariant symplectic form 2. Given a closed genus
g = 2 surface and a representation p : m1S — Gg, its Toledo invariant is defined by

ﬂm=Lﬁm

for a(ny) p-equivariant map f : S — Xg,. It is proved by Burger-Tozzi-W. [10] that
| T(p)| < (29 — 2) rank(Gg). One says that p is mazimal if its Toledo invariant is
maximal in modulus.

We obtain the following entropy one result for maximal representations.

Theorem 1.2. Let Gg be a classical simple Hermitian Lie group of tube type. Let
p: T — Gg be a maximal representation, and let & denote the root associated to the
stabilizer of a point in the Shilov boundary of Gg. Then h,(a) = 1.

We give the precise linear form on E*, where we denote by e, € E* the k-th
coordinate function.

Target group | p : m1S — Gk maximal
Sp(2p, R) hp(2ep) =1

SUp.p) | hy(2,) = 1

SO*(4p) hp(2ep) = 1

S0Y(2,p) hy(e1r —e2) =1

Theorem 1.2 also holds for the exceptional Hermitian Lie group of tube type if
the respresentation is Zariski-dense, and we expect it to hold unconditionally. We
refer the reader to §9 for a slightly more general statement, further explanations
and consequences, in particular concerning a sharp upper bound on the exponential
orbit growth rate for the action on the symmetric space (see Proposition 9.9).

f-positive representations. In [27] Guichard-W. introduced the notion of -
positivity for a subset € of the simple roots of a real semisimple Lie group Gg,
and used such notion to define #-positive representations, a class of representations
that encompasses Hitchin representations, maximal representations and includes a
new class of representations into the group SO(p, ¢) of elements preserving a sym-
metric bilinear form @ of signature (p,q) in RPT9. The definition of positivity is
rather involved and we postpone it to §10. In that Section we prove the following
result:

Theorem 1.3. Let p: [ — SO(p, q) be a 6-Anosov representation that is 0-positive.
Then the images of the boundary maps £* : oF — ls(RP9) are C! submanifolds for
each 1 < k < p—1, and the image £P~1(0r) is Lipschitz.

We will prove the two parts of Theorem 1.3 separately, respectively in Corollary
10.2 and Proposition 10.3. Theorem A implies then the following:

Corollary 1.4. Let p: T — SO(p, q) be a 8-Anosov representation that is 0-positive
and weakly irreducible, then h,(ay) =1 for every k <p— 1.

Applying ideas from Potrie-S. [35], this corollary gives the following rigid upper
bound for the critical exponent of the action of a positive representation in the
symmetric space X, 4 of SO(p, q) (see Theorem 10.5). Endow X, , with a SO(p, ¢q)-
invariant Riemannian metric such that the totally geodesic copy of H? induced
by the representation A : SLo(R) — SO(p,q) that stabilizes a subspace of R? of



signature (p,p — 1), has constant curvature -1. Denote by d the induced distance
in Xpq.

For a representation p : [ — SO(p, ¢) and x¢ € X, , denote by h,)fp’q the critical
exponent of the Dirichlet series

S — 2 e~ sUzo,p(y)z0)

~elr

Theorem 1.5. Let [ be the fundamental group of a surface and let p : T — SO(p, q)
be O-positive. Then

horae < 1.
Furthermore if equality is achieved at a totally reducible representation n then n
splits as W@V with W having signature (p,p—1) and n|W has Zariski closure the
irreducible PO(2,1) in PO(p,p — 1) and n|V lies in a compact group.

Observe that the argument from [35] does not apply directly since the Anosov-
Levi space of a #-positive representation has codimension one (instead of 0, which
is the case treated in [35]), see §10.

HP-?-convex-cocompact representations. Generalizing work of Mess [34] and
Barbot-Mérigot [2], Danciger—Guéritaud—Kassel [16] introduced a class of represen-
tations called HP'?-convexr cocompact.

The subspace of P(R?) consisting of negative definite lines for the form @ is
called the pseudo-Riemannian hyperbolic space and denoted by

HP47! = {£ e P(RY) : Qlp—(0y < O}

The cone of isotropic lines is usually denoted by oHP-4—1,
Instead of the original definition of convex-cocompactness, we recall the charac-
terization given by [16, Theorem 1.11].

Definition 1.6. A projective Anosov representation p : [ — PO(p, q) is HP9~1-
convex cocompact if for every pairwise distinct triple of points x,y,z € oI, the
restriction Q|¢(2)@e(y)@e(z) has signature (2, 1).

Before stating the main consequence in this case let us introduce some more
notation. Consider a representation A : PO(p,1) — PO(p, ¢) such that its image
stabilizes a p + 1-dimensional subspace V of R? where Q|V has signature (p, 1).
Endow the symmetric space X, ; with a PO(p, ¢)-invariant Riemannian metric such
that the totally geodesic copy of H? in X, , induced be A has constant curvature
—1. Then one has the following upper bound.

Proposition 1.7. Assume that 0T is homeomorphic to a p— 1-dimensional sphere
and let p: T — PO(p, q) be strongly irreducible and HP*1~-convex-cocompact, then

hffp’q <p-—1.

One expects this upper bound to be rigid in the following sense: if the upper
bound is attained then I is necessarily a co-compact lattice in PO(p,1) and the
given representation preserves a totally geodesic copy of HP of the type induced by
A. However, only the case p = 2 is known due to Collier-Tholozan-Toulisse [14],
this actually fits in the framework of the maximal representations.

Section 8 contains more information on HP-9-convex cocompact representations,
in particular the relation with recent work by Glorieux-Monclair [20].



6

C'-dichotomy for closed surface groups. In the case of fundamental groups of
surfaces, or more generally of lattices in PSLy(R), we deduce from our main result
an interesting dichotomy for the regularity of the image of the boundary map.

Recall that an element g € PGL4(R) is prozimal if the generalized eigenspace
associated to its greatest eigenvalue (in modulus) has dimension 1. A representation
A : G — PGL4(R) of a given group G is proximal if its image contains a proximal
element.

Corollary 1.8. Let A : PSLy(R) — PSL4(R) be a (possibly reducible) prozimal
representation such that A%N is also prozimal. Let S be a closed surface of genus
> 2 and let py : m.S — PSLo(R) be discrete and faithful. Then we have the folloging
dichotomy:

i) If the top two weights spaces of N\ belong to the same irreducible factor,
then for every small deformation m.S — PSL4(R) of Apg the image of the
boundary map to projective space is C*.

1) Otherwise, for every weakly irreducible small deformations 1S — PSL4(R)
of Npg the image of the boundary map to projective space is not Lipschitz.

The regular case, item i) in Corollary 1.8, is inspired by Labourie [33], who
treated the case (of arbitrary deformations) of the irreducible representations, and
was proven in P.-S.-W [36, Proposition 9.4]. The novelty of this paper is item
ii), inspired by Barbot [1] who proved it for d = 3. We believe both items placed
together give a clearer picture.

Observe that it is easy to obtain similar results for other group G by considering
suitable linear representations. On the other hand the double proximality assump-
tion is necessary: the composition of a maximal representation not in the Hitchin
component and the irreducible linear representation of Sp(2n,R) of highest weight
wy, is proximal but its second exterior power is not proximal; it is possible to check
that no small Zariski dense deformation satisfies either (i) or (ii).

We refer the reader to §7 for further explanations and consequences for hyper-
convex representations.

1.1. Two main ingredients of the proof of Theorem A. The proof of Theorem
A goes by proving indepently both inequalities. One inequality (Corollary 1.9)
follows from a general result on Hausdorff dimension of limit sets (for projective
Anosov representations) which we now explain. The other inequality follows from
an improvement on a result by Quint [410, Théoréme 8.1] concerning the existence
of (p(I), p)-Patterson-Sullivan measures. Its discussion is postponed to Subsection
1.1.2.

1.1.1. The affinity exponent and the unstable Jacobian. Recall that for a metric
space (A, d) and for s > 0 one defines

F*(A) = inf{ 2 diam U’ : U is a covering of A with sup diamU < ¢}
¢ reu UelU

and that the Hausdorff dimension of A is defined by

dimper(A) = inf{s : H*(A) = 0} = sup{s : H*(A) = oo}. (1.1)
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Given a representation p : I — PGL4(R), we consider, in analogy with Falconer’s
work [18], the piecewise Dirichlet series

0 (s) = ) (OQ(p(v)) 5 Op_l(p(ﬂ)) <%(p(7>)>8_(p_2) rselp—2.p—1]

boers o1 o1 01
As in Falconer [18], one directly observes that
Aff _ . HAFF _ C AT
h," = inf{s : &7 (s) < o0} = sup{s: ®,"(s) = w0} € (0, 0],

this critical exponent is usually called the affinity exponent (or affinity dimension),
probably because the target group in Falconer’s work was the affine group Aff(d) =
GL4(R) x R4,

Let p: T — PGL4(R) be a projective Anosov representation and denote by

dimef (5(6F))

the Hausdorff dimension of £(0) = P(R?) associated to a PO(d)-invariant metric.
This is independent of the choice of chosen inner product. Observe also that in this
case, the terms in the sum of q)ﬁff(s) can be bounded above by ce #*17l and thus
hoT < oo

The second main result of this paper is the following (see §3 for a statement for
arbitrary local fields):

Theorem B. Let p: I — PGL4(R) be a projective Anosov representation, then
dimef (5((?F)) < hﬁff.

Theorem B gives relations between the Hausdorff dimension of the limit set of a
projective Anosov representation and the orbit growth rate with respect to explicit
linear functionals on the Weyl chamber. Recall that we denote by h,(d,_;) the
critical exponent of the Dirichlet series

o 3 (2220

~yel

appearing in Theorem A. Theorem B provides directly the following corollary:

Corollary 1.9. Let p: T — PGL4(R) be projective Anosov and assume furthermore
that dimpgs (§(0F)) = p— 1. Then

dimyge (§(0T)) < phy(33)-

Observe that J% = aj, and thus, since dimpg(£(0F)) = 0 we obtain as conse-

quence Glorieux-Monclair-Tholozan [22, Theorem 4.1] and P.-S.-W. [36, Proposi-
tion 4.1].
1.1.2. On the existence of Patterson-Sullivan measures. Let {uy,...,uq} be a 7-

orthonormal basis of R¢ and denote by A = exp diag E the group of determinant one
matrices, diagonal in this ordered basis. Denote also by N the group of unipotent
upper triangular matrices and recall that the Iwasawa decomposition of PGL4(R)
states that every g € PGL4(R) can be uniquely written as a (non-commutative)
product

g = kgagnyg,
where k; € K = PO(7), ag € A and ng € N.



Recall that a full flag of R? is a collection of subspaces (V;)¢_, with V;  Viyy
and dim V; = i. The space of full flags of R? is denoted by ¥, it is a K-homogeneus
space and the stabilizer in K of the flag e = (u1 @ -+ @ u;)%_, is denoted by M.
Given a flag x € I, we will denote by aP the associated p-dimensional subspace.

The Twasawa cocycle introduced by Quint [40] is the cocycle b : PGLg(R)xF — E
defined such that, if g € PGL4(R) and « = ke € F then

gk, = k:( exp diag b(g, x))n,

where the right hand side is the Iwasawa decomposition of gk,. It is the higher rank
analog of the more studied Busemann cocycle in negative curature (see for example
Quint [10, Lemma 6.6]).
A more hands-on definition is the following (see Lemma 4.9). For p € II = [1,d]
one has
lgvi A -+ A gop
log A A v

o.)]g(b(g7 x)) = log (1.2)

where {vq,...,v,} is any basis of the p-dimensional space ¥ of = and || is the
norm on APR? induced by 7.

Notice that wy(b(g,z)), the sum of the first p coordinates of b(g, z), only depends
on zP, so it is actually more natural to consider the Iwasawa cocycle defined on
partial flags. Given 6 c II denote by Fy the space of partial flags with dimension
jumps only in 6. Consider also the subspace Eg of E defined by

Ey = ﬂ ker ap.
pEo

*

The fundamental weights {w,|Eg : p € 0} span its dual (Eg)* so Riesz Theorem

gives an Iwasawa cocycle
bg : PGLd(R) X ?9 - Eg.
We recall the following definition from [10].

Definition 1.10. Given a discrete subgroup A < PGL4(R) and ¢ € (Eg)* a (A, ¢)-
Patterson-Sullivan measure on Fy is a finite Radon measure p such that for every
g € A one has
Gut 1y _ mo(vato )
du

The core of the second inequality in Theorem A is the following result (see
also Theorem 5.14). Given 6 c II denote by i6 = {d —p : p € 6}. We say that
(r,y) € Fy x Fig, are transverse if for every p € 6 one has that z? n y?P. A
complementary hyperplane of Fy is a subset of Fy of the form

{x € Fp : x is not transverse to yo}
for a given yg € Fig.

Theorem C. Let p: I — PGL4(R) be a proyective Anosov representation and con-
sider < II such that a1 € 0. Let ¢ € (Eg)*. If there exists a (p(I), ¢)-Patterson-
Sullivan measure on Fy whose support is not contained on a complementary sub-
space, then

ho(p) < 1.



A similar result has been earlier proved by Quint [40, Théoréme 8.1], inspired on
a classical result by Sullivan [43]. However, Quint’s theorem does not require the
representation to be Anosov and the obtained inequality is not enough for what we
need.

We refer the reader to §5 for a version of Theorem C where the target group is
an arbitrary semi-simple group over a local field.

Recently Dey—Kapovich developed Patterson-Sullivan theory for Anosov repre-
sentations [ |. There are important differences between their approach and
ours: while we consider Hausdorff dimension with respect to the Riemannian dis-
tance on the flag manifold and measures quasi-invariant with respect to a functional
that doesn’t induce a norm on the Weyl chamber, they consider distances on the
flag varieties which are induced from Finsler metrics on the symmetric space. In
particular our results seem complementary.

1.2. Plan of the paper. In §2 we introduce some required preliminaries, and recall
some needed results from Bochi-Potrie-S. [6] and P.-S.-W. [36]. Section 3 deals with
the affinity exponent and Hausdorff dimension for Anosov representations, in it we
prove Theorem B for any local field.

Section §4 is basically a reminder on (more or less) standard definitions on semi-
simple algebraic groups over a local field.

In §5 we recall objets from higher rank Patterson-Sullivan Theory and in sub-
section 5.3 we prove Theorem 5.14 (a broader version of Theorem C).

Section §6 glues the pieces to complete the proof of Theorem A. The remaining
sections deal with applications of this result, as explained earlier in this introduc-
tion.

Acknowledgements. We would like to thank J.-F. Quint for pointing us to Fal-
coner’s work and suggesting to consider the affinity exponent.

2. PRELIMINARIES

We recall in this section the notions we will need concerning Anosov represen-
tations and cone types. We refer the reader to [36] and the references therein for
more details.

Throughout the paper K will denote a local field with absolute value || : K — R*.
If K is non-Archimedean, we require that |w| =  where w denotes the uniformizing
element, namely a generator of the maximal ideal of the valuation ring O, and ¢ is
the cardinality of the residue field O/w© (this is finite because K is, by assumption,
local). This guarantees that the Hausdorff dimension of P!(K) = 1.

2.1. Singular values and Anosov representations into PGL;(Vk). A K-norm
|| on a KK vector space Vi induces a norm on every exterior power of V; the angle
between two vectors A (v, w) is the unique number in [0, 7] such that

sin (v, w) := o A wl

 ollwl

Given two points [v], [w] € PV, we define their distance as

d([v], [w]) := sin £ (v, w),
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and given any two subspaces P,Q < V we define their minimal angle as

A(P,Q) = min min X(v,w).

veP\{0} weQ\{0}
An element a € GL(V) is a semi-homothecy (for a norm | - ||) if there exists a
a-invariant K-orthogonal' decomposition V.=V, ®--- @V, and oy,--- ,04 € Ry

such that for every i € [1, k] and every v; € V; one has
lavi] = aifvi.

The numbers o; are called the ratios of the semi-homothecy a.

Following Quint [38, Théoreéme 6.1], we fix a maximal abelian subgroup of di-
agonalizable matrices A < GL(Vi), a compact subgroup K < GL(Vk) such that, if
N is the normalizer of A in GL(Vk), then N = (N n K)A, and a K-norm | | on V
preserved by K, and such that A acts on V' by semi-homothecies. Let e; @ --- P ey
be the eigenlines of A (here d = dim V') and choose the Weyl chamber AT con-
sistsing of those elements a € A whose corresponding semi-homothecy ratios verify
oi1(a) = -+ = o4(a).

For every g € GL(Vi) we choose a Cartan decomposition g = kgayl, with a4 in
AT, kg1, € K, and denote by

o1(g9) = 02(9) = --- = 0a(g)

the semi-homotecy ratios of the Cartan projection a, € A" (these do not depend

on the choice of the Cartan decomposition once K and || - | are fixed). In order to
ai(g)

simplify notation we will often write g—](g) = i)

We define, for p € [1,d — 1],
Up(g) = kg-epeV.

The set {u,(g) : p € [1,d—1]} is an arbitrary orthogonal choice of the axes (ordered
in decreasing length) of the ellipsoid {Av : |v| = 1}, and, by construction, for every

v € g~ up(g) one has [gv] = op(g)|v]. Let

Up(9) =u(9) @ @up(g) = kg - (1@ Dep).

If g is such that 0,(g) > op+1(g), then we say that g has a gap of indezx p. In that
case the decomposition

Ua—p(g ") @ 97" (Up(9))
is orthogonal (cfr. [30, Remark 2.4]) and, if K is Archimedean, the p-dimensional
space Up(g) is independent of the Cartan decomposition of g.
We will denote by II = {a;,...,a4—1} the root system of PGL(V), and, given
a subset § < II, by Fy the associated partial flag manifold. Given 6 c II we also
denote by UY(g) the partial flag U%(g) = {U,(g) : a, € 8}. The 0-basin of attraction
of g
By.alg) = {a’ € Fy(K?) : min £ (a7, Ug—p(97")) > o} (2.1)
p

is the complement of the a-neighborhood of U (¢~!). When 6 consists of a single
root a we will write B, o(g) instead of By 4 (9)

1Recall that for K non-Archimedean a decomposition V = V1 @ --- @ Vi is ortogonal if, for
every v; € V4, it holds | X v;| = max; |vs].
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Remark 2.1. If g has a gap of index p, then Us_,(g7 ") is well defined if K is
Archimedean, and any two possible choices have distance at most ‘7(‘;—;1(9) if K is
non-Archimedean. It follows that, also in the non-Archimedean case, By o(g) only
depends on K provided « is bigger than the minimal singular value gap.

We recall for later use the following lemma, which explains the choice of the term
basin of attraction:

Lemma 2.2 (Bochi-Potrie-S. [6, Lemma A.6]). For every g € PGLy(K), and x €

B, .«(g) it holds
1 o

d(Ui(g),9 =) <

2.2. Anosov representations. Let ' be a word-hyperbolic group with identity
element e, fix a finite symmetric generating set Sr. For v € [ — {e} denote by ||
the least number of elements of Sr needed to write v as a word on S, and define the
induced distance dr(vy,n) = [y~ 'n|. A geodesic segment on I is a sequence {a;}§ of
elements in " such that dr(oy, a;) = |i — j|.

sin(a) o1 g

Definition 2.3. A representation p : I — PGL4(K) is a,-Anosov” if there exist
positive constants ¢, u such that for all v € I one has

L (p(y)) < e, (2.2)

An a;-Anosov representation will be called projective Anosov.

The following result was proven in Bochi-Potrie-S. [(] for K = R, the same
arguments also give the result for any local field:

Proposition 2.4 ([6, Lemma 2.5]). Let p: I — PGL4(IK) be a projective Anosov
representation. Then there exists n, > 0 and L € N such that for every geodesic
segment {a;}E in T through e with |ag|, |ax| = L one has

L8 <U1 (plar)), Uss (P(ao))> > 1.

Proposition 2.4 is a key ingredient in the construction of boundary maps:

Proposition 2.5 ([6, Lemma 4.9]). Let p : I — PGL4(K) be projective Anosov and
(o) =T a geodesic ray based at the identity converging to x € oI then

& (@) = lim Uy (p(i)) €571 () := lim Uys (p(0))

ezist, do not depend on the ray and define continuous p-equivariant transverse maps
g of - P(KY), ¢4 ol — P((K%)*). Furthermore, there are positive constants
C, i depending only on p such that

a(Ur(plon)), €3(x)) < Ce
The following Lemma from concerning properties of boundary maps will be pre-
cious in Section 3.1:

Lemma 2.6 (Bochi-Potrie-S. [6, Lemma 3.9]). Let p: I — PGL4(K) be projective
Anosov, then there exist constants v € (0,1), ag > 0 and a; > 0 such that for every
v,m €l one has

dr(v,n) = v(|y| + Inl) — a0 — a1|log d(Ur(p(7)), Ur(p(n)))].

°In the language of Bochi-Potrie-S. [6, Section 3.1] a ap-Anosov representation is called p-
dominated.
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3. HAUSDORFF DIMENSION OF THE LIMIT SET AND THE AFFINITIY EXPONENT

Generalizing the definition given in the introduction, we define the affinity ex-
ponent hﬁff of a projective Anosov representation p : [ — PGL(Vk) as the critical
exponent of the broken Dirichlet series

AT (5) =

” . dy o s—dx (p—2)
> (Uj(p(v)) Zl(p(v))> (;;(0(7))) s € ldi(p = 2), dw(p — 1)}
yel

where the dimension di of P*(IK) is 1 unless K = C in which case d¢c = 2.
The goal of the section is to prove the following result:

Theorem 3.1. Let K be a local field. If p: T — PGL(Vk) is a1-Anosov then
dimpge (€) (A1) < AT

The proof of Theorem 3.1 is elementary and based on the construction of a good
cover of the image of the limit map (explicitely constructed in § 3.1) which we show,
in § 3.2 to be contained in ellipses of controlled axis.

3.1. Coarse Cone types. In P.-S.-W. [36, Section 2.3.1] we used cone types at
infinity to construct well behaved coverings of the boundary of the group. For the
purposes of this paper a coarse version of these sets will be more useful, which we
now introduce.

Recall that a sequence (o;)F is a (co, c1)-quasigeodesic if for every pair i, it

holds 1
;|i —jl — e < dr(as, 05) < coli — j| + cr.
0

We associate to every element =y a coarse cone type at infinity, consisting of end-
points at infinity of quasi geodesic rays based at v~! passing through the identity:

€ (v) =

{[(ai)go] € ol (o) is a (cg, c1)-quasigeodesic with ag =~ !, e € {ozl})}

Coe™ ()

FIGURE 1. The coarse cone type at infinity, the black broken lines are
(co, c1)-quasigeodesics. All endpoints of geodesic rays from v~ ' inter-
secting the ball B, (e) clearly belong to €5 (v)

Hyperbolicity of I lets us understand the overlaps of coarse cone types; this will
be crucial in Section 5.3 to guarantee bounded overlap of suitable covers of the limit
set.
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Proposition 3.2. Let I be word-hyperbolic. For every cy,c1 there exists C > 0
such that if
VCR () N () #
then
dr(v,n) < |l = Inl[ + C.

Proof. Assume that z € v€2" (v) nn€* (n). Since I is hyperbolic, by the Morse
Lemma, there exists K > 0 (only depending on c¢g, ¢; and the hyperbolicity constant
of I') such that v is at distance at most K from a geodesic ray from e to x. The
same holds then for 5, and, using the hyperbolicity of ' again, we can assume, up
to making the constant K worse (but still depending on ¢y, ¢; only), that the two
rays agree. This implies that there exist gy and g; on a geodesic ray from e to x
such that d(v, go) < K and d(n, ¢g1) < K. Since go and ¢y lie in a geodesic we have
(g0, 91) < [Igo| — lg1]| and thus

d(y,m) < 4K + [|v] = [nl|.
0

Our next goal is to show that, for an Anosov representation, the intersections of
Cartan’s basins of attraction By o(p(7y)) with the image of the boundary map are
contained in the image of a suitably big coarse cone type of v. Let now 6 < II be
a subset containing the first root a;. We will denote by mp1 : Fy(K?) — P(K?)
the canonical projection. Recall from (2.1) that, for every «, we asociate to each
g € PGL(Vk) a basin of attraction By o(g) < Fp. We will now use Lemma 2.6 to
show that, for every «, there exist ¢y, c; such that the intersection of a 6-basin of
attraction By o(p(7y)) is contained in a (¢, ¢1)-coarse cone type.

Proposition 3.3. Let p: I — PGL(Vk) be projective Anosov and consider o > 0.
There exist cg,c1 only depending on o and p such that for every 8 < II containing
ay, and every y el

(") (w1 (Bo,alp(7)))) © €2 (7).

Proof. 1t is enough to show that if £ (z) € m.1(Bog.o(p(7))) and || is big enough,
then there is a quasi-geodesic ray from ! to = that passes through the identity
whose constants only depend on « and p. Consider a quasigeodesic ray {«;} con-
verging to z, and fix 1 > o/ > «. Since, by assumption, {!(z) € B, o(p(7)), we
can find a constant L depending on p only, such that for every ¢ > L it holds
Ui(p(e;)) € Bay,o(p(7)) (the uniformity of L follows from the last statement in
Proposition 2.5). By definition we have % (Ui (p(cw)),Ua—1(p(v71))) > o/, and
thus, in particular, d(Ui(p(a;)), Ui(p(y~1)) > . Let now (ai);‘gls be a geodesic
segment with g = e, a_|,|; = 7. Up to further enlarging o/ and L (depending on
the representation only) we have also that d(Uy(p(a—r)),Ui(p(ar)) > o'. Lemma

2.6 implies that the sequence (ai)ﬁfh\s obtained as concatenation of the geodesic

between =1 and the identity and the ray from the identity to z is a quasi geodesic
ray, thus the result. O

Corollary 3.4. Let p : I — PGL(VK) be projective Anosov and consider a > 0.
There exists C' only depending on o and p such that for every 0 < I containing ay,

if
€10 A 701 (p(0) * Bo.alp()) 0 p(0) - Boalp(n)) # &
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then
d(v,m) < |lvl = Inl| + C.

Proof. This follows immediately combining Proposition 3.3 and Proposition 3.2. [

In particular we can use basins of attraction to construct coverings of the image
of the boudary map with bounded overlap:

Proposition 3.5 (Cfr. P.-S.-W. [36, Lemma 2.21]). Let p : I — PGL(Vk) be
projective Anosov. There exists a small enough so that, for every T > 0, the family
of open sets

Ur :={p(7) - Bay.alp(7)) : 7| = T}
defines an open covering of (). Furthermore there exists a constant C' depending

on a (and p) such that for every x € T and every T, £(x) is contained in at most
C elements of Urp.

Proof. Let x € oI, let {7;} be a geodesic ray based at the identity representing x.
Propositions 2.4 and 2.5 guarantee that there exists o = o, such that

£p(vp )€ (2), Ua-1(p(r7 ")) > o,

therefore £'(z) € p(yr)Bay o (p(y7)). The second statement is a direct consequence
of Corollary 3.4. O

3.2. Ellipses. The purpose of this section is to prove that for a projective Anosov
representation, the set p(7y) - Ba, o(p(7)) is coarsely contained in an ellipsoid with
axes of size

02 0d
—=(p(); -+ —(p())-
g1 01
Definition 3.6. Let V be a d-dimensional K-vector space with K-norm || - |. Let
U@ - Dug

be a K-orthogonal decomposition and let v = > v;u; be the associated decomposi-
tion of v € V, for suitable v; € K. Choose positive real numbers as > ...aq = 1. If
K is Archimedean, an ellipsoid about Ku is the projectivisation of

d

{foe Vol = ) (ailul)?)

2

for some a; > 0. If, instead, K is non-Archimedean, an ellipsoid about Ku is the
projectivisation of

2<i<d

{v €V v > max (ai|vi|)}
The vector spaces u; @ u; are the azxes of the ellipsoid and the size of the axis
u1 @ u; is 1/a;. We need the following covering lemma.

Lemma 3.7. Let E be an ellipsoid with azis of size 1 = o = ... = Bq. For every
p€[2,d], E can be covered by
d
o (2 )

p—2
p

balls of radius \/ﬁﬁp,
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Proof. We cousider the affine chart of P(V') corresponding to u; = 1. The ellipsoid
E is contained in the product of the balls {|v;| < 8;} < K (it agrees with such
product if KK is non-Archimedean). If K is Archimedean, the ball {|v;| < 5;} is

d
contained in the union of [[’%] ‘ balls of radius 3,. Since the product of d balls of
radius 3, is contained in a ball of radius \/Eﬁp we obtain that E can be covered by

ﬁQ . /61771
l)aHS Of radius \/8/817.

If, instead, K is non-Archimedean, the ball {|v;| < B;} can be decomposed in
log, (55|

q[ balls of radius 3, and hence E can be covered with

Josa(8)] e (%52)

balls of radius 3,.
O

Proposition 3.8. Consider a > 0. For every g € PGL(Vk) one has that the image
of the corresponding Cartan’s basin of attraction g - Ba, o(g) is contained in the
ellipsoid about Uy(g) with axes ui(g) ®u;(g) of size

1 g;

sin «v ;1
Proof. Assume first that K is Archimedean. By definition of B,, 4(g), for every
veK? with K - v € B,, o(g) one has

d
jo1* > (sina)® Y] o,
1
where (vq,- -+ ,v4) are the coefficients in the decomposition of v with respect to the
orthogonal splitting V = @ g~ u;(g).
Since the coeflicients w; of gv in the decomposition induced by the orthogonal
decomposition V' = @ wu;(g) satisfy |w;| = 04(g)|v;i|, one has

w1 |? = 01(9)*[v1* = 01 (9)*(sina)? Y Juy|?

One concludes that gv lies on the corresponding ellipsoid. The non-Archimedean
case follows analogously. O

3.3. The lower bound on the affinity exponent. We now have all the ingre-
dients needed to prove Theorem 3.1:

Proof. For each T > 0 denote by Ur the covering of £1(0I) given by Proposition 3.5.
By definition, U = U, € Uy is of the form p(v) - Ba, o (p(7)) for some v satisfying
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|v] = T. Proposition 3.8 applied to p(v) implies that p(7) - Ba, o (p(7)) is contained
in an ellipsoid about Kuj(p(7)) of axes with sizes

(r(7),--- (p(7))-

Furthermore, since p is Anosov, we deduce from Lemma 2.2 that supseq,. diam U
is arbitrarily small as T goes to infinity. Recall that the s-capacity H*® was defined
by Equation (1.1). Applying the covering Lemma 3.7 to these ellipses and any
p € [2,d], we obtain

S o5 0o di o s—dk (p—2)
H%«M»<2w<”@>ig S (260 e0) (Z6m)) .

sin o o1 o1 o1
y:v=T

19 1%

sina o1 "sina o

By definition, the affinity exponent hﬁff is such that for all s > hﬁff the broken
Dirichlet series

oo - dx o, s—di (p—2)
2(@my~P@w0 (@wﬁ s € [de(p — 2),du(p — 1)]

o o o
Lo \01 1 1
is convergent and thus for all s > hﬁ‘ﬁ we have

2v (;ﬁ)sigf > <Zf(p(v)) - Uf;ll(p(v))yk (?;(p(v)))S_dK(p_Q) =0.

vy |=T

As a result we conclude that for all s > hﬁff the s-capacity H°(£(0l)) vanishes,
hence

hi = dimpge (€(0T)).

This completes the proof. O
The following generalization of Corollary 1.9 is also immediate:

Corollary 3.9. Let p : I — PGL(Vk) be projective Anosov. If dimgygs (g(ar)) >
(p — 1)dk, then
dimper(§(0)) < d(p — 1)hp(d5-1)-

Proof. Observe that, for every p with dx(p — 1) < hﬁ“, and for every s € [dk(p —

1), dkp], the broken Dirichlet series defining the affinity exponent

¢¥@»=Z(f%mwy~”%mwgw(%wWMwO*W@*>

Jer g1 g1 g1

is smaller than or equal to the series associated to the unstable Jacobian

ﬂ“@:Z(”mm~“wmQM“ﬁ

g g
~yel 1 1

u

The result follows as ‘132‘0 (s) < @i;’l (s). O

4. SEMI-SIMPLE ALGEBRAIC GROUPS

Let G be a connected semi-simple K-group, Gk the group of its K-points, A a
maximal K-split torus and X (A) the group of its K*-characters. Consider the real
vector space E* = X(A)®z R and E its dual. For every x € X(A), we denote by x*
the corresponding linear form on E.



17

4.1. Restricted roots and parabolic groups. Let ¥ be the set of restricted
roots of A in g, the set X% is a root system of E*. Let ¥ be a system of positive
roots and II the associated subset of simple roots. Let ET be the Weyl chamber
determined by the positive roots (2¥)*.

Let W be the Weyl group of ¥, it is isomorphic to the quotient of the normalizer
Ng, (Ak) of Ak in Gk by its centralizer Zg, (Ak). Let i : E — E be the opposition
involution: if u : E — E is the unique element in the Weyl group with u(E*) = —E*
then i = —u.

A subset @ c II determines a pair of opposite parabolic subgroups Py and Py
whose Lie algebras are defined by

po= P .® P g
aextu{0} ae(I1-0)

and

]39 @ g—a@ (‘B Ja-

aex+u{0} ae(II-6)

The group Py is conjugated to the parabolic group Pjg. Let
lg =Po N Py
be the Lie algebra of the associated Levi group.

The K-flag space associated to 0 is Fp(Gx) = Gk/Poxk, the Gk orbit of the
pair ([Pox], [ISQ)K]) is the unique open orbit for the action of Gk in the product
F9(Gi) x Fi4(G). This orbit is denoted by Fo (Gy).

For y € F9(Gk) denote by

Ann(y) = {z € Fy(Gk) : (z,y) ¢ Fo(Gk)®} (4.1)

the closed submanifold of flags in Fy(Gk) that are not transverse to y.
Denote by (-, ) a W-invariant inner product on E, (-, -) the induced inner product
on E* and define
2(x, ¥)

oGy = (0, )

and let {w,}aen be the dual basis of 11, i.e. {w,, b)Y = dap. The linear form w, is the
fundamental weight associated to a.

4.2. Cartan decomposition. Let v : Ax — E be defined, for z € Ak, as the
unique vector in E such that for every y € X(A) one has

X“(v(2)) = log[x(2)|

Denote by A = v~ (ET).

Let K < Gk be a compact group that contains a representative for every element
of the Weyl group W. This is to say, such that the normaliser Ng, (Ak) verifies
Ng, (Ak) = (Ng, (Ak) n K)Ak. One has Gk = KA K and if z,w € A} are such
that z € KwK then v(z) = v(w). There exists thus a function

a:Gx — ET

such that for every g1, g2 € Gk one has that g; € K g2 K if and only if a(g1) = a(g2).
It is called the Cartan projection of Gg.

In the case of Gk = PGL(Vk) this is nothing but the ordered list of semihomotecy
ratioes defined in Section 2.1.
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4.3. Representations of Gk. Let A : G — PGL(V) be a finite dimensional ra-
tional® irreducible representation and denote by ¢, : g — sl(V) the Lie algebra
homomorphism associated to A. Then the weight space associated to x € X(A) is
the vector space
Vy = {veV:gala)v = x(a)v Ya € Ak}

and if V), # 0 then we say that x* € E* is a restricted weight of A. Theorem 7.2 of
Tits [44] states that the set of weights has a unique maximal element with respect
to the order x = v if y — 1) is positive on E™. This is called the highest weight of A
and denoted by xa.

Definition 4.1. Let 65 be the set of simple roots a € I such that xp — a is still a
weight of A.

Remark 4.2. The subset 0, is the subset of simple roots such that the following
holds: Consider a € X7, n € g_, and v € x,, then ¢gp(n)v = 0 if and only if
aeE <H — 9A>~

Definition 4.3. We denote by || a good norm on V invariant under AK and
such that AAk consists on semi-homotecies, if K is Archimedean the existence of
such a norm is classical, if K is non-Archimedean then this is the content of Quint
[38, Théoréme 6.1].

For every g € Gk one has

log [Aglla = xa(a(g))- (4.2)
If g = kgzgly with k,1 € K and z, € A then for all v € A(l;')Vy, one has
[Ag(0)]a = [Aglafvfa-
Denote by W, the AAk-invariant complement of V,,,. Note that the stabilizer
in Gk of W, is p@[pg, and thus one has a map of flag spaces

(€0,€3) + F42(Gi) = Sinve, (V) (4.3)

This is a proper embedding which is an homeomorphism onto its image. Here
95121210 Vi, (V) is the open PGL(Vi)-orbit in the product of the Grassmannian of
(dim V4, )-dimensional subspaces and the Grassmannian of (dimV — dimV,,)-
dimensional subspaces.

One has the following proposition by Tits (see also Humphreys [30, Chapter
X1)).

Proposition 4.4 (Tits [44]). For each a € II there exists a finite dimensional
rational irreducible representation A, : G — PSL(VL), such that xa, is an integer
multiple of the fundamental weight w, and dimV,, = 1. All other weights of A,

are of the form
Xa —a— 2 nbba
bell
where np € N.

We will fix from now on such a set of representations and call them, for each
a € II, the Tits representation associated to a.

3i.e. a rational map between algebraic varieties.
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4.4. The center of the Levi group Py n |597K. We now consider the vector
subspace

Ey = ﬂ ker a¥

aell—-6
together with the unique projection my : E — Ep, that is invariant under the
subgroup Wy of the Weyl group spanned by reflections associated to roots in IT—6:

Wy ={weW :w(v) =vVuve Eg}.

The dual space (Eg)* is canonically the subspace of E* of mg-invariant linear
forms and it is spanned by the fundamental weights of roots in 6

(Eg)* ={peE*:pomy =} ={(w,:acb).

Since 3 = my, the pre-composition with my induces a projection E* — (Eg)*
denoted by

p @’ = pom.
The following examples will be relevant in Section 7 and 8 respectively:

Example 4.5. Let Gk = PGL(Vk), consider p € [2,d—2] and let 8 = {a1,ap,34-1},
so that

E9={(a1,...,ad)€E:a2 ="~=apand
Gpi1=+++ = aa1)

is three dimensional. Using the fact that the fundamental weights w; (for i =
1,p,d — 1) belong to (Eg)* one checks that the projection is

e1(ma(a)) = a1,
az + -+ ap Wp — W1

i = = fi ; 27 )
gi(mo(a)) - p— (a) for every i € [2,p]
gi(mo(a)) = al’+1d+_'1'j'jlad*1 - Uzldilp_—wf (a) for every i € [p+ 1,d — 1],

ed(m(a)) = Q-

One has then that
39 _ Wp — W1 . Wd—1 — Wp
P p—1 d—p-—1

and that a§|E+_{o} = ap|E+_{0}.

Example 4.6. Consider the group SO(p, ¢) of transformations in PSL,4(R) pre-
serving a signature (p, ¢) bilinear form with p < ¢. One has that

E={(ai,...,ap) :a; e R}
equipped with the root system
Y ={eriel,pltv{a—a;,—a;:i,j€e[l,p]}
A Weyl chamber can be chosen as
Et ={a€E:q; >a;11Vie[l,p—1] and a, > 0}
and the associated set of simple roots

OI={a;:ie[l,p—1]} u{ep}.
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Consider then 6 = {a; : i € [1,p — 1]}, so that Eg = kere,, and thus a; € (Eg)* for
i € [1,p — 2]. Moreover,
af,fl =E&p-1
and one has that ag_l\y,{o} > ap1|e+—{o}-
4.5. Gromov product. Recall from S. [42] that the Gromov product® based at K
is the map
(1)x : 57 (Gr) = Eg
defined to be the unique vector (z|y)x € Ep such that
Xa((z]y)r) = —logsin £, (€a,7,&3,Y)
for all a € 6, where Y, is the fundamental weight associated to the Tits representa-
tion A, of a. Note that

max xa((2]y) k) = max |xa((z]y) )| = —logminsin £, (&a,7,EX,y).  (4.4)
ael acl acb

On has the following remark from Bochi-Potrie-S. [6].

Remark 4.7 ([6, Remark 8.11]). Let A : G — PGL(V) be a finite dimensional
rational irreducible representation, if (z,y) € ff"éi)(GK) then

(Ea|EXy) ) 1a = xa((@ly) K-

where | |a denotes the (stabilizer of the) inner product on V such that AK is
orthogonal (see Definition 4.3).

4.6. Iwasawa cocycle and its relation to representations of G. Another im-
portant decomposition of Lie groups that will play a role in our work is the Iwasawa
decomposition:
Gk = KAxUn k,
where Prpk is the minimal parabolic subgroup, and U is its unipotent radical.
For general local field K the decomposition of an element is not necessarily unique,
but if 21, 29 € Ak are such that z; € KzoUp i, then v(z1) = v(z2).
Quint used the Iwasawa decomposition to define the Iwasawa cocycle

br(g,z) = v(z)
where z = k[Pg ] € Fo(Gk) with k € K, g € Gk and gk has Iwasawa decomposition
gk =lzu

Quint [40] proves the following lemma.

Lemma 4.8 (Quint [40, Lemmas 6.1 and 6.2]). The map pg o by factors trough a
map by : Gk x Fg(Gk) — Eg. The map by verifies the cocycle relation: for every
g,h € Gk and x € Fy(Gk) one has

ba(gha .’E) = b9(97 h.’E) + b9(h7 x)

One also has the following behavior of by under the representations of G.
Lemma 4.9 (Quint [40, Lemma 6.4]). Let A : G — PGL(V) be a prozimal irre-
ducible representation, then for every x € Fy, (Gk) and g € Gk one has
1A (g)v]a

XA(bGA(g)x)) = log ”'U”A

)

where v € {5 (z) — {0}.

4This is the negative of the defined in S. [12].



21

4.7. Cartan attractors and Cartan’s attracting basins. Consider g € Gk and
let g = kgz4ly be a Cartan decomposition. Given § < II, the Cartan attractor of g
in Fy(Gk) is defined by

Us(g) = Uj* (9) = kg[Pox],

and the Cartan basin of g is defined, for a > 0, by

By .o(g) = {x € Fp(Ck) : (w\Uig(g_l))K < a}.

Remark 4.10. If A : G — PGL(V) is a rational irreducible representation with
f0x < 0 then

E(Us(9)) = Uiy, (A(9)).

Notice that the flag Uy(g) is an arbitrary choice of a “most expanding” flag of
type 6 for g, however, it is clear from the definition that given o > 0 there exists a
constant K, such that if y € Fy(Gy) belongs to By o(g) then for all a € § one has

Xa(a(g) = bo(9,9))| < Ka. (4.5)

4.8. The PSL4(K) case. Given a good norm 7 on K%, and considering the exterior
power representations of PSL;(KK), one sees that Lemma 4.9 provides the following
computation for the Iwasawa cocycle b : PSLs(K) x F(K%) — E associated to
a maximal compact group stabilizing 7. For p € [1,d] and given g € PSL4(K),
r € F(K9) one has

lgvs A -+ A gy
(AR

wy(b(g,z)) = log (4.6)
where {vq,...,v,} is any basis of the p-dimensional space zP of = and || is the
norm on APK? induced by 7.

Notice that, by definition, the number w,(b(g,x)) only depends on z?, so in
order to simplify notation we will also denote it by w,(b(g, zP)).

5. PATTERSON-SULLIVAN MEASURES IN NON-ANOSOV DIRECTIONS

An interesting quantity associated to a discrete subgroup I' < G is its critical
exponent hiX which measures the exponential orbit growth rate of orbit points in
balls (in the symmetric space of Gk) as the radius grows. The theory of Quint’s
growth indicator function, which we briefly recall in Section 5.1 allows to deduce
information on h¥ from information on the critical exponent of linear forms ¢ on
the Weyl chamber E, that are often easier to handle with the aid of Patterson-
Sullivan measures. When the discrete group I' < G is the image of an Anosov
representation p : [ — Gk, and the form ¢ belongs to the dual of the Levi-Anosov
subspace Eg,, then the thermodynamical formalism applies (see the Theorem 5.12).

In this section we will, instead, be interested in studying forms ¢ that do not
belong to (Egp)*. Our main result is Theorem 5.14 in which we show that, provided
a representation p is Anosov with respect to some root, the existence of Patterson-
Sullivan measure in any flag manifold, and thus also in non-Anosov directions ¢,
have strong implications on the critical exponent of ¢.
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5.1. Quint’s growth indicator. We recall here some definitions from Quint [39,

]
Let I' ¢ Gk be a discrete subgroup, its Quint growth indicator function [39]
Ur : EY — R, U {—o0} is defined as follows. Given a norm ||| on E and an open

cone € < ET let hu be the critical exponent of the Dirichlet series
PN Z e—slalg)l
gel:a(g)e€
and define ¥ : E* — {—o0} U [0,00) by
N _ inf Rl
£(v) = lol inf AL,
where the infimum is taken over all open cones containing v. One can easily check
that ¥ does not depend on the chosen norm | || and is 1-positively-homogenous.
Dually one considers the growth on linear forms. The limit (or Benoist [4]) cone

Lr of T' is defined as the limit points of sequences t,a(gy,) where (t,)nen < Ry
converges to 0 and (gn)nen < I'. Denote its dual cone by

(Lr)* = {p e E*: ¢|Lr — {0} > 0},
and, for ¢ € (L1)* let hr(p) be the critical exponent of the Dirichlet series

3 o9 (a(@)

gel
that is
1
hr(¢) = limsup T log #{v € r|<p(a(p(7))) <t}

t—0o0
One has the following.
Lemma 5.1. It holds
hr(min{¢1, . ;¢k}) = max{hp(qbl), ey hl—‘((bk)}

Proof. One inequality is clear. For the other one, one has

k
hr(min{gr, -, ¢k}) - < Timyo, 1 log 3 #{y € Tlei(a(p(1)) < t}

i=1
< limyo ¢ log kmax; #{y € T|gi(a(p(v))) < t}
= max{hp(gbl), ceey hr(d)k)}

One can then define the subset
Dr = {pe(Lr)* : hr(p) € (0,1]}.
The next lemma is clear from the definitions, but is very useful in applications:
Lemma 5.2. If ¢ belongs to Dr, then ¢ + ¢ € Dr for every ¢ € (Lr)*.

The following result from Quint [39] allows to deduce information on te critical
exponent of various norms in terms of growth of linear functions, that are often
easier to compute:
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Proposition 5.3 (Quint [39]). One has that
Dr ={peE* :VveE" p(v) = Ur(v)},

and thus it is a convex set. Moreover, for any 1-positively-homogenous function
© : ET — R the critical exponent hr(©) of the Dirichlet series

S Z e—s@(a(g))

gel

\I/F (’U)
can be computed as hr(©) = sup
veE+ ®(U)
The importance of the set Dr is provided by the following theorem: it is possible
to compute the orbit growth rate with respect to various norms studying properties
of the set Dr:

Theorem 5.4 (Quint [39]). If the Zariski closure of T is semi-simple then ¥r is
concave, consequently for every norm || on E one has

hi! = inf{J]* : o € Dr}
where || |* is the induced operator norm on E*.

Remark 5.5. Recall that, if we endow the symmmetric space (or the affine build-
ing) X associated to Gk with a Gg-invaraint Riemannian metric, there exists an
Euclidean norm || |x on E such that for every g € Gk one has

dx ([K], g[K]) = [a(g)]x-

Theorem 5.4 provides then the following formula for the critical exponent of a
discrete group with reductive Zariski-closure in the symmetric space X:

hr = inf{|¢[% : ¢ € Dr}.

The topological boundary Qp of Dr will be called Quint’s indicator set of T'. We
will also denote by

Qng = Qp N (Eg)*.
Let us record here a useful direct consequence of the convexity of Dr.

Lemma 5.6. Let T' < Gk be a discrete subgroup and let ¢, € (L1)*, then

hr(¢)hr (¢)
hr (@) + hr(e)

We end this subsection with the following definition from Quint [40].

hr(¢ + ) <

Definition 5.7. Given § < II and ¢ € (Ey)* a (T, ¢)-Patterson-Sullivan measure
on Fp(Gk) is a finite Radon measure p such that for every g € I' one has

dg*/u’ o 7gp(bg(g_1,m))
m (z)=e .
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5.2. Anosov representations with values in Gk. Let I' be a discrete group and
fix 0 < II.

Definition 5.8. A representation p: [ — G is 6-Anosov if there exist constants
¢ >0 and p > 0 such that for every v €' and a € 6 one has

a(a(p(v))) > ply| —c.

If p: T — Gk is 8-Anosov and A, is as in Proposition 4.4, then Ayp : [ —
PGL(Vk) is projective Anosov. In particular subsection 2.2 applies to arbitrary Gy
and one obtains the following result.

Theorem 5.9 (Kapovich-Leeb-Porti [32]). If p : T — Gy is 0-Anosov then T is
word-hyperbolic and there exist continuous equivariant maps «52 : 0l - Fp(Gk)
and 5}100 : 0 — Fi9(Gk) such that the product map (fg, ipe) 10T — ?ég)(GK) is
transverse.

We will sometime use the notation introduced in [36] and, if « € JI is a point,
denote by

xg = fz(a:) € Fy(Gk)

the image of x via the boundary map. If § = {ax} consists of a single root we will
also write &5 and 2 instead of §,{>ak} and x;{,ak}.

If 6  II contains the root a, we denote by m, : Fy(Gk) — Fa(Gk) the natural
projection. It is easy to deduce from Corollary 3.4 the following more general

statement:

Corollary 5.10. Let p: I — Gk be a-Anosov and consider o > 0. There exists C
only depending on o and p such that for every 8 < 11 containing a, if

€(00) 0 7 (p(1) * Bo.a(p(1)) 0 p(n) - Boalp(n)) # &
then

d(y,m) < |lv] = nl| + C.

Definition 5.11. Given a representation p : I — Gk we define its Anosov-Levi
space as (Eg,)* where

0, ={aell: pis a-Anosov}.
It is spanned by the fundamental weights {w, : a € 6,}.

A more precise description of the indicator set of p can be given on its Anosov-
Levi space. The following is a combination of Bridgeman-Canary-Labourie-S. [,
Theorem 1.3], Potrie-S. [35, Proposition 4.11] and S. [41].

Theorem 5.12. Let p : I — Gk be a representation, then Q,r) g, is an analytic
co-dimension 1 embedded sub-manifold of (Eg,)* that varies analytically with p;
moreover its restriction to the dual of the vector space spanned by the periods is
strictly convex.
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5.3. When some wall is not attained. The purpose of this subsection is to
explore Q,r) in directions that are not controlled by the roots with respect to
which p is Anosov.

Definition 5.13. Let p: [ — Gk be an a-Anosov representation. Consider 6 c II
with a € 6 and let u? be a (p(I), ¢)-Patterson-Sullivan measure on Fy (G ) for some
v € (Eg)*. We say that p is p?-irreducible if for every y € Fi9(Gk) one has

1 (Ann(y)) < p? (Fo(Gk)).

It is clear that if p(I') is Zariski dense in Gk then it is p#-irreducible for any
Patterson-Sullivan measure. Even assuming Zariski-density, the following result is
a refinement of Quint [10, Théoréme 8.1] when 6 contains a root with respect to
which p is Anosov. Indeed, in the general case treated by Quint, one needs to
control the mass of shadows on the flag space associated to II — 6, and, as a result,
the existence of a (p(I), p)-Patterson Sullivan measure only ensures that ¢ + pge is
in Dy, where pge is a suitable form that is non-negative on the Weyl chamber.
In our case, the Anosov condition with respect to one root in # permits to control
@ directly.

Theorem 5.14. Let p: I — Gk be an a-Anosov representation. Consider 6 < 11
with a € § and let p? be a (p(T), ) -Patterson-Sullivan measure on Fo(Gg) for some
€ (Eg)*. Assume p is p¥-irreducible, then

€ Dp(ry-

The rest of the section is devoted to the proof of this result. We begin with the
following lemma from Quint [410]. Quint assumes that the representation is Zariski
dense, an hypothesis that is too strong for the appliations we have in mind. We
observe however that for the proof to work only p#-irreducibility is needed. We
sketch the proof for completeness.

Lemma 5.15 ([10, Lemme 8.2]). Let p : I — Gy be a representation, u? be a
(p(), ) -Patterson-Sullivan measure on Fo(Gk). Assume p is p#-irreducible, then
there exists ag > 0 such that for every given 0 < a < ay there exist k > 0 only
depending on «, such that for every v € ' one has

kflefsa(a(p(v))) < p? (P(V)Bo,a(P(V))) < ke*so(a(p(v)))_

Proof. Observe that p¥-irreducibility guarantees that there exist «, k > 0 such that
for every v € I, u?(Bg.o(p(7))) = k: indeed otherwise there would be a sequence of
reals o, — 0 and elements 7, € I with u?(Bg o, (p(7n))) < 1/n. We can assume,
up to extracting a subsequence, that the complement of By ., (p(7y)) converges to
Ann(y) for some y € Fjy, and this contraddicts p?-irreducibility.

The result then follows from the definition of (p(T'), ¢)-Patterson-Sullivan mea-
sure using Equation (4.5). O

The rest of the proof of Theorem 5.14 is similar to the argument showing that
if there exists a Patterson-Sullivan density of a given exponent, then this exponent
must be greater than the critical exponent (see for example Sullivan [13] and Quint’s
notes [37, Theorem 4.11]):
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Proof of Theorem 5.1/. We have to show that for every s > 0 one has

S em(4a)e (ate) < o,
yel

Corollary 5.10 implies that given a > 0 there exists N € N, such that if ¢ > 0 and
Mi={yel:t<shl<t+1}

then for every x € oI’ one has

#7 e M m (€)M p()Boalol) # @} < N

Lemma 5.15 now yields for every t = 0
0 > M<F( ( ) >C Z e a(p(v)) (5.1)
vely

where C' is independent of t. This is to say, there exists K > 0 independent of
t € R, such that

Z e a(p(v))

ver:

Since ¢ € (L,(r))* and p is a-Anosov there exist positive J,4" and C' such that

e(alp(7))) = d'a(p(7)) = 6| —

One concludes that for every s > 0 one has

Ze 1+s)ga a(p(y Z Z e w p(v)) e—53(p(7))

~el n=0~el,

e
< Ke© Z e < op,
n—

as desired.

6. ANOSOV REPRESENTATIONS WITH LIPSCHITZ LIMIT SET

In this section we will prove Theorem A. We will hence fix some notation through-
out this section.

Assumption 6.1. The group I' will be a word-hyperbolic group whouse boundary
ol is homeomorphic to a sphere of dimension dr. We will also fix a projective
Anosov representation p : I — PSLy4(R) such that the sphere £}(aT) is a Lipschitz
submanifold of P(R?), i.e. it is locally the graph of a Lipschitz map. Note that we
have restricted ourselves to K = R.



27

6.1. The p-th Jacobian. Given a line ¢ contained in a p+ 1-dimensional subspace
V of R?, the space of infinitesimal deformations of £ inside V'

TP(V) c T/P(R?)

carries a natural volume form induced by the choice of a scalar product 7 on
R<. Namely, if one considers the T-orthogonal decomposition V' = ¢ @ f({;, then
one canonically identifies T,P(V) = hom(/,#{) and thus one can define Qy €
AP(TP(V)) by

vAe1(V) A A @p(v)
|lofp+1

Qov(et,...,pp) =
for any v € £ — {0}.
Definition 6.2. The linear form J; € (E(,, 4,,,})* defined by
dy, = (p+ Dwi —wpt1
is called the p-th unstable Jacobian.
Lemma 6.3. Given g € PSL4(R) and a partial flag (¢,V) € iﬂahap“}(RdL one has

9*Qegv = exp (= 35 (Dor s, (9 (61))) ) Qv

Proof. This is an explicit computation using equation (4.6) and the definition of
Qg_yv.

Indeed, whenever 1, ..., ¢, € hom(¢, /i) are linearly independent, the vectors
{v,01(v), -+, pp(v)} form a basis of V and thus:

9 Qe gv (@1, 0p) = Qe gv (901, -, 90p)

_ v (ge1)(gv) A - A (99p)(9v)
lgofP*?

v Agei(v) A A glep(v))
lgvlP*1

v A g(ei(®) A Aglep(v) v A pi(v) A A (o) P

o vapei() A A () (lias lgvf[P+1
= exp (wWp1(Dfay 2,413 (9: V) = (0 + Dwi(bgay a,,13(9:0))) Qv
|
6.2. Existence of a HgF-Patterson-Sullivan measure. Let us prove the follow-
ing proposition.
Proposition 6.4. Under assumption 6.1, there exists a (p(I),dy_)-Patterson-Su-

llivan measure on ?{ahadr}'

Proof. Tt follows from Rademacher’s theorem [17, Theorem 3.2] that £}(dl') has
a well defined Lebesgue measure class (cfr. [19, Section 3.2]), and that Lebesgue
almost every point £} (z) € £}(r) has a well defined tangent space, this defines a
dr + 1 dimensional vector subspace xgr‘H € ?{aerrl}(Rd) such that

Ter(0) (6(0T)) = hom(&5 ),z /&, (). (6.1)
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Consider the p-equivariant measurable map ¢, : £} () — Fa, | (R?) defined

by

adr+1}

Co(&p(@) = (& (x), zg™ ). (6.2)

We can then define a volume form on &, (dr) via

&(2) = Q¢ (e12))-

This form is defined Lebesgue almost everywhere and thus defines a Lebesgue mea-
sure on E;(&F), which we will denote by v,. Lemma 6.3 implies directly that the
push-forward (¢,)«v, is the desired measure. O

6.3. When 0l is a circle. Recall from the introduction that we say that p is
weakly irreducible if the vector space span (5;1) (él_)) is the whole space.

Lemma 6.5. Under assumption 6.1 together with weakly irreducibility of p and
dr =1, one has that p is p¥-irreducible for any (p(T),¢)-Patterson-Sullivan mea-
sure on ?{31_’32}(Rd) whose projection is absolutely continuous with v,,.

Proof. If this were not the case, there would exist (Wp, Py) € ff{adﬁ@dﬂ}(ﬂ%d) such
that Ann(Wy, Py) would have full u®-mass; as p is projective Anosov we can further-
more assume that Py = {g_l(x) for some x € oI and thus the condition &} (y) < Py
only occurs for y = .

Hence, since the projection of u# is absolutely continuous w.r.t. to v, one has
that for p#-almost every &)(x) € £(0r) the vector space x2 from subsection 6.2
intersects W.

Let us choose a scalar product 7 on R?, and the induced distance function of
P(R?). Let us denote by [Wy] the quotient vector space R?/Wy, it is a 2-dimensional
vector space and every line ¢ ¢ W, defines a line [¢ @ W] in [Wy]. Moreover, for
every 0 > 0 the double quotient projection

m: {le P(RY) : £, (6, Wp) > 6} — P([W]),

defined by m(¢) = [[¢ @ Wy]], is Lipschitz.
We denote by Us < E;(@r) the relative open subset defined by
Us = {Le&(r) : £-(0,Wp) > 6}
and consider the Lipschitz map #|Us : Us — P([Wp]). Since, by assumption, for
uP-almost every 52(33) € f;(&l_) the plane :1:5 intersects Wy, one concludes from
equation (6.1) that 7|Us has zero derivative v,-almost everywhere.
Since Lipschitz maps are absolutely continuous, and in particular satisfy the

fundamental theorem of calculus, we deduce that 77\5; () is constant. This implies
that

£(N) c Wo @&, (),
for any z € o', which contradicts the weak irreducibility assumption. (Il

We can now prove Theorem A when dr = 1:

Corollary 6.6. Let I' be a word-hyperbolic group such that oI is homeomorphic
to a circle. Let p: T — PGL4(R) be a weakly irreducible a1-Anosov representation
such that £,(T) is a Lipschitz curve. Then

aj € Qp(r).
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Proof. Note that a; = J{ is the first unstable Jacobian. Since £}(r) is a Lipschitz
circle, it has Hausdorff dimension 1 and thus Corollary 1.9 implies that A%t > 1.

On the other hand, Lemma 6.4 provides a (p(I'), J})-Patterson-Sullivan measure
pd1 on Flar,a03 (V) that projects to the Lebesgue measure on &;(0r). Since p is
weakly irreducible, Lemma 6.5 implies that it is p97-irreducible, thus Theorem
5.14 applies to give

a1 =37 €Dy,
this is to say h,(a1) < 1 which concludes the proof.
([l

Before proceeding to arbitrary dr let us record a direct consequence of Corollary
6.6. Let us say that p is coherent if the first root arising in span (f;(@l’)) is aj.

Corollary 6.7. Let [ be a word-hyperbolic group such that 0T is homeomorphic to
a circle. Let p : T — Gk be an a-Anosov representation and assume there exists
prozimal, real representation A : Gx — PGL(VR) with first root a, such that Ao p is
coherent, then

aeE Qp(r).

6.4. When JI' has arbitrary dimension. Recall that a subgroup I' ¢ PGL(V)
is strongly irreducible if any finite index subgroup acts irreducibly. It is well known
that this is equivalent to the fact that the connected component of the identity of
the Zariski closure of I' acts irreducibly on K¢.

We will need the following lemma (that does not require assumption 6.1).

Lemma 6.8. Let n: I — PGL4(R) be a strongly irreducible a;-Anosov representa-
tion. Assume that there exists p € [1,d — 1] and a measurable n-equivariant section
C:0l - Sf{ahap}(ﬂ%d). Then n is p?-irreducible for any (p(I), ¢)-Patterson-Sullivan
measure on Fp(K9).

Proof. Otherwise we would be able to find a subspace Wy € Fya,_1(R?) such that
for almost every” &) (x) € £5(0T) one has ((x)P "Wy # {0}. Since ¢ is n-equivariant,
we would find a p-dimensional subspace V' such that for every y eI,

n(v)V n Wo # {0}

This implies that for every g in the Zariski closure of n(I) it holds that dim gV n
Wy = 1. The contradiction comes from Labourie [33, Proposition 10.3] stating that
the identity component of such a Lie group cannot act irreducibly. O

We can now prove Theorem A for arbitrary dr.

Corollary 6.9. Under assumption 6.1 together with strong irreducibility of p one
has

gu e Q,(N).

Proof. Since g;(ar) is a Lipschitz sphere, it has Hausdorff dimension dr and thus
Corollary 1.9 implies that h,(d3 ) = 1. Lemma 6.4 guarantees the existence of a
(p(T), 334, )-Patterson-Sullivan measure. Moreover, the equivariant map from equa-
tion (6.2) allows us to apply Lemma 6.8 and thus we are in the hypothesis of
Theorem 5.14, consequently hp(ng) < 1, which concludes the proof. (Il

Swith respect to the pushed forward measure myu?, where 7 : fﬂal’ap}(Rd) — P(R?) consist
con forgetting the p-th coordinate,
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7. (1,1,p)-HYPERCONVEX REPRESENTATIONS AND A C'-DICHOTOMY FOR
SURFACE GROUPS

In this section we will consider projective Anosov representations whose image
of the boundary map is a C* submanifold. In the second part of the section we will
prove Corollary 1.8 providing a a C'-dichotomy for surface groups.

7.1. (1,1,p)-hyperconvex representations.

Definition 7.1. A {ai,a,}-Anosov representation p : [ — PGL4(R) is (1,1, p)-
hyperconvez if, for every pairwise distinct x,y, z € oI, the sum

¢Hz) + ' (y) + €77 (2)

is direct.

Example 7.2. Examples of Zariski dense hyperconvex representations can be
obtained by deforming S* o ¢, where S¥ denotes the k-th symmetric power and
t: T — PO(1,p) is the inclusion of a co-compact lattice, see P.-S.-W. [36, Corollary
7.6].

Hyperconvex representations were introduced by Labourie [33] for surface groups
and further studied by Zhang-Zimmer [15] when the boundary of I is a topologi-
cally a sphere and by P.-S.-W. [30] for arbitrary hyperbolic groups. In both |
Proposition 7.4] and [15, Theorem 1.1] one finds the following result.

)

Theorem 7.3 (P.-S.-W. and Zhang-Zimmer). Assume that oI is topologically a
sphere of dimension p — 1 and let p : T — PGL4(R) be a (1,1, p)-hyperconvex
representation. Then & (0T) is a C'-sphere.

Theorem A then gives:

Corollary 7.4. Assume that Ol is topologically a sphere of dimension p—1 and let
p: T — PSLa(R) be strongly irreducible and (1,1, p)-hyperconvez. Then h,(d;) = 1.

Remark 7.5. This generalizes Potrie-S. [35, Corollary 7.1]. Observe however that,
since the limit set £(0I) is a C'-submanifold of P(R?), the arguments of [35] adapt
directly to give a version of Corollary 7.4 without requiring strong irreducibility.

Glorieux-Monclair-Tholozan [22] recently showed the following.

Theorem 7.6 (Glorieux-Monclair-Tholozan [22]). Let p : I — PGL4(R) be an
a1-Anosov representation that preserves a propery convex domain, then

2k, (w1 + wg—1) < dimpge (€1, €971 (aT)),
where (£1,£%71) 1 oF — P(RY) x P((R)*).
As an application of Corollary 7.4 we show that, for (1, 1, p)-hyperconvex repre-

sentations with p < d — 1 such bound can never be acheived (note that we do not
require the representation to preserve a convex set):

Proposition 7.7. Assume that 0T is topologically a sphere of dimension p—1 and
let p: T — PGL4(R) be strongly irreducible and (1,1, p)-hyperconvex. If p < d —1,
then

2hp(wr +wi—1) < (1 —¢)(p—1),
where € > 0 only depends on the {a1,ap}-Anosov constants of p.
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Proof. Since p < d — 1 the functional ¢ € E*
— W1 Wd—1 — W1
i d—2

is non-zero, moreover observe that, for every v € ET one has

o) = (525 ) o)

Since p is ap-Anosov, the last computation implies that ker ¢ N L,y = {0} this
is to say that ¢ € (£,(r))*, in particular ¢ has a well defined entropy h,(¢) € (0, 0).
Moreover,

hy <Z:;((d — Dw; — wd1)> = hp(@p1 +(p—1)0) (7.1)
ho(9)
W@ tp T "

where the equality comes from the equality between the corresponding linear forms
and the inequality follows from Lemma 5.6 together with Corollary 7.4 stating that

hp(dp—1) = 1.
Finally, observe that
-1 1/p—1 -1
(v . )1 —war) = 5 (E=5 (@ = Dwr —wa1) + Eo((d = Dwar — )

= %(3;‘—1 +(p=1)¢+ (Jiy + (p— 1)) o),

where i : E — E is the opposition involution. Together with equation 7.1 and
Lemma 5.6, this yields

2 B ho(@5-1 + (0 = 1)0)h, (31 + (p—1)9) 1)
o ) S 2 G T T 10) + by (@ + (- L)) o1)
< hp(Fpi + (p—1)9)
ho(9)
hp((b)JFP*l <L

since entropy is i-invariant.

To conclude the proof we observe that the functional ¢ belongs to the Anosov-
Levi space of every {ai, a,}-Anosov representation, its entropy thus varies continu-
ously (Theorem 5.12) and hence

hy(9)
hn(¢) +p-—1

is bounded away from 1 on compact subsets of X(,, 5} (F, PGLd([R)).

—

O

C'-dychotomy. Now we prove Corollary 1.8. As we will later see (Section 9 and
Section 10) there are many projective Anosov representations of surface groups
where the image of the boundary map is Lipschitz. However, when we embed the
surface group into PSLy(R) and look small deformations of representations

I — PSL2(R) — PSL4(R),
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where the PSLs(R) representation satisfies additional proximality assumptions, then
the image of the boundary map is never Lipschitz. We restate the dichotomy for
the reader’s convenience.

Corollary 7.8. Let A : PSLo(R) — PSL4(R) be a (possibly reducible) prozimal
representation such that AN is also proxzimal. Let S be a closed connected surface
of genus = 2 and let py : mS — PSLo(R) be discrete and faithful. Then we have
the following dichotomy:

i) If the top two weights spaces of A\ belong to the same irreducible factor, then
for every small deformation p : 7.5 — PSL4(R) of Apg the curve f;(ﬁmS)
is CL.

i1) Otherwise, for every weakly irreducible small deformation p : m1.S — PSL4(R)
of Npg the curve {;(&US) is not Lipschitz.

Proof. By the proximality assumptions on A, the representation
p = /\p() : 7715 i PSLd(R)

is {a1, as}-Anosov.

Furthermore, if the first two weights of A belong to the same irreducible fac-
tor, the representation p is also (1,1, 2)-hyperconvex, this is an open property in
X(m15,PSLg(R)) (P-S.-W [30]) and thus Theorem 7.3 implies that every small
deformation of p has C' limit set.

If, instead, the two top weights of A were belonging to different irreducible factors,
then it follows from the representation theory of SL(2,R) that

hp(a1) = hy(d7) = 2.

Note that the entropy if g% is continuous on X, a,} (715, PSLg(R)) (Theorem 5.12),
in particular there exists a neighborhood U of p such that h,(J}) > 1 for every
1 € U. Theorem A implies that no weakly irreducible representation in U can have
Lipschitz limit set. O

Along the same lines we can deduce that some natural Anosov representations
of hyperbolic lattices do not have Lipschitz boundary maps:

Corollary 7.9. Let I < PO(1,n) be a lattice, n = 3 and p1 : T — PO(1,m)
strictly dominated by the lattice embedding pg. Then for any Zariski dense small
deformation of po @ p~ ", the limit set £)(0r) is not Lipschitz.

Examples of lattices I admitting such representations were constructed by Danciger-
Gueritaud-Kassel [15, Proposition 1.8].

8. HP*9 CONVEX-COCOMPACT REPRESENTATIONS

Generalizing work of Mess [34] and Barbot-Mérigot [2], Danciger-Guéritaud—
Kassel [10] introduced a class of representations called HP'9-convexr cocompact.
These form another interesting class of representations with Lipschitz boundary
map where Theorem A apply.

Let d = p + ¢ with p,¢ > 1 and let Q be a symmetric bilinear form on R? of
signature (p, q). The subspace of P(R?) consisting on negative definite lines is called
the pseudo-Riemannian hyperbolic space and denoted by

HP4~L = (¢ e P(RY) : Qle—toy <0}
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The cone of isotropic lines is usually denoted by oHP-4~1,
Instead of the original definition of convex-cocompactness, we recall the charac-
terization given by [16, Theorem 1.11].

Definition 8.1. An a;-Anosov representation p : I — PO(p,q) is HPY~!-convex
cocompact if for every pairwise distinct triple of points x,y, z € dI', the restriction

Q|§},($)®E},(y)@§},(z) has signature (2, 1).

When [y is a cocompact lattice in SO(p, 1), HP'!-convex cocompact represen-
tations of 'y are usually referred to as AdS-quasi-Fuchsian groups. Barbot [3]
proved that these groups form connected components of the character variety
3e(r0, SO(p, 2)) only consisting of Anosov representations. In [21] Glorieux-Monclair
prove that the limit set of an AdS-quasi-Fuchsian group is never a C'-submanifold,
except for Fuchsian groups.

The following is well known and easy to verify, see for example Glorieux-Monclair
[20, Proposition 5.2].

Proposition 8.2. Assume that oI is homeomorphic to a p— 1-dimensional sphere.
Ifp: T — PO(p, q) is HP?-convex cocompact, then 5; (0r) is a Lipschitz submanifold
of OHP-a~L,

Proof. The space 0HP-4~! admits a twofold cover that splits as the product SP~1 x
S$2~1. It is furthermore immediate to verify that, since for every pairwise distinct
triple (z,y,z2) € oI, Q|E;(x)®£;(y)®£,§(z) has signature (2, 1), each one of the two lifts
of f;(@l’) to SP71 x $971 is the graph of a 1-Lipschitz function f : SP~! — S~
and, as such, is a Lipschitz submanifold of dHP:?~1, O

Theorem A then yields:
Corollary 8.3. Assume that 0T is homeomorphic to a p — 1-dimensional sphere
and let p: T — PO(p, q) be HP 91 -convex cocompact, then
- if p =2 and p is weakly irreducible then h,(d}) = 1,
- if p= 3 and p is strongly irreducible then h,(dy_,) = 1.

One concludes the following upper bound for the entropy of the spectral radius
inspired by Glorieux-Monclair [20].

Corollary 8.4. Assume that oI is homeomorphic to a p — 1-dimensional sphere
and let p: T — PO(p, q) be HP9~1-convex cocompact. Then
- if p=2 and p is weakly irreducible then h,(w1) <1,
- for p =3 and p strongly irreducible, h,(w1) < p— 1.
Proof. Assume first p < ¢ and note that for every g € PO(p, ¢) one has
wp —wi(A(g)) = A2(g) + -+ + Ap(g) = 0.
By definition, J;_; = pw1 — wp and thus
hy(wi)
p—1

by Corollary 8.3. The only difference in the case ¢ < p is that J;,_; = pw1 — wy,
but the same argument applies verbatim. [

= hy((p = Dwr) < hp(@y-1) = 1,
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The entropy for the first fundamental weight has a particular meaning for pro-
jective Anosov representations into PO(p, q), notably for ¢ > 2. Fix o € H”9~! and
consider

S° ={W <R¥:0c W, dimW = q and Q|W is negative definite}.

This is a totally geodesic embedding of the symmetric space X, 1 of PO(p,¢—1)
in the symmetric space X, 4.

Given a projective Anosov representation p : I — PO(p, ¢) one defines the open
subset of HP-4~1

Q, = {oe H"" " : Q(o0,&)(x)) # 0Va € aT}.
Carvajales [12] shows that, assuming Q, # (J, for every o € Q, one has

i log#{yeTl :dx, (5% p(7)S°)}
1m

t—0 t

= hp(wl)

and provides an asymptotic for this counting function ([12, Theorem A]).

When p is moreover HP:?~!-convex-cocompact, Glorieux-Monclair [20, Section
1.2] introduce a pseudo-Riemannian critical exponent d,, and show, in particular,
that

0p<p-—1
([20, Theorem 1.2]). Carvajales proves [12, Remarks 6.9 and 7.15] that §, = h,(w1)
so Corollary 8.4 provides a different proof of [20, Theorem 1.2] when I is assumed

to have boundary homeomorphic to a p — 1-dimensional sphere.

We finish the section with a direct application of Theorem 5.4 and Corollary 8.3
allowing us to get a bound for the Riemannian critical exponent. We use freely the
notation from Remark 5.5.

Consider a representation A : PO(p,1) — PO(p, q) such that its imagie stabilizes
a p + 1-dimensional subspace V of R? where Q|V has signature (p,1). Endow the
symmetric space X, , with a PO(p, ¢)-invariant Riemannian metric such that the
totally geodesic copy of H? in X, , induced be A has constant curvature —1. In
particular, if ¢« : [ — PO(p, 1) is the lattice embedding, h},, = p — 1. We show
that this is an upper bound for any strongly irreducible, HP*4~!-convex-cocompact
representation:

Proposition 8.5. Assume that 0T is homeomorphic to a p— 1-dimensional sphere
and let p : T — PO(p,q) be strongly irreducible and HP*4~1-convez-cocompact and,
then

hffSp—l.

Proof. In view of Theorem 5.4 (or more precisely Remark 5.5), it suffices to recall
that D,y is convex (Lemma 5.3) and that, by Corollary 8.3,

dp—1 € 2p(r)-

See Potrie-S. [35, Section 1.1] for more details. O

9. MAXIMAL REPRESENTATIONS

An important class of representations that are in general only Anosov with re-
spect to one maximal parabolic subgroup, but admit boundary maps with Lipschitz
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image are maximal representations into Hermitian Lie groups. In this case the Lip-
schitz property for the image of the boundary map is a consequence of a positiv-
ity /causality property of the boundary map. We first describe the causal structure
on the Shilov boundary of a Hermitian symmetric space of tube type, introduce the
notion of a positive curve and show that the image of any positive curve (that is not
necessarily equivariant with respect to a representation) is a Lipschitz submanifold.
We then show how this applies to maximal representations and allows us to prove
Theorem 9.8, the main result of this section. We also deduce consequences for the
orbit growth rate on the symmetric space.

9.1. Causal structure and positive curves. Let Gg be a simple Hermitian Lie
group of tube type. Examples to keep in mind are the symplectic group Gg =
Sp(2n,R) or the orthogonal group Gg = SO((2,n). The Shilov boundary S of
the bounded domain realization of the symmetric space associated to Gg is a flag
variety GR/P, where P is a maximal parabolic subgroup determined by a specific
simple root {a}. In the two cases that serve as our main examples, Gg = Sp(2n,R)
and Gg = SOg(2,n), the parabolic subgroup P in question is, respectively, the
stabilizer of a Lagrangian subspace L € 2 (R?") and the stabilizer of an isotropic
line [ € Is;(R%™), so that & = a,,, resp. & = a;.

In general, for a simple Hermitian Lie group of rank n, there is a special set of
n strongly orthogonal roots by, - - - b, of the complexification g¢, see [29, p.582-583].
The set of strongly orthogonal roots give rise to a (holomorphic) embedding of a
maximal polydisk. If the symmetric space is of tube type, the simple root & is the
smallest strongly orthogonal root & = b,,. All the other strongly orthogonal roots
are of the form b; = b, + ¢, where ¢ € E* is non-negative on the Weyl-chamber.
We record the following for later use:

Lemma 9.1. Let a € ET then d(a) = I{lin b;(a).
i=1,...,n

For Hermitian groups of tube type, the Shilov boundary carries a natural causal
structure: for every p € S there is an open convex acute cone Cp c Tp5 which we
now define.

Recall that Gg/P can be identified as the space of parabolic subgroups of Gg
that are conjugate to P. Let us fix a point p = P € S, which one should think of as
a point at infinity. Then at any point p = P € S that is transverse to p, i.e. such
that the parabolic groups P and P are opposite, the tangent space TPS' is identified
with the Lie algebra @i of the unipotent radical of P, and the cone C)p is an open
convex acute cone C' C # invariant under the action of the connected component of
PnP.

In the case of Sp(2n,R) this is the cone of positive definite symmetric matrices,
and in the case of SO((2,n) it is the cone of vectors with positive first entry,
that are positive for the induced conformal class of Lorentzian inner products on
Tp |51(|R2’n).

This invariant cone C' < # in fact also gives rise to the notion of maximal triples
in S via the exponential map. A triple (P, Q,P) is said to be maximal if there
exists an s € C such that Q = exp s - P. Extending this by the action of G leads to
a notion of maximal triples in S, which actually coincides exactly with those triples
which have maximal (generalized) Maslov index as introduced by Clerc-Orsted [13].
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Definition 9.2. Let S be the Shilov boundary of a Hermitian symmetric space of
tube type. A curve £ : S — S is positive if the image of any positively oriented
triple is a maximal triple.

Proposition 9.3. Let £ : S — S be a positive curve. Then &(S') is a Lipschitz
submanifold of S.

Proof. Note that whenever we pick two points p; = P;,ps = P> on the image of &,
the image £(S!) can be covered by the two charts consisting of parabolic subgroups
that are transverse to p; respectively ps.

In any of these charts the inverse image of £, under the exponential map

n —  Ge/P;
s — exp(s)P;

gives a map & : R — n; such that for every ¢; < to we have £(to) —£(t1) is contained
in the open convex acute cone C, it then follows (see for example Burger-lozzi-
Labourie-W. [9, Lemma 8.10]) that the restriction of £ to any bounded interval has
finite length. As a result £(S') < S is rectifiable. It is thus possible to reparametrize
S! so that £ is a Lipschitz map.

([l

Remark 9.4. Note that we did not assume that the positive map is equivariant
with respect to a representation. This will be important in Section 10, where we
will apply Proposition 9.3 in this generality.

9.2. Maximal representations. Let now G denote an Hermitian semisimple Lie
group and let [ denote the fundamental group of a closed hyperbolic surface S.
We consider representations p : [ — G that are maximal, i.e. they maximize the
Toledo invariant, whose definition was recalled in the introduction. Important for
us is that they can be characterized in terms of boundary maps by the following
theorem.

Theorem 9.5 (Burger-lozzi-W. [10, Theorem 8]). A representation p : I — G
is mazimal if and only if there exists a continuous, p-equivariant, positive map

¢p:0F - 8.

In order to apply Corollary 6.7 we need to verify some weak irreducibility as-
sumption. Let us first treat the case when the Zariski closure of p(I') is simple.

Corollary 9.6. Let G be a simple Hermitian Lie group of tube type and let & be the
root associated the Shilov boundary of G. If p: T — G is a Zariski-dense mazimal
representation then

ae ),
this is to say, h,(a) = 1.

Proof. Follows from Corollary 6.7 and Proposition 9.3 by considering the represen-
tation Ay from Proposition 4.4. O

In the remainder of this section we show how the case of maximal represen-
tations with semi-simple target group that are not necessarily Zariski-dense, can
be reduced to Corollary 9.6. To this aim, we will use a result from Burger-lozzi-
W. [11] describing the Zariski closure H of a maximal representation: H splits as
Hy; x --- x H,,, each factor is Hermitian, and the inclusion in H — G is tight. In the
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following we will not need the definition of a tight homomorphism, and therefore
refer the interested reader to [11, Definition 1] for it.
The following lemma will then be useful:

Lemma 9.7. Let G be a classical simple Hermitian Lie group of tube type and
consider a tight embedding ¢ : H = Hy x -+ xH, — G. If we denote by 1y : E}} — E¢
the induced map, then
3G 0Ly = minay,.
3

Proof. Denote by w: h @ ---®bh,, — g the associated Lie algebra homomorphism.
Let E; be a Cartan subspace of H; and Eg a Cartan subspace of G such that
7T(EZ) [ EG.

As ¢ is tight, and G is classical, the classification of Hamlet-Pozzetti [28] applies
and gives that we have an orthogonal decomposition Eg = B; @ -+ @ By so that
7| @E; is a direct sum of maps m; : E; — B;; furthermore, there are only few
possibilities for the linear map 7;: if H; has rank greater than one, then B; = EJ*
for some m; and 7; is a diagonal inclusion; instead, if E; is one dimensional, or
equivalently H; =~ PSLy(R), then 7; is induced from a direct sum of non-trivial
irreducible representations (of varying degrees). It is easy to check that the subspace
B, is then the span of the real vectors in p associated to the strongly orthogonal roots
that do not vanish on w(E;). Setting b; = min;p |, bj, we have bil~E,) = an,-
And hence, with Lemma 9.1, we have ag = min;(dn;,).

O

We can now prove the following:

Theorem 9.8. Let G be a Hermitian semi-simple Lie group such that all factors
of G that are of tube type are classical. Let 8 — A be the subset of simple roots
associated to the Shilov boundary of G. Then for every mazximal representation
p: T — G one has

0 c Qp(r).
Proof. f G = Gy x --- x G, then S = Sy x --- x S,,, and therefore § = {a¢,,- - -3¢, }
(see Burger-lTozzi-W. [11, Lemma 3.2 (1)]). Furthermore p : I — G is maximal if
and only if all p; :  — G; are maximal (Burger-Iozzi-W. [10, Lemma 6.1 (3)]).

Therefore we can restrict to the case that G is simple.

Since every maximal representation factors through a representation into the
normalizer of a maximal tube type subgroup H < G (Burger-lozzi-W. [10, Theorem
5 (3)]), which is simple, has the same rank as G, and is such that g = ap, we can
restrict to the tube type case as the limit set in Sg is contained in Sy and coincides
with the limit set in Sy. The maximal tube type domains are always classical
Hermitian symmetric spaces, except for the one exceptional Hermitian symmetric
space of tube type.

If now p is not Zariski dense, then the Zariski closure is reductive and of tube
type, so it is of the form H; x --- x H,, and the representations into H; are Zariski
dense and maximal. Therefore we have h,(an,) = 1 for all <. As the inclusion
Hy; x --- x H,, — G is tight, the result follows from Lemma 9.7 and Lemma 5.1. [

9.3. Application to the Riemannian critical exponent. Any simple Hermit-
ian Lie group G admits a diagonal embedding 2 : SL(2,R) — G, which is equi-
variant with the inclusion of a diagonal disk in a maximal polydisk. We say that a
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representation p : [ — G is diagonal-Fuchsian if it has the form p = 12 o py where
po : I — SL(2,R) is the lift of the holonomy of a hyperbolization.

Let Ko < G be the centralizer of the image of :*, which is compact. Then
a diagonal Fuchsian representation p can be twisted by a representation x : [ —
Ka. We call the corresponding representation p, : I — G a twisted diagonal
representation. Observe that the Riemannian critical exponent h¥ is constant on
twisted diagonal representations (the exact value hﬁ(iag depends on the choice of the
normalization of the Riemannian metric)

Proposition 9.9. Let I be the fundamental group of a closed surface and let p :
I — G be a mazximal representation, then hff < hfiag,

Proof. Let by,---b, be the set of strongly orthogonal roots for G¢. It is immediate
to verify that the limit cone £, ) of a representation pg in the Fuchsian locus is
concentrated in the span of the vertex of the Weyl chamber is Y\ | b¥, where b* is
the basis of E dual to {by - - - b,,}. We know from Corollary 9.6 that, for every p, the
growth rate h,(a) = 1. Thus, if we denote by (E*)* the cone of functionals that are
non-negative on the Weyl chamber, we get that a+(E*)* < Dy, and in particular
all the strongly orthogonal roots are in D ,(r). A simple computation shows that the
affine simplex determined by the strongly orthogonal roots meets the ray R | b;
orthogonally in a point (it is just the diagonal in a positive quadrant meeting the
span of the basis vectors), whose norm has to compute the Riemannian orbit growth
rate of any representation pg in the Fuchsian locus: Q, ry is the affine hyperplane
orthogonal to R>}" | b; that contains a. Remark 5.5 concludes the proof. [

Remark 9.10. Note that when G is Sp(4,R), or more generally SO, (2, n), it fol-
lows from Collier-Tholozan-Toulisse [14] that the bound is furthermore rigid: the
equality is strict unless p is equal to pp up to a character in the compact centralizer
of its image.

Note that for maximal representations into Sp(2n,R) n > 3, every connected
component of the space of maximal representations contains a twisted diagonal
representation. However for Sp(4,R) there are exceptional components, discovered
by Gothen, where every representation is Zariski dense (see Bradlow-Garcia-Prada-
Gothen [7] and Guichard-W. [25]). In these components it is easy to verify that the
bound we provide is sharp, despite not being acheived.

In the special case of the Hitchin component of Sp(2n,R), the bound of Proposi-
tion 9.9 is never attained, as the irreducible representations provide a better bound
that is furthermore rigid (Potrie-S. [35]).

10. 6-POSITIVE REPRESENTATIONS

Throughout this section we will write
G =50(p,q)

with p < g. We consider the subset 8§ = {ai,...,a,_1} of the simple roots discussed
in Example 4.6 and denote by Py the corresponding parabolic group, by Ly its Levi
factor and by Uy its unipotent radical.

The group G admits a 6-positive structure as defined by Guichard-W. [27]. This
means that for every b € 6 there exists an Ly-invariant sharp convex cone ¢, in

Up = Z fa-

aEZ; ,a=b mod Span(II—0)
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Here X = X%\ Span(II—6). For b € {a1,...,a,_»}, the space uy, is one dimensional
and the sharp convex cone ¢, = RT < R consists of the positive elements, while
Uy, = R?P*2 endowed with a form ¢ of signature (1,q—p+ 1) preserved by the
action of LY = RP~2 x SOO(l,q —p+1). The cone c,, , consists precisely of the
positive vectors for g; whose first entry is positive.

Following [27, §4.3] we denote by W (#) the subgroup of the Weyl group W
generated by the reflections {o; fz_f together with the longest element 0,1 of the
Weyl group W,,_, a, of the subroot system generated by the last two simple roots.
W (0) is, in our case, a Weyl group of type B,_1. We denote by wg the longest
element of W (#), and choose a reduced expression wy = 0y, ...0;,. Of course every
reflection o, appears at least once among the o;,. We consider the map

.0 0
Fgl.lmgil DGy XX o Uy

(v1,...,07) — exp(vy)...exp(v;)

The 6#-positive semigroup U(j is defined as the image of the map Fs,. .. .0, , and
doesn’t depend on the choice of the reduced expression [27, Theorem 4.5].

A f-positive structure on G gives rise to the notion of a positive triple in G/Py.
A pairwise transverse triple (Fy, Fy, F3) € (G/Py)? such that Stab(F3) = Py is 0-
positive if Fo = u - I for some u € UGJr [27, Definition 4.6], and more generally
a triple is 0-positive if it lies in the G-orbit of a #-positive triple. Let now [, be
the fundamental group of a hyperbolic surface. A representation p : I, — G is
0-positive if there exists a p-equivariant map oIy, — G/Py sending positive triples
to f-positive triples [27, Definition 5.3]. Guichard-Labourie-W. show that every
O-positive representation is necessarily 6-Anosov [27, Conjecture 5.4], but since
the proof did not yet appear in print, in this section we will freely add this last
assumption, and only discuss #-positive Anosov representations.

Theorem 10.1. Let p : T — SO(p,q) be O-positive and 0-Anosov. For every
1 <k < p— 2 the representation A¥p is (1,1,2)-hyperconvexr.

Proof. We denote by & : 0, — G /Py the 6-positive continuous equivariant bound-
ary map, and by &' : oI, — Is;(RP?) the induced maps. By assumption, £(y) =
s+ &(x) for some element s in the positive semigroup of the unipotent radical of
the stabilizer of £(z). In turn s = exp(vy)...exp(v;) with v; € cgit (recall that
ive{l,...,p—1}.

We set d = p + ¢q. It follows from [36, Proposition 8.11] that, in order to check
that A¥p is (1,1,2)-hyperconvex, it is enough to verify that the sum

(@) + () n &M (=) + €571 (2)
is direct, or, equivalently that the sum
(@) +5- (&) n (=) + 671 (=)

is direct (recall that s belongs to the stabilizer of £,(z)). Without loss of generality
we can assume that the form @ defining the group SO(p, q) is represented by

0 0 K
Q= 0 J 0
(—1)’K 0 0
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with
0 0 1 0 0 (—1p1
E=| ¢ . olads={ o -1, 0
(-1)» 0 0 (—1)p~t 0 0
We can furthermore assume that £'(z) = (e1,...,e;) and €' (x) = {eq, ..., eq_111)

so that &¥(x) n ¢97%+1(2) = e4_r11. In order to check that the representation
is (1,1, 2)-hyperconvex, we only have to verify that, given s as above, writing s -
€d—k+1 = »,;€;, the coefficient ay_j never vanishes. But we claim that such
coefficient is just Zz‘,:k vy > 0. Indeed, by construction, if v; € 0 with m €

am

{1,...,p—2}, then exp(v;) € SO(p, ) differs from the identity only in the positions

(t,t+1) and (d—t,d—t+1) where it is equal to v, (cfr. [27, §4.5]), while if v, € chi1
we have
Id,—2 0 0 0
0 1 vt g;(v) 0
exp(vy) = 0 0 Idg—pt2 Jv 0
0 0 0 1 0
0 0 0 0  Idp_»
The result is then immediate. ([
In particular we deduce from [36, Proposition 7.4] the following

Corollary 10.2. Let p : I — SO(p, q) be 0-positive Anosov. For everyl < k < p—2
the image of £§(8F) is a C* submanifold of sy (RP9).

We now turn to the proof of the last statement in Theorem 1.3. Instead of
directly verifying that the map fg_l has Lipschitz image, we will study properties
of the map 520 : 0y — G /Py, where

b0 = {ap-2,3p-1}.
The flag manifold G/ Py, consists of nested pairs of isotropic subspaces of dimension
p—2andp—1.

Proposition 10.3. Let p : I — SO(p, q) be 0-positive Anosov. The image of the
map &5 : 0Ty — G/ Py, is a Lipschitz submanifold of G/P,.

Proof. We fix a point z € 0I' and we assume without loss of generality that £ ’; (2) =
{e1,...,er). We denote by A < G/Py, the set of points transverse to £5~P~1(z).
We will show that the image of fgo lor\{z} is a Lipschitz submanifold of A. Denote
by A,_2 = G/P,,_, the set of isotropic subspaces of dimension p — 2 transverse to
§072(z) = e1,...,ep—2), by Z, 1 the (p—1)-isotropic subspace Z, 1 := 27" (z2) =
(e1,...,ep—1), and by ZIJ; 1 its orthogonal with respect to the form @ defining

SO(p, q). Observe that we have a smooth map

A = Ay xIsi1(Zy 5/ 7, 9)
(Y2, Y1) = (Ypo, [Ypo1 0 Zis))

whose image is the product of A,_o with the set Jz of isotropic lines transverse
to the image of ZpL_l. Indeed for every pair (Y,—2,v) € Ap_a x Jz, the subspace

v + Zp_2 has dimension p — 1 and, dim ((v +Zyp_2) N YpJ;Q) =1as YPJ;Q and Zp,_o
are transverse. We then have Y,_1 = Y,_o + (v + Zp—2) n Y,—2).
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We denote by &7 : oM\{z} — Jz the composition of the map £P~2P~! and the
projection to the second factor in the product decomposition. The form ) induces
a form of signature (2,¢ — p + 2) on Z;;Q/Zp,z, which gives rise to the notion
of positive curves (as introduced in Section 9). We claim that £z is a positive
curve. This amounts to showing that, if (z,y,z) € dI is positively oriented, then
E7(y) = s%&z(x) for some positive element sZ in the unipotent radical of the
stabilizer of [Z,_1] € Is1(Z;} 4/Z,—3). Since the representation p is f-positive,
we know that £(y) = s - ¢(z) for some element in the positive semigroup Uy,
and, as in the proof of Proposition 10.1 we can write s = exp(vy)...exp(v;) with

vy € cgit. Observe that, for every v; € C%it7 exp(v;) induces an element exp(v;)? in

the unipotent radical of the stabilizer of [Z,_1] € Is1(Z; 5/Z,_2), and the element
exp(v¢)Z is trivial unless j3;, = ap—1, in which case exp(v;)Z belongs to the positive
semigroup of the unipotent radical of the stabilizer of [Z,_1]. As at least one of
the v; in the decomposition of s belongs to such subgroup, we deduce that £z
is positive, as we claimed. It follows from Proposition 9.3 that £z(dM\{z}) is a
Lipschitz submanifold of Isy(Z;- 5/Z,_2).

As we know from Proposition 10.1 that £&7~2 is a C'-curve, we deduce that the
curve £P~2P~1 is Lipschitz, being the image of a monotone map between a C'-
submanifold and a Lipschitz submanifold. This concludes the proof. O

10.1. The critical exponent on the symmetric space is rigid. Let to,_1 :
PO(1,2) — PO(p,p — 1) — PO(p,q) be the composition of the the irreducible
representation of dimension 2p — 1 with the standard embedding of PO(p,p—1) —
PO(p, q). We call any representation p : [ — PO(p, ¢), which is the composition of
a Fuchsion representation with ta,_1, a (p, p — 1)-Fuchsian representation.

Lemma 10.4. Let p : T — PO(p,q) be O-positive Anosov. The barycenter of the
affine simplex in E} determined by {a1,...,a,_2,6,_1} belongs to D, g.

Proof. Recall that, in the case of f-positive representations in PO(p, ¢), the Levi-
Anosov subspace is Eg := ker(a,). In particular, for every k < p — 2 we have that
ay belongs to the dual of Ep, and belongs to the boundary of D) ¢ by Corollary
10.2. Furthermore ¢, 1 = a,_1 + a, belongs to D, ¢ being the sum of a linear
form with entropy one (the form a,_; has entropy one by Proposition 10.3) and
a linear form positive on the Weyl chamber (the root a,). In particular the form
corresponding to the barycenter of the affine simplex they determine in E} belongs
to :Dp(r)ﬂ. [

Theorem 10.5. Let I be the fundamental group of a surface and let p : T —
PO(p, q) be B-positive Anosov. Then hzc < hzco for any (p,p — 1)-Fuchsian repre-
sentation pg.

If equality is achieved at a totally reducible representation m then n splits as
W @V where

(i) W has signature (p,p — 1) and n|W has Zariski closure the irreducible
PO(2,1) in PO(p,p — 1)
(ii) n|V lies in a compact group.

Proof. The inequality follows from Lemma 10.4, together with convexity of D, g
established by Theorem 5.12.
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Assume now that 7 is a totally reducible representation such that equality holds.
We can assume that p > 3, as the result for p = 2 was proven by Collier-Tholozan-
Toulisse [14, Theorem 4].

Let G = (F)Z be its Zariski closure. By definition, G is a real reductive group.
We consider G as an abstract group, denote by A : G — SO(p,q) the inclusion
representation, and by

¢:g— so(p,q)
the associated Lie algebra morphism. Denote by ag a Cartan subspace of g.

Since h%c attains it maximal value, Theorem 5.12 forces the Quint indicator set
Q,(ry,6 to be the affine hyperplane of (Eg)* spanned by A. The strict convexity
guaranteed by Theorem 5.12 implies that G has real rank at most 2. Moreover we
have that ¢(ag) =<{(2(p —1),2(p — 2),...,2,0),(0,...,0,1)).

Denote by T = (£}(0T)) the vector space spanned by the projective limit curve
of n. Since 7 is totally reducible, the action of n(I'), and hence that of G, on T is
irreducible.

Fix then a Weyl chamber al and let x € ag be the highest weight of ¢(g)|T.
Since 7 is a;-Anosov, the attracting eigenvector of every element in 7(I'), and hence
of every purely loxodromic element of G, belongs to V. We therefore conclude that
for every a € af

x(a) = A1 ((a)).
We denote by LS < al Benoist’s limit cone of n(I") in G. As the representation

7 is ag-Anosov, and thus L,G7 avoids the only wall not ortogonal to the kernel of ay,
there exists a linear form p € ag such that for every a € Lg one has

p(a) = a1 (A(6(a))).

Furthermore, as 7 is (1, 1, 2)-hyperconvex, for every x € dI' the 2-dimensional space
€22(x) lies in T, and therefore (x — p)(a) = A2(¢(a)), which implies that p is a
simple root, and x = (p — 1)pu.

For a weight 1 of the representation ¢(g)|T or of an irreducible factor of ¢(g)|T+,
denote by V¥ the associated weight space. We obtain from the description of ¢(ag)
that the weight spaces VX~ for i € [0, 2p—2] are also 1-dimensional and contained
in T. The weight space decomposition of 7" has thus the form

2p—2
T=@VvV*"eVeVieV 1,
i=0
where V consists on vectors in the kernel of ¢(al) (except VX~ (P=Dr) and V4
corresponds to the eigenvalue ¢, ()\ ((b(a))). Here, VY as well as V¢ and V9 could
be instead contained in T, and therefore not appear in the decomposition.

Let now W denote the Weyl group of g. As the weight lattice of n|T is W-
invariant, and there is no other weight of n|T" at distance p — 1 from the origin,
we deduce that W is reducible, and g splits as g1 + go. If p is the root associated
to g1 we deduce from the fact that VX~* and thus g, is one dimensional that
g1 = sl(2,R). As the action of g; and g2 commute, and the highest weight space
for the restricted action of gy is one dimensional, we furthermore deduce that g
acts trivially on T. In particular T is an irreducible s[(2,R) module of dimension
2p — 1 and the signature of T+ of the (p, ¢)-quadratic form preserved by so(p, q)
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is thus either negative or (1,¢ — p). In the first case we conclude that ¢(g)|T+ is
compact. Which is the desired result.

In order to conclude the proof we need to exclude the second case. We know
from Theorem 10.1 that for every 1 < k < p — 2 and for every distinct x,y,z € oI
the sum

(@) + (E°(y) n €M (2)) + £ (2)
is direct. With an inductive argument we deduce that for every 1 < k < p—2, and
for every v € I' the k-th eigenline belongs to T, and therefore the Anosov map &
would be the boundary of a Fuchsian representation composed with an embedding
of PO(1,2) —» PO(p — 1,p) — PO(p, q). However, such an embedding can never be
positive because it has non-compact centralizer. ([l
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