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CONFORMALITY FOR A ROBUST CLASS OF
NON-CONFORMAL ATTRACTORS

BEATRICE POZZETTI, ANDRES SAMBARINO, AND ANNA WIENHARD

ABSTRACT. In this paper we investigate the Hausdorff dimension of limit sets
of Anosov representations. In this context we revisit and extend the frame-
work of hyperconvex representations and establish a convergence property for
them, analogue to a differentiability property. As an application of this conver-
gence, we prove that the Hausdorff dimension of the limit set of a hyperconvex
representation is equal to a suitably chosen critical exponent.
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1. INTRODUCTION

In his seminal paper, Sullivan [12] describes the Hausdorff dimension of the limit
set Lr, of a discrete group I acting on the real hyperbolic n-space, in terms of the

Dirichlet series
S — Z efsd(o,’yo)'

~el
More precisely, the critical exponent of such a series is

hr = inf {s : Z esd070) oo} = sup {s : Z esdlo0) — oo}

el ~el
and Sullivan shows:

Theorem (Sullivan). If T is a convex co-compact subgroup of PSO(1,n) then the
Hausdorff dimension of Lt is hr.
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This is related to understanding the Hausdorff dimension of a hyperbolic set in
dynamical terms. Indeed, the non-wandering set of the geodesic flow of M\H™ is, by
definition, a maximal isolated compact hyperbolic set, hr is its topological entropy
and Sullivan’s result can be interpreted in terms of the Ledrappier-Young formula
[32].

Describing the Hausdorff dimension of a hyperbolic repeller as a dynamical quan-
tity is today well understood in the conformal setting, i.e. when the derivative of
the dynamics, restricted to the unstable distribution, acts as a conformal map (see
Chen-Pesin’s survey [10] and references therein). Analogously, Sullivan’s result has
been generalized to convex-cocompact groups of a CAT(-1)-space X (see for ex-
ample Bourdon [5] and Yue [141]). The metric on the visual boundary X used
to compute the Hausdorff dimension is the wvisual metric, for which the action of
Isom X is conformal (i.e. sends balls to balls).

However, other natural metrics on 0.X appear in very common situations: if X is
a rank 1 symmetric space of non-compact type, then its visual boundary carries the
structure of a differentiable manifold and thus one would also like to understand
the Hausdorff dimension of limit sets for a (any) Riemannian metric on ¢X. Unless
X is the real hyperbolic n-dimensional space, the Riemannian structure behaves
differently from the visual structure: the action of Isom X is no longer conformal.

The dynamical characterization of Hausdorff dimension in a non-conformal set-
ting is still not completely understood. We refer the reader again to Chen-Pesin’s
survey [10]. Let us also note that only very recently Bardny-Hochman-Rapaport
[1] provided a complete answer for Iterated-Function-Systems on the plane. On
the discrete groups side, Dufloux [16] has studied a class of Schottky subgroups
of isometries of the complex hyperbolic n-space, that he calls well positioned, and
proves the analogue of Sullivan’s result for the Hausdorff dimension of the limit set
with respect to any Riemannian metric.

1.1. This paper. In this paper we are interested in describing the Hausdorff di-
mension of the limit set of discrete subgroups of a semi-simple Lie group G, for
a Riemannian structure on the flag spaces (or boundaries) of G. The groups we
will consider, called Anosov representations, are in many ways similar to convex
cocompact subgroups of SO(1,n), but do not act conformally on the boundaries of

G.

Anosov representations where introduced by Labourie [31] for fundamental groups
of negatively curved closed manifolds and the definition was extended by Guichard-
W. [23] to any hyperbolic group. Such representations provide the appropriate gen-
eralization of the class of convex co-compact subgroups in the context of Lie groups
of higher rank [23, 27, 28].

We will not use the original definition but follow a more recent approach, devel-
oped by Kapovich-Leeb-Porti [28], Géritaud-Guichard-Kassel-W. [20] and in par-
ticular Bochi-Potrie-S. [4], that provides a simplified definition and gives better
quantitative control of Anosov representations.

Let K = R or C, consider an inner (or Hermitian if K = C) product in K<
and, for g € GL4(K), denote by g — ¢* the corresponding adjoint operator. The
singular values of g, i.e. the square root of the modulus of the eigenvalues of gg*,
are denoted by

o1(g) = - = 0a(g).
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Let ' be a finitely generated discrete group, consider a finite symmetric gener-
ating set S and denote by || the associated word metric on I'. Given p € [1,d — 1]
denote by G,(IK?) the Grassmannian of p-dimensional subspaces of K. For a ho-
momorphism p : I — PGL4(K), the following are equivalent:

i) There exist positive constants ¢, i such that for all v € ' one has

Ip+1 (p(7)) < e,
Op

ii) The group I is word-hyperbolic and there exist p-equivariant maps (£7, £47P) -
o — G, (K?) x Gg—p(K?) such that for every x # y € oI one has

£ () ®ETP(y) = K,

and a suitable associated flow is contracting.

If either condition is satisfied we will say that p is an {a, }- Anosov representation”.
For such a representation, the critical exponent happ of the Dirichlet series

w9 =3 (22 ) ) 1)

g
~el p

is well defined. By definition, the series is convergent for every s > hy? and divergent
for every 0 < s < h}'.

If p is furthermore {a,;1}-Anosov then h;” is analytic with respect to p, and
agrees with the entropy of a suitably defined flow (see for example Bridgeman-
Canary-Labourie-S. [6] and Potrie-S. [35, Corollary 4.9]). But in general little is
known about hj? without this extra assumption.

We will mainly focus on {a;}-Anosov representations. The chosen inner product
on K¢ induces a metric on P(IK?), we will denote by Hff (A) the Hausdorff dimension
of a subset A = P(K?) for this metric. As a first result we obtain the following,
independently obtained by Glorieux-Monclair-Tholozan [19].

Proposition (Proposition 4.1). Let p: I — PGL4(K) be {a1}-Anosov. Then
1
Hff (¢'(a)) < h3'.

In order to discuss situations in which equality holds, we introduce the notion
of locally conformal points of p (Definition 5.5), these are points of oI designed
to detect some asymptotic conformality of the non-conformal action of p(I') when
restricted to the limit set £*(d'). Using Patterson’s construction we then obtain a
(not necessarily quasi-invariant) measure p3' on JI'. Following Sullivan, we then
prove the following.

Theorem (Theorem 5.14). If the set of locally conformal points of p has positive
w3t -measure, then

HEf (¢'(oT)) = k3.

Interestingly, for a rich class of Anosov representations, a 3-point transversality
condition, inspired by Labourie [31], forces asymptotic conformality:

IThe implication ii)=i) comes from Labourie [31] and Guichard-W. [23]. The implication
i)=>ii) is more recent and due to Kapovich-Leeb-Porti [28], see also Guéritaud-Guichard-Kassel-
W. [20] and Bochi-Potrie-S. [4] for different approaches. In the language of Bochi-Potrie-S. [4,
Section 3.1] a representation verifying condition i) is called p-dominated.
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Definition. Consider p,¢,r € [1,d — 1] such that p + ¢ <. A {ap,aq,a,}-Anosov
representation p : [ — PGL4(K) is called (p, ¢, 7)-hyperconvez if for every triple of
pairwise distinct points x,y, z € oI one has

(€ () ®€U(y)) N7 (2) = {0}
(Note that p and ¢ are not required to be distinct.)

The main result of this paper is the following.

Theorem A (Corollary 6.9 and Corollary 7.3). Let p be (1,1, 2)-hyperconvex. Then
h3 = Hff (¢'(ar)) < Hif (P(K?)).

The aforementioned analyticity result for hy?, together with Theorem A, has the
following consequence:

Corollary 1.1. Let {p, : T — PGL4(K)}uep be an analytic family of (1,1,2)-
hyperconver representations, then u — Hff (g;(ar)) s analytic.

In fact Theorem A holds in greater generality. We can replace 2’'s by any p €
[2,d — 1] if we additionally require that for every v € I' one has

o2(p(7)) = ap(p(7)),

see Corollary 6.10 and Corollary 7.3. This extra condition on the singular values
should be interpreted as a restriction on the Zariski closure of the representation
(see subsection 8.1 for situations such as PSp(1,n) and PU(1, n), and subsection 8.2
for the group PSO(p, q)).

A key ingredient for the proof of Theorem A is the following convergence property
for hyperconvex representations, from the inequality readily follows.

Theorem B (Theorem 7.1). Let p be (p, q,r)-hyperconvez, then for every (w,y) €
o3I one has
lim  d(&(w) ®ENy), & (x)) = 0.
(w,y)—(2,x)

We further investigate how vast the class of hyperconvex representations is. On
the one hand one has the following remarks that provide many examples by the
represent and deform method (see subsection 7.2):

- if p: T — PGL4(R) is hyperconvex then, by complexifiyng, one obtains a
hyperconvex representation over C : this is direct from the definition;

- the space of (p, ¢, r)-hyperconvex representations is open in hom(I', PGL4(K))
(Proposition 6.2).

On the other hand there are some ‘verifiable’ restrictions imposed by the hy-
perconvexity condition. For example, a (1,1, p)-hyperconvex representation of I'
induces a continuous injective map

or — {point} — P(KP?),

(see Corollary 6.6), and there might be topological obstructions for the existence of
such a map. More interesting restrictions arise when K = R and dI is a manifold:

Corollary (Proposition 7.4). Let ' be such that éT is homeomorphic to a (p — 1)-
dimensional sphere. If p: T — PGL4(R) is (1,1, p)-hyperconvez then £*(0r) is a C*
sphere.
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Using openness of hyperconvexity we find new explicit examples of Zariski dense
groups with C' limit set.

Corollary (Corollary 7.7). There exist Zariski dense subgroups I < PGLg(q+1)(R)
whose limit set is a C* sphere of dimension d — 1.

Sharper results of similar nature were obtained by Zhang-Zimmer [15].

We now turn to the special situation when oI is a circle. Then Theorem A gives
the following computation of h3':

Corollary. Assume oI is homeomorphic to a circle, if p : T — PGLg(R) is (1,1, 2)-
hyperconvex then h3' = 1.

This implies Potrie-S. [35, Theorem B| and further generalizes it to the Hitchin
component of PSO(p, p). The proof of Potrie-S. [35, Theorem A] applies then verba-
tim also to the Hitchin component of PSO(p, p) and we thus obtain a rigid inequality
for the critical exponent in the symmetric space of PSO(p, p). We refer the reader
to Sections 9.2 and 9.3 for more details on Hitchin representations.

While the property of having constant /3! was expected to be a rare phenomenon,
peculiar to Hitchin components, or possibly higher rank Teichmiiller theories, we
provide, in Section 6.3, many more examples of representations of fundamental
groups of surfaces for which Theorem A applies. Interestingly enough, when oI
is a circle (and K = R), (1, 1, 2)-hyperconexity is not only a local condition, but
it can be pushed far away. We say that an {a;}-Anosov representation is weakly
irreducible if £'(0r) is not contained in a proper subspace of P(R?).

Proposition (Proposition 9.3). Assume that 0T is homeomorphic to a circle. Then
the space of real weakly irreducible (1,1, 2)-hyperconvez representations of I is closed
among real weakly irreducible {a1, as}-Anosov representations.

Throughout the paper we allow K to be a local field (not necessarilly Archimedean,
as we required in this introduction). Originally Anosov representations were only
defined over Archimedean fields as it is possible to show that if [ admits a Anosov
representation p : [ — PSL4(K) for non-Archimedean K, then I is virtually free.
The main result of our paper, however, associates to such an action an interesting
geometric quantity, the Hausdorff dimension of the limit set, which we are able to
relate to a dynamical data, the orbit growth rate. We find this very interesting,
and this justifies the extra work needed to develop the theory in this more general
setting.

The main results go through in this generality, except the analyticity of Hausdorff
dimension: the key step is to show that for a {a; }-Anosov representation its entropy,
defined by

1
lim sup i log #{y €T :logoi(p(y)) < t}
t—0
is analytic with p. We don’t know if this is true, but one can use the thermody-

namical formalism to prove that the Hausdorff dimension depends continuously on
the representation (and is actually as regular as the map p — &, is).
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Outline of the paper. The preliminaries of the paper, collected in Section 2 come
from three different areas: quantitative linear algebra, dynamics and geometric
group theory. In § 2.1 we recall relations between the singular values of an element
in PGL4(K) and metric properties of its action on Grassmannian manifolds, in the
general context of a local field K. In § 2.2 we discuss the dynamical backgrounds
and indicate how to extend Bochi-Gourmelon’s theorem as well as the theory of
dominated splittings to general local fields. § 2.3 collects the facts about hyperbolic
groups and cone types that we will need in the paper.

Section 3 concerns Anosov representations: we extend to the non-Archimedean
setup the definition and the results we will need, particularly concerning the defini-
tion and properties of the equivariant boundary maps. Our discussion follows the
lines of Bochi-Potrie-S. [1].

In Section 4 we prove that for any Anosov representation the Hausdorff dimension
of the limit curve provides a lower bound for the critical exponent for the first root.
In Section 5 we give a condition guaranteeing that such bound is optimal, namely
the abundance of locally conformal points with respect to a suitable measure.

Section 6 concerns the notion of (p, ¢, r)-hyperconvexity, an open condition (Propo-
sition 6.2) that guarantees abundance of locally conformal points: this is the content
of Proposition 6.7, the main technical result of the paper. Using the theory of SLs
representations we provide in § 6.3 many examples of hyperconvex representations
of fundamental groups of surfaces and hyperbolic three manifolds.

In Section 7 we discuss another interesting consequence of hyperconvexity: such
property guarantees a weak differentiability property for the limit set (Theorem
7.1) which allows us, on the one hand, to obtain good bounds on the Hausdorff
dimension (Proposition 7.3), and on the other to provide examples of Zariski dense
subgroups whose limit set in the projective space is a C' manifold: we obtain these
through the represent and deform method explained, in a concrete example, in
Proposition 7.5.

In Section 8 we discuss in detail two families of representations for which all
our results apply: on the one hand we detail the geometric meaning of our notions
in the case of convex cocompact subgroups of rank one groups, rediscovering and
generalizing results of Dufloux (§ 8.1), on the other we give a concrete criterion
that guarantees hyperconvexity for subgroups of SO(p, ¢) and provide examples of
groups that satisfy it (§ 8.2).

The last section of the paper (Section 9) concerns representations of fundamental
groups of hyperbolic surfaces (or more generally compact hyperbolic orbifolds). For
these we show that hyperconvexity is also a closed condition (Proposition 9.3), and
discuss a new proof and generalization of a result of Potrie-S. [35].

2. PRELIMINARIES

In the paper we will need preliminaries from three different sources: quantitative
linear algebra, dynamics and particularly the work of Bochi-Gourmelon [3] and
Bochi-Potrie-S. [4] on dominated sequences, and algebraic and metric properties of
hyperbolic groups. We recall the results we need here.

2.1. Quantitative linear algebra. As anticipated at the end of the introduction,
in the paper we will be dealing with representations of finitely generated groups on
finite dimensional vector spaces over local fields. We recall here some quantitative
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results we will need. More details on algebraic groups over local fields can be found
in Quint [38].

2.1.1. Angles and distances on Grassmannians. We denote by K a local field, and
by || : K — R* its absolute value. Recall that if K is R or C then || is the
usual modulus, if, instead, K is non-Archimedean, we require that |w| = L where w
denotes the uniformizing element, namely a generator of the maximal ideal of the
valuation ring O, and ¢ is the cardinality of the residue field O/w0O (this is finite
because K is, by assumption, local).

Given a finite dimensional vector space V over K, we denote by ||| : V — R*
a good norm: for an Archimedean field K this means that || || is induced from an
Hermitian product, if K is non-Archimedean this means that there exists a basis
{e1,...,en} such that | > ase;| = max{|a;|}. In this second case we say that a
decomposition V' = Vi @ Va2 is orthogonal if ||v; + ve| = max{|v1]], |ve|} for all
v1 € V1 and vy € V5. In general, since K is locally compact, any two norms on V'
are equivalent.

The choice of a good norm || || on V' induces a good norm on every exterior power
of V' (this is discussed in Quint [38]). This allows to generalize the notion of angle
to the non-Archimedean setting: for v,w € V, we define (v, w) to be the unique
number in [0, 7] such that

_ o]

sin £ (v, w) =

Jvlllew]
Observe that the angle crucially depends on the choice of the norm. Following
Bochi-Potrie-S. [1] we define the angle of two subspaces P,Q < K? as
A(P,Q) = min min % (v, w),
vePX we@X
where P* = P\{0}, Q* = Q\{0}.

The sine of the angle gives a distance, that we sometimes denote by d, on the
projective space P(V'), and more generally on every Grassmannian G;(V): we set
for P,Q € (V)

d(P, Q) := max min sin £ (v, w) = min max sin % (v, w),
vePX we@X* veEPX we@X*

this corresponds to the Hausdorff distance of P(P),P(Q) regarded as subsets of
P(V) with the aforementioned distance. Observe that

d(P.Q) > sin £ (P, Q)
and the latter inequality is, apart from very special cases, strict.
More generally we extend the distance to subspaces of possibly different dimen-
sion: for P € G, (V), Q € §1(V), k < 1 we set

d(P,Q) := max min sin £ (v,w) = min d(P,W).
vePX we@X WeSGx(Q)

Such distance vanishes if and only if P < Q.
2.1.2. Singular values. Assume now that K is commutative. Given a K-norm on
V we say that g € GL(V,K) is a semi-homothecy if there exists a g-invariant K-

orthogonal decomposition V = Vi @ --- @ Vi and o1,--- ,0r € Ry such that for
every i € [1, k] and every v; € V; one has

lguill = aifvil-
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The numbers o; are called the ratios of the semi-homothecy g.

Consider a maximal abelian subgroup of diagonalizable matrices A < GL(V,K),
let K < GL(V,K) be a compact subgroup such that if Ngi (A) is the normalizer of
A in GL(V,K) then Ng (A) = (NgL(A) n K)A. Following Quint [37, Théoréme 6.1]
there exists a IK-norm | | on V' such that

- |l is preserved by K,
- Aactson (V, | |) by semi-homothecies with respect to a common K-orthogonal
decomposition of V' in one dimensional subspaces.

Whenever such a norm is fixed, for every g € GL(V) we denote the norm and its
co-norm by

lgv| o lgvll
‘= ma m(g) = inf ——.
SR R T ST
Let d = dim V. Keeping notation from Quint [37], we denote by E := R? a real

vector space with a restricted root system of GL(V'), and by
EY ={z=(z1,...,2q0) eRY 21 > ... > 24}
a Weyl chamber of E. We will denote by a; € E* the simple roots of E, so that
a;(x) =z — 241 €R.

The choice of an ordering (eq, ..., eq) of the joint eigenlines of A (the eigenlines are
uniquely determined Quint [38, Lemma I1.1.3]) induces a map v : A — E given by

v(a) := (logoi(a),...,logoq(a)),

where o1(a), -+ ,04(a) are the semi-homotecy ratios in the basis {ey,...,eq}. We
set AT := v=1(E"), so that A" consists of those elements a € A whose correspond-
ing semi-homothecy ratios satisfy o1(a) = -+ = oq4(a).

With respect to the basis {e1,...,eq}, when K is non-Archimedean, it holds
that K = GL(d, 0), and the map v extends to the Cartan projection, still denoted
v from the whole GL(V,K): indeed GL(V,K) = KATK, and, given aj,as € AT,
the element a; belongs to KasK if and only if v(a;) = v(az). In particular we
can set v(g) = v(ag) for any element a, € A such that there exist kg,l; € K with
g = kgagly, (Bruhat-Tits [8, Section 3.3]).

For every g € GL(V,K), we choose a Cartan decomposition g = kgaql, as above
and define, for p € [1,d — 1],

up(g) = kg -epeV.

If K is Archimedean, the set {u,(g) : p € [1,d — 1]} is an arbitrary orthogonal
choice of axes (ordered in decreasing length) of the ellipsoid {Av : |[v| = 1}. Note
that for every v that lies in the span of g~1u,(g) one has |gv| = o,(g)|v|. With a
slight abuse of notation we will often also denote by u,(g) the corresponding point
in PV.

We furthermore denote by U,(g) the Cartan attractor of g:

Up(9) = u1(g) @ - @ up(g) = kg - (1 @--- Dep).

Definition 2.1. An element g € GL(V,K) is said to have a gap of index p if
op(g) > opt+1(g). In that case, if K is Archimedean, the p-dimensional space Up(g)
is independent of the Cartan decomposition of g.
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Note that if g has a gap of index p, then the decomposition
Ud—p(g_l) S 9_1 (Up(9))

is orthogonal: this is clear when K is Archimedean (see Remark 2.4 for the general
case)

Remark 2.2. If K is not Archimedean, the components ky, I, in the Cartan decom-
position are not uniquely determined even if g has gaps of every index; in particular
the spaces U,(g) always depend on the choice of the Cartan decomposition. For
example take d = 2; if |a| > |b| we have

G636 ) 63

and both (b}a (1)) and (1, 9) belong to K = GL(2,0). In this example it is easy
to verify that the set of possible Cartan attractors Uy (g) coincides with the ball of
center e; and radius |b/a|. Note that, since K is non-Archimedean, any point in
this ball is a center.

2.1.3. Quantitative results. Many of the auxiliary technical results in [4] rely on
the min-max characterization of singular values of linear maps from R? to R?. This
characterization in fact generalizes to any local field if one replaces the singular
values with the semi-homothecy ratios:

op(A) = max m(A o A) = min Alol|-

o) = max mAlp)  opa(d) = min Aol

Therefore the quantitative linear algebraic facts collected in [4, Appendix 3] carry
through. We now state the ones that we will use in the following.

Lemma 2.3 ([4, Lemma A.4]). Let g,h € GL(V,K) have a gap of index p. Then
for any possible choice of Cartan attractor Uy(g) (resp. Up(gh)):

AT (1), Upls) < Il |72 (g) )
ATy (gh). Uy () < lllg™1 22 (). 3)

Remark 2.4. If K is non-Archimedean, the Cartan attractors U,(g) are not
uniquely defined (cfr. Remark 2.2). However it follows from Lemma 2.3 that,
given two different Cartan decompositions for g, g = kga,l, = kjayl;, and denoting
V, ={e1,...,ep), we have
Op+1
d(kng,k;Vp) <-2 (9)7

Op

namely all possible different choices for U,(g) are contained in a ball of radius
%(g) As the distance d is, in this case, non-Archimedean, we deduce, also in
p

this case, that any choice of Uy,(g) is orthogonal to gUg_,,(g™") for any other choice
of Us—p(g™").

Lemma 2.5 ([, Lemma A.6]). Let g € GL(V,K) have a gap of index p. Then, for
all P € §,(V) transverse to Us—,(g~ ') we have:

a(P).Uyla)) < “22H0) Gy
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Lemma 2.6 ([, Lemma A.7]). Let g, h € GL(V,K). Suppose that g and gh have
gaps of index p. Let o = £ (Up(h),Ua—p(97")). Then:
op(gh) = (sina) op(g) op(h),
op+1(gh) < (sina) ™" opi1(g) opri(h) .
Given a subspace P € G,(V') we denote by P+ a chosen orthogonal complement
of P; this always exists, but is not unique if K is non-Archimedean. Suppose that

P, W € G, (V) satisfy d(P,W) < 1. Then W n P+ = {0}, and so there exists a
unique linear map

Lw,p: P— P+ suchthat W ={v+ Lw,p(v): veP}. (4)

The association Ly, p — W provides an affine chart for §,(V). The next lemma
states that this chart is 1-Lipschitz, and it is 4-biLipschitz on a sufficiently small
neighbourhood of P:

Lemma 2.7 ([4, Lemma A.11]). Let P, Py, P» € §,(V), with d(P;, P) <1, then
d(Py, Py) < |Lp,p— Lp, Pl

for all choices of PL. If moreover d(P;,P) < 1/\/2 then |Lp, p — Lp, p| <
4d(Py, Ps) .

Proof. The proof of [4, Lemma A.11] smartly combines the triangular inequality
for the distance d and the characterization

|v = w]

d(Py, P;) = max min

wEPl* vEPz* HwH
Since both hold when V' is a vector space over a local field [K, the proof generalizes
without modifications. In case K is non-Archimedean, one could also deduce the
better estimate |Lp, p — Lp, p| < 2d(P1, Ps). O

The next lemma is a variation of [1, Lemma A.10]. In [1] there is an assumption
on d(P;, P) depending on g that we replace here with the contraction assumption
d(gP;, gP) < 1/4/2. Despite the proof is very similar to [, Lemma A.10], we include
it for completeness:

Lemma 2.8. Let V be a d-dimensional K-vector space, and g € GL(V'). Choose
PeG,(V) and Q € Gy—p(V) such that the pairs (P, Q) and (gP, gQ) are orthogonal.
Then for every P; € G,(V), (i = 1,2) with P, n Q = {0} and d(gP;,gP) < 1/V/2, it
holds

m(g|Q)

Proof of Lemma 2.8. Using the same notation as in (4), for each i = 1,2, we con-
sider the linear map L; = Lp,p : P — Pt oand M, = Lyp, gp : gP — gPJ-;
these are well defined since P, n @Q = {0}. Clearly the two maps are related by
L = (g740) o M; o (g|p). As a consequence,

lgle|
m(glq)

1Ly — La| = ||(g7 " g@) © (M1 — Ma) o (glp)| < | My — Mo .

Lemma 2.7 gives:
|L1 = Lo|| = d(Py, P,) .
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Since by assumption d(gP;, gP) < 1/4/2, Lemma 2.7 implies:
|My — M| < 4d(gPr, gP%) .
Putting these three estimates together, we get

1m(glo)
4 glpl

m(ng)d(Pl,PQ)_

1 1
d(gP1,gP) = — | My — M| > 1
4 4 glp|

| L1 — Lao| =

The following corollary of Lemma 2.8 will be useful in Section 5.2:

Corollary 2.9. Let V be a K-vector space, W <V a subspace of dimension 2, and
g € GL(V). Denote by o;(glw) the semi-homothecy ratios of g : W — gW where
the norm on W (resp. gW ) is induced by the norm on V. For every P; € PW with
P, nUy_1(g7 %) = {0}, and d(gP;,u1(g|lw)) < 1/v/2 it holds

X
d(gPr,gPs) = 2(9]w) d(Pr, P).
4 glw

Proof. This follows directly from Lemma 2.8 once we choose P = us(g71|,1), Q =
ui (g~ gr)- O
Another useful corollary of Lemma 2.8 is the following.

Corollary 2.10. Given o > 0, there exist positive 6 and b with the following
properties. Let V be a d-dimensional K-vector space, and g € GL(V'). Suppose that
PeG,(V) and Q € Ga—p(V) satisfy

min{£ (P, Q), £ (9P, 9Q)} = a. (6)
Then for every P; € §,(V), (i = 1,2) with P, n Q = {0} such that d(¢P;,gP) < ¢

one has

d(gP1,gP2) = b m(glo) d(P1, Py). (7)
lglel

Proof. Since all good norms are equivalent, the general case follows from Lemma
2.8 by considering two norms, one for which P and ) orthogonal and one that
makes gP and g(@) orthogonal, the operator norm and m are to be computed using
both these norms. (]

Along the same lines we get a bound on how elements g € GL(V') contract on
open sets in Grassmannians:

Corollary 2.11. Let g € GL(V,K) have a gap of index p. Then, for every a > 0
there is b such that for all Pi, Py € §,(V) with X(P;, g 'Uaq—p(97 ")) > o we have:

o
d(g(Pl)vg(PQ)) <b §_+1 (g) d(P17P2) :
P
Proof. If we assume that d(P;, Uy, (g)) = 1/v/2 the result follows readily from Lemma
2.7 by considering the linear maps L; := Lp, y (g and M; := Lyp, qu,(g)- As
above L; = (97 u,_,(g-1)) © Mi o (glu,(g)- In this case the result follows as
m(g|y, ) = op(g), and m(g*1|Ud7p(g71)) = 1/op+1(g). The general statement
follows by comparison of different norms. O
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2.2. Dynamical background. We now turn to the dynamical preliminaries. The
goal of this section is to extend the results of Bochi-Gurmelon [3] and Bochi-Potrie-
S. [4] to the non-Archimedean setting.

2.2.1. Dominated splittings and Bochi-Gurmelon’s Theorem. In this section we re-
call the definition of dominated splittings and review its connection with cone fields.

Let X be a compact metric space equipped with a continuous homeomorphism
¥ : X — X. Let V be a finite dimensional K-vector space and let ¢y : X — GL(V,K)
be continuous. We will denote by ¥ : X x V — X x V the induced cocycle defined
by

Yo (v) = P(z,v) = (I(x), o (2)v).

Definition 2.12. Consider a good norm || on V. Let A < X be a ¢-invariant
subset, then we say that ¥|A has a dominated splitting if the trivial bundle A x V/
splits as a Whitney sum of two -invariant sub-bundles V = E @ F with the

following extra condition: there exist positive u and ¢ such that for every n positive,
reN,ue E, and w € F, one has

R
ozl Juf

In this situation we say moreover that F' (resp. E) is the unstable (resp. stable)
bundle and that F' dominates E.

Note that this condition is independent of the chosen norm. The dominated
splitting of ¢|A is unique provided its indez, i.e. dimk F), is fixed and it extends to
the closure A of A (see Crovisier-Potrie [12, Proposition 2.2 and 2.5] whose proof
works verbatim in our setting). Furthermore:

Proposition 2.13 ([12]). Suppose a linear flow 1) has dominated splittings E*@® F*
and E?> ® F? of index py < py. Then E*> € E' and F' < F?.

In the case when K = R Bochi-Gourmelon [3, Theorem A] gave the following
criterion for dominated splittings to exist; their the proof generalizes to every local
field K, as Oseledets theorem holds in this generality:

Theorem 2.14 (Bochi-Gourmelon [3]). Let X be a compact metric space, V a
K-vector space and ¢ : X x V. — X x V a linear cocycle. Then the linear flow 1
has a dominated splitting E @® F with dim F' = p if and only if there exist ¢ > 0,
w >0 such that for every x € X and n = 0 we have

Tpt1 () < ceHm,
Op

Moreover, the bundles® are given by:
Fo= Jim Up(5onm) and Be = lim Usp(50)).

and these limits are uniform.

2For completeness, let us note that the space U, associated to an operator from a vector space
equipped with a good norm to itself, can be defined for an operator between two vector spaces
both equipped with good norms.
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Proof. Bochi-Gourmelon’s proof is based on the one hand on some angle esti-
mates building upon the min-max characterization of singular values of matrices
in GL4(R), and on the other hand on the multiplicative ergodic theorem (Oseledets
theorem). The former hold verbatim in the general local field setting once the sin-
gular values are replaced by the semi-homothecy ratios as defined in Section 2.1.2,
the required multiplicative ergodic theorem was established (following Oseledets
original proof) by Margulis [34, Theorem V.2.1], the integrability of ¢ follows from
its continuity and the compactness of the base X. With these ingredients at hand,
the sketch of the proof explained in [4, Section A.4] applies verbatim. O

The existence of a dominated splitting can be furthermore characterized in terms
of cone fields; this will be crucial to prove openness of Anosov representations in
Section 3.1 (note that the non-Archimedean case has not yet been established).
Given a decomposition V' =V} @ Vs and a positive a, then the subset defined by

{veV:afor] = vz}

is called a a-cone (of dimension dim ;) on V.

A cone field on A < X is a continuous choice z — €,y , of a a(x)-cone on V' (of
fixed dimension) for each x € A. Cone fields can be used to characterize dominated
splittings.

Proposition 2.15 (See Sambarino [10, Proposition 2.2]). Let A ¢ X be ¥-invariant.
The cocycle ¥|a has a dominated splitting of index i if and only if there exists a map
a: A — R" bounded away from 0 and o, a cone field Ca(z),e on A of dimension 1,
a number 0 < A < 1 and a positive integer ng such that for every x € A the closure
of Y0 (Go(z),z) s contained in Crg (v (a)),0m (x)-

2.2.2. Dominated sequences. Bochi-Potrie-S. [4, Section 2] applied Bochi-Gourmelon’s
Theorem 2.14 to the compact space of dominated sequences of matrices, and got
useful implications on the relative position of the axes of the ellipsoid associated to
the products of such sequences: we recall now the relevant definitions and results
from [1] where these were first established.

Given C' > 1, define the following compact set:

D(C) == {g e GL(V,K), |g| <C, |¢~}| <C}.

If I is a (possibly infinite) interval in Z, the set D(C)! is endowed with the product
topology, turning it into a compact metric space.

Let p € [1,d — 1], 0 > 0, ¢ > 0. For each interval I — Z, we denote by
D(C,p,c, u, I) the set of sequences of matrices (g,) € D(C)! such that for all
m,n € I with m > n we have

Op+1 —p(m—n+1)

(gm o 'gn+lgn) < ce .

p

Definition 2.16. An element of GL(V,K)! is a dominated sequence if it belongs
to D(C,p, ¢, u,I) for some C, p, ¢, and p.

Consider the map shift : D(C)? — D(C)? defined by

shift((9n) %) = (gn+1)"

and let 1 : D(C)% — GL(V,K) be ¥((gn)) = go- The subsets D(C, p,c, i, Z) are
shift-invariant and automatically verify the hypothesis of Theorem 2.14.
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Proposition 2.17 (Bochi-Potrie-S. [1, Proposition 2.4]). For each sequence x =
(gn) € D(C,p, p,c,Z), the limits:

Fp:= lim Up(9-19-2-"-9-n),

n—+o0

) : -1 -1 1
E;E = nEI}—loo Ud—p (go e gn_2gn—1) )

exist and are uniform over D(C,p, u,c,Z). Moreover, F dominates E and E® F

is a dominated splitting for the linear cocycle over the shift defined above.

By a compactness argument, the proposition above ensures transversality for
Cartan attractors and repellers computed in finite, but sufficiently long, sequences
of matrices:

Lemma 2.18 (Bochi-Potrie-S. [1, Lemma 2.5]). Given C > 1, u > 0, and ¢ > 0,
there exist L € N and § > 0 with the following properties. Suppose that I < Z is an
interval and {g;}ier is an element of D(C,p,c,u, I). If n < k < m all belong to I
and min{k — n,m — k} > L then:

4(Up(gkfl “ Ont19n) Ud*p(gk_lgk_.h T 9;171) >4

2.3. Hyperbolic groups. The last source of preliminaries comes from geometric
group theory. Here we recall basic facts about hyperbolic groups and cone types.

Let I be a finitely generated group. We fix a finite symmetric generating set S
and denote by || the associated word length: for v € I' — {e} we denote by |y| the
least number of elements of S needed to write v as a word on S, and define the
induced distance dr(y,n) = |y 1n|. A geodesic segment on I is a sequence {a;}5 of
elements in ' such that dr (o, ;) = |i — j|.

In the paper we will be only interested in word-hyperbolic groups, namely such
that the metric space (I, ||) is Gromov hyperbolic. Following the footprints of [4],
our analysis will be based on the study of cone types, and natural objects associated
to them.

2.3.1. Cone types. In the paper we follow Cannon’s original definition of cone types,
which is more convenient for our geometric purposes, but the reader should be
warned that the definition used in [1] is slightly different

Definition 2.19. The cone type of v € I is defined by

Cy)={nel |yl =nl+q}
Notice that if n € C(7) then

dr(v""n) = Iyl = Inl + |7l = Inl + v = dr(e,n) + dr(e,y ™),

i.e. there exists a geodesic segment through e with endpoints ! and 7. Recip-

rocally, the endpoint of a geodesic segment starting at v~! and passing through e
necessarily belongs to C(7).

A fundamental result of Cannon is that, provided I is hyperbolic, there are only
finitely many cone types (see for example Bridson-Heafliger [7, p. 455] or Coornaert-
Delzant-Papadopoulos [11, p. 145]).
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Y ™ C(v)

fi

FI1GURE 1. The cone type of ye I’

2.3.2. The geodesic automaton. See Bridson-Haefliger [7, p. 456].
Given a cone type € and a € S n €, one easily checks that for every v € [ with
C(y) = € one gets
aC(ya) < C(v).
Furthermore it is easy to verify that in such case the cone type €(va) doesn’t depend
on 7 (see for example [1 1, Lemma 4.3]), and, with a slight abuse of notation we will
denote such cone type a - C.
The geodesic automaton of I (this also depends on S) is the labelled graph §
defined as follows:
e the vertices are the cone types of [;
e thereis an edge € 25 @, from vertex €y to vertex Cs, labelled by a generator
aeS,iff aeC; and Gy =a - C;.
Since I is hyperbolic there are only finitely many cone types and thus the geodesic
automaton has a finite number of vertices.

Let us explain the relation with geodesics. Consider a geodesic segment (Yo, 71, - - -,Ye)
that is, a sequence of elements of ' such that d(yn,ym) = |n — m|, and as-
sume that 79 = id. Then, there are ag, ...ay—1 in a generating set S such that

Yn = @oa1 - - an—1. Note that for each n, the following is an edge of the geodesic
automaton graph §:

C(yn) = Clyn+1).
Thus we obtain a (finite) walk on § starting from the vertex €(id). Conversely, for
each such walk we may associate a geodesic segment starting at the identity.

Let us define also the recurrent geodesic automaton as the maximal recurrent
subgraph G* of G; its vertices are called recurrent cone types.

Let Ar be the subset of all bi-infinite labelled sequences of G*. It is a closed
shift-invariant subset of (G*)Z and the induced dynamical system shift : Ar — Ar
is a sofic shift (as in Lind-Marcus [33]).

The following concept will be useful in Section 5.

Definition 2.20. Given an integer k we say that two cone types €1, Cy are k-nested
if there is a path of length £ in the geodesic automaton from €; to Cy. In this case
there is an element 8 € T with |8| = k and such that 5Cs  C;.

Since I is hyperbolic, there are only finitely many cone types, therefore, for every
k, there are only finitely many k-nested pairs of elements (however, as soon as I'
is non-elementary, the number of k-nested pairs grows exponentially with k). The
following is clear from the definitions:

Lemma 2.21. If {o;} < T is a geodesic, then the pair (C(cu), Claitk)) is k-nested.
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2.3.3. Cowverings of the Gromov boundary. Recall that, as [ is Gromov hyperbolic,
its boundary oI, consisting of equivalence classes of geodesic rays, is well defined
up to homeomorphism. We associate to every cone type € which is not the cone
type of the identity a subset of oI, the cone type at infinity, by considering limit
points of geodesic rays starting on e and totally contained in € :

Coo = {[(;)]|(cv;) geodesic ray ,ap = e, a; € C}.

It follows from the discussion in the previous paragraph that every point in oI is
contained in at least one of the sets Co,. As there are only finitely many cone types,
we obtain a finite covering of dI' by considering U = {Cy(7y)}. Starting from this
covering we will construct new coverings that will serve as our Sullivan shadows:

AT

FIGURE 2. The set v Co(7)

Lemma 2.22. Given T > 0, the family of open sets
Ur = {1Cx(y) : 7] = T}
defines an open covering of ol .

Proof. We have to check that every point = € I is covered, but this is evident since
considering a geodesic ray (o;)F in I starting from e converging to z, one has that
for all i, z € a;Cq (v;), see Figure 2. O

3. ANOSOV REPRESENTATIONS

Anosov representations from fundamental groups of negatively curved closed
manifolds to PGL(d, R) were introduced by Labourie [31] and generalized by Guichard-
W. [23] to any hyperbolic group. In this section we will generalize to non-Archimedean
local fields the work of [4], which provides a simplified definition®.

3.1. Anosov representations and dominated splittings. Let I be a discrete
group of finite type, fix a finite symmetric generating set Sr and denote by || the
associated word length.

3Morse actions on Euclidean buildings (and thus in particular Anosov subgroups of PGL4(K)
when K is non-Archimedean) were already defined by Kapovich-Leeb-Porti [27, Definition 5.35],
the interest of such concept was also suggested in Géritaud-Guichard-Kassel-W. [20, Remark 1.6

(a)].
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Definition 3.1. Consider p € [1,d — 1]. A representation p : [ — PGL4(K) is
{ap}-Anosov” if there exist positive constants c, u such that for all v € [ one has

L (p()) < ceH (8)

A {a1}-Anosov representations will be called projective Anosov.
One has the following direct remark.

Remark 3.2 (Bochi-Potrie-S.). Let p : I — PGL4(K) be {a,}-Anosov. Given a
geodesic {«; }iez let us denote by @; = a;rllai € Sr, then we have

(p(ai))iez € :D(Cupa Gy Wy Z)
where ¢, p come from equation (8) and C' = max{|p(a)| : @ € Sr}. Note also that
(p(ai))iez € Q(Ca d— b, G 1y Z)a
and thus Theorem 2.14 provides the following splittings of K¢
D d—p d—p D
Elp@) @ Fpw@ny) 4 Epa,)) @ Floa,)):
with the obvious inclusions according to dimension. By domination, these four bun-

dles vary continuously” in D(C, p, ¢, i, Z) n D(C,d —p, ¢, u, Z). Finally, Proposition
2.17 yields, for k € {p,d —p} and m = 0

Ur(plam)) = Uk(@p " @, ) — Eécp(ai))
and

Ui(p(am)) = Up(@-1- - Tm) — Floa)

as m — 0.

Using dominated splittings it is possible to deduce strong angle estimates be-
tween Cartan attractors along geodesic rays through the origin; for example the
next result is a direct consequence of Lemma 2.18.

Proposition 3.3 (Bochi-Potrie-S.). Let p: I — PGL4(K) be a {a,}-Anosov repre-
sentation. Then there exists § > 0 and L € N such that for every geodesic segment
())& in T through e with |ag|,|ax| = L one has

% (Up (p(en)), Ua-p (p(0)) ) > 8.

Bochi-Potrie-S. [4] applied the theory of dominated splittings to the sofic shift
Ar — Ar induced by the recurrent geodesic automaton (see Section 2.3.2), to get
an easy proof of openness of Anosov representations. Their proof easily extends to
every local field:

Proposition 3.4. The set of {a,}-Anosov representations is open in hom(I', PGL4(K)).

Proof. A representation p : [ — PGL4(K) induces a linear cocycle A, over Ar,
which admits a dominated splitting if and only if the representation p is {a,}-
Anosov. Observe that the cocycle A, varies continuously with the representation,
since it only depends on the value of p on a generating set of I'. Since, by Proposition
2.15, having a dominated splitting is an open condition on the space of cocycles,
the result follows. O

“In the language of Bochi-Potrie-S. [4, Section 3.1] a {ap}-Anosov representation is called
p-dominated.
5This follows from Proposition 2.15, see also, for example, [4, Theorem A.15].
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3.2. Boundary maps. From now on we will assume that [ is a word hyperbolic
group. This is not a restriction: Kapovich-Leeb-Porti proved that the only groups
admitting Anosov representations are hyperbolic [27, Theorem 6.15] (cfr. also
Bochi-Potrie-S. [4] for a different proof in the Archimedean case). We can thus
talk freely about the Gromov boundary orl.

An important property of {a,}-Anosov representations is that they admit equi-
variant boundary maps:

Proposition 3.5 (Bochi-Potrie-S. [1, Proposition 4.9]). If p : I — PGL4(K) is
{ap}-Anosov, then for any geodesic ray {y,} with endpoint x, the limits

&h(x) = lim Up(p(ym)) &7 (@) := lim Us—p(p(7n))

exist and do not depend on the ray; they define continuous p-equivariant transverse

maps EP : 0T — Gp(K9), €477 1 0T — Gq_p(K?).

Proof. The proof in [4, Proposition 4.9] works without modification in our context:
despite Up(p(vxn)) is not uniquely defined, Lemma 2.3 (2) guarantees that, for every
choice of Uy (p(vn)), the sequence {U,(p(v»))} is Cauchy, and therefore has a limit;
furthermore, since any pair of geodesic rays defining x is at bounded distance,
Lemma 2.3 (2) shows that the limit doesn’t depend on the chosen sequence, and
the maps are continuous. The equivariance follows from Lemma 2.3 (3). O

The uniformity of the limits in Proposition 3.5 can be quantified explicitly (cfr.
[4, Lemma 4.7]). This will be useful in the proof of Theorem 7.1:

Lemma 3.6. Let p : I — PGLy(K) be {a,}-Anosov. Then there exist constants
C, p such that, for every a € T and every x € aCux(a),

d(&P(x), Uy(p())) < CeHlel,

In particular, given € > 0 there exists L € N such that

U Unlol) = Nelggen).

y:vl=L

Proof. If x € aCy () there exists a geodesic ray («;);en through o with endpoint
z. In particular we get

d(Up(p(Oé))iﬁ(w)) S Z d(Up(p(ai))aUp(p(ai-ﬁ-l))) sc Z et

=]l =l

Here the first inequality is a consequence of the triangular inequality, the second
follows from Lemma 2.3 (2).

The second statement follows since, as [ is word hyperbolic, there is a constant
D such that, for every v € I' we can choose a geodesic ray (a;)ien, and k € N such
that d(vy,ax) < D. This implies that v = aih with || < D. Let 2 be the endpoint
of the geodesic (a;)ien. Then

d(Up (p(7)), €5 () < d(Uy (plorh)), Up(p(ar))) + d(Up(p(en)), & (2)))-
O
Bochi-Potrie-S. [1] observed that the boundary map has an explicit character-

ization in term of the linear cocycle A, over the sofic shift Ar (described in the
proof of Proposition 3.4). Recall from Definition 2.12 that whenever a cocycle
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A, Ar x K¢ — Ar x K? has a dominated splitting we denote by E (resp. F) the
stable (resp. unstable) bundle.

Proposition 3.7 ( [, Proposition 5.2]). Let p: T — PGLg(K) be {a,}-Anosov. Let
x,y € Ol and (&;)°,, € Ar a geodesic from y to x. Then one has
_ d—
(@) = Efyq,)) and &77() = Fii)-
As a corollary we can follow [4] and generalize to the non-Archimedean case the
following important fact originally proved by Labourie [31] and Guichard-W. [23].

Corollary 3.8. Let p : [ — PGL4(K) be {ap}-Anosov. The boundary maps &P :
o — G,(K%), €977 1 0T — Gy, (K9) vary continuously with the representation.

Proof. This follows at once from the arguments in the proof of Propositions 3.4 and
3.7, as splittings vary continuously with the cocycles by Proposition 2.15 (this is a
standard argument, see [4, Theorem A.15] for a proof). O

The boundary map, which is unique, gives a realization of the boundary oI in
G,(K?), a space where the dynamics is governed by ratios of semi-homothecy ratios
of elements in the projective linear group. To stress this fact and the dependence
on p we introduce the following notation, which will be heavily used in the rest
of the paper: if p : I — GLg(K) is a {a,}-Anosov representation with equivariant
boundary map &P, and x € 0I', we will write

xh = &P (x).

We noticed that this notation improves readability of many formulas and conve-
niently stresses the dependence of & on p.

3.3. Geometric estimates. We conclude the section on Anosov representations
by collecting a number of geometric lemmas that will be useful later on. The first
result provides the quantification we will need of the following geometric principle:
endpoints of a geodesics through the origin are uniformly far in the visual boundary,
the same holds for their image under the boundary map associated to an Anosov
representation.

Lemma 3.9. Let p : [ — PGLg(K) be {a,}-Anosov representation. Then there
exists v > 0, depending only on p such that: if {c;}icz < T is a geodesic through id
with endpoints x,z € 0T, then for all i € Z one has

&(p(a[l)xg,p(ai_l)zg_p) > .
Proof. Recall that we denote by D(C,d — p,c,u,Z) the compact, shift invari-
ant space of dominated sequences (cfr. Definition 2.16). The bundle D(C,d —
p,c, i1, Z) x K? admits a dominated splitting EP @ F?~P and, by compactness, we
get
= inf EP FYPY > 0.
Y= e @i ez *Flor o))
Remark 3.2 implies that, since p is {ap}-Anosov, (p(a;lloal-))iez e D(C,d —
D, ¢, i, Z), furthermore one directly computes that
V" ((plai ai))iez, v) = ((p(a704))imnez, p(ar ) v).-
As we know from Proposition 2.17 that

= lim Uy(p(a) = Bl
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and

d P _ . = d-p
= lim Us—p(plo—i)) = Fiya),),

we deduce that for all ¢ € Z one has

£(p(a;")ah, pla; )20 7)) > v,
O

The next lemma will be crucial in Section 6. It quantifies how the inverse of
elements in a geodesic expand the distances exponentially in neighbourhoods of
their Cartan attractors; this should be compared with [4, Corollary A.14]:

Lemma 3.10. Let p: I — PGLy4(K) be {a,}-Anosov. There exist positive constants
¢, T, 6 depending only on p, and L € N such that, for every geodesic ray {c;}ien < T,
with ap = id and endpomt z, every i = L, and every z,w € dI' satisfying 25, wh €

Bs(ah), and p(a; ){z ,wh} < Bs(p(a; “1aP), we have

d(p(ag Ywh, pla;t)2h) = eed(wh, 25).

Proof. We complete the ray {a;}ien to a biinfinite geodesic {a;}ez with second
endpoint y. The sequence s = {p(oa;llai)}iez belongs to D(C, p, ¢, u, Z). It follows
from Propositions 2.17 and 3.5 that the sequence s has the dominated splitting
E ® F where F, = :Eg and B, = yg_p. So there exist constants [r, ¢y such that

m(p(a; 1)l r)
Ip(a; )

Since, by Lemma 3.9, the angles 4(a:p,yg*p) and 4(p(ai_1):1:g, p(ai_l)yg*p) are
bounded below by a uniform constant v, we can apply Corollary 2.10 with P = zf,
Q= yg_p and g = p(a;)~! and get

= clem.
pr |

dparyur, plartyz) > o AN i) g gy
0@ sl

4. AN UPPER BOUND ON THE HAUSDORFF DIMENSION OF THE LIMIT SET

In this section we will prove the following upper bound, this result is indepen-
dently obtained by Glorieux-Monclair-Tholozan [19] for Archimedean K. Recall
from the introduction that if p : I — PGL4(IK) is projective Anosov then A3' is the
critical exponent of the Dirchlet series

SH;F(@ )

We denote by Hff(A) the Hausdorff dimension of a subset A < P(K?) for the metric
induced by a good norm on K¢.

Proposition 4.1. Let p: T — PGL4(K) be {a1}-Anosov, then Hff(£'(aI)) < h3'.

Recall that for a metric space (A, d) and for s > 0 its s-capacity is defined as

FH(A) = mf Z diam U? : U is a covering of A with sup diamU < ¢ (9)
Uell UelU
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and that
Hff(A) = inf{s : H*(A) = 0} = sup{s : H*(A) = o0}. (10)
In order to prove Proposition 4.1 we will analyze the image, under the bounary
map &b of the covering Uz described in subsection 2.3.3, whose elements consist of
images of cone types at infinity under sufficiently big group elements. The following
crucial lemma will allow us to show that the images of the boundaries of cone types
transform as expected under group elements:

Lemma 4.2. Let p : I — PGL4(K) be a projective Anosov representation. Then
there exist § > 0, L € N such that for all v € T with |y| > L and every x € Cx(7)
one has

£ (2, Ua-1(p(v™1))) > 0.

Proof. By definition of C(v), for all € Cy () there exists a geodesic ray {a;}&
in [ with ag = v~ ! and a; — 2 as i — . The lemma then follows combining
Proposition 3.3 and Proposition 3.5. O

4.1. Proof of Proposition 4.1. For each T' > 0 consider the covering U of oI
given by Lemma 2.22. By definition, U = U, € Uy is of the form yCy(7) for some
~vel with |y =T

Lemma 4.2 implies that there exists ¢ such that for every x € C(y) one has

d(h,Uaa (o)) = 6
and thus Lemma 2.5 applied to p(vy) implies that

d(p(w)w}), U, (p(v))> < %Z—T(P(W)

which implies that
20 2

diam{(U,) < ga—l(p(”y)) < Ce M1,

In particular supgey,. diam U is arbitrarily small as T' — c0. Hence,
. 2 s ' o9 s
H (5 1nf Z diam £*( ) < (S) ll%f (U_l (p(w))) .

UEuT
By definition, if s > h3' then the Dirichlet series ®31(s) is convergent (recall eq.
(1)). Hence, for every s > h3! one has

Jm ), <2(P(v))>s=0,

0 01
y:v=T

iy =T

which implies that the s-capacity H*(¢'(0F)) vanishes and thus Hff(¢'(0F)) < h3'.

5. LOCAL CONFORMALITY AND HAUSDORFF DIMENSION

The goal of this section is to find a class of representations for which the equality
in Proposition 4.1 holds. This happens in three steps.

- In Section 5.1 we study the thickened cone types X (), these are a thick-
ening, in P(K?), of the image by ¢! of G () for a given a, and define the
locally conformal points.
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- In Section 5.2 we prove that if x is a locally conformal point, then there
is a geodesic ray a; — x such that the sets p(a;)Xo () behave coarsely
like balls around x; the harder inequality is the lower containment, which
is achieved in Corollary 5.10.

- In Section 5.3 we define a measure that behaves like an Ahlfors regular
measure for the sets aXy (o). Putting this together with the previous sec-
tion, arguments coming from Sullivan’s original paper allow us to conclude
the desired equality, provided we can guarantee existence of many locally
conformal points, this is the purpose of Section 5.4.

5.1. Thickened cone types at infinity and locally conformal points. Let
p: T — PGL4(K) be projective Anosov, it follows from Proposition 3.3 that there is
a positive lower bound on the distance of Cartan attractors and repellers of geodesic
rays through the origin. Such number will play an important role in our study:

Definition 5.1. Let p : I — PGL4(K) be projective Anosov, and let L be fixed
and big enough. The least angle §, is

d, = inf sin (4 (Ul (p(ax)), Ui (P(Oé—m)))
where («;)iez ranges among biinfinite geodesics through the origin, and k,m > L.

We consider coverings of £(0I) obtained by translating thickened cone types at
infinity:
Xop(a) := N5P/2(§1(eoo(0<))) N 51(5”-
By construction the sets X, (a) are coarsely balls of £1(0I) centered at points in

€€ (a)):

Remark 5.2. For every a in I', and every x € Cy(ax), the thickened cone type at
infinity X4 (a) contains a ball centered at the point :v}; of uniform radius:

B(xfl),ép/2) N ENOT) © Xo(a)

Thanks to Proposition 3.3 we can control how thickened cone types shrink under
the action of group elements:

Lemma 5.3. Let p : I — PGL4(K) be projective Anosov. Then there exist K, L
such that, for every geodesic ray (o;), for every i > L, and every z}),w; €
XOO(ai)a o
2
d(aiz}), aiw;) < Ka—l(p(ai)) d(z;, w;).
Proof. As p is projective Anosov we have d(z}, Us—1(p(a;)™")) > 6,/2 (Lemma
4.2). The result is then a direct consequence of Corollary 2.11. g

Corollary 5.4. If p: T — PGL4(K) is projective Anosov, and x € a;Co(av;), then
o
pladXoter) = B (2} K2 (p(a0)) (D),

In particular, if {a;}{° is a geodesic ray with endpoint z, the sets p(a)Xo ()
form a fundamental system of open neighbourhoods of z in £(dI") (cfr. Figure 3).

Definition 5.5 gives conditions guaranteeing that the sets p(a) X («v) are coarsely
balls whose sizes we can precisely estimate. Given g € GL4(IK) we denote by

1<pi(g) <...<prglg) <d
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gH(an)

FIGURE 3. The sets of the form p(a;)Xw (o) for a geodesic ray {a;}
with endpoint x are the intersections of thinner and thinner ellipses
with the limit curve.

the indices of the gaps of g (as in Definition 2.1).

Definition 5.5. Let p : I — PGL4(K) be projective Anosov. We say that x € oI is
a (g, L)-locally conformal point for p if there exists a geodesic ray {a;}& in I' based
at the identity and with endpoint x such that the following conditions hold:

(i) for all big enough 4 one has p2(a;) = p2 does not depend on ¢,
(i) for every i > L, and for every z € (£3)™!(Xoo(ev)) one has

sin (4(2; @ p(afl)x}), Ud—p, (p(a{l)))) > €.

FIGURE 4. The second condition in Definition 5.5.

Note that, in general, the index p, might depend on the point x and we do not
require that the representation p is {ap, }-Anosov. In the special case when p is
{a1,a2}-Anosov, the condition (i) is automatically satisfied with ps = 2, but (i%)
can only hold if the dimension of dI is very small (cfr. Corollary 6.6).

Remark 5.6. A generic element g € PGL(V') has p2(g) = 2. Nevertheless there
are many interesting geometric situations in which condition (¢) holds for py > 2.
For example if g is a generic element in SO(m, n), we have that A™g € SL(V') has
p2(A™g) = n—m + 1, so one can enforce ps > 2 by considering representations
in smaller subgroups. In Section 8.1 we will describe another interesting class of
examples.

5.2. Neighborhoods of locally conformal points that are coarsely balls.
We will now show that if z is a locally conformal point for p, and a; — x is a
geodesic ray, then the sets p(c;)Xo (i) are coarsely balls centered at x) of ra-
dius 02/01(p(a;)) for the distance on £)(0T) induced by d, this will be achieved in
Corollary 5.10, and motivated the terminology locally conformal.
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Proposition 5.7. Let p: T — PGLy(K) be projective Anosov. There exist L such
that, for every (e, L)-locally conformal point x, there exists a geodesic ray {a;}y
from the identity with endpoint x, such that for every i > L and every z € Xo(a;)
it holds co
2 1 1.1
101 ( ) d( )p) < d((aiz)p’xp)'
Proof. Let W; := z &) (a 1:6) As x is (g, L)-locally conformal, for every i > L,

we have d(W;, Ud,m( (a; 1)) > . From Lemma 2.5 one concludes that

&(p(ai)Wi, Up, (P(Oéz‘))) —0

as ¢ — o0 at a speed only depending on ¢ and the Anosov constants of p, and thus,
possibly increasing L, one concludes that for every i > L it holds

Z_T(P(Oéiﬂwi) > e 72 (p(ay)) = ei—f@(ai)),

01

Here the last equality is due to the fact that ps is the first gap for p(«;) and thus
s (pli)) = o2 (p(a)).

Furthermore p(a; ')ua(p(as)|w,) € Wi n Ua—1(p(a _1)), and then, since p is
projective Anosov and z} € X (), we have d(z p,p( YNz (p(ci)lw;)) > 6,/2,
where 6, is the constant from Definition 5.1. This implies that we can find L
depending on p and ¢ only such that for every ¢ > L

a(p(es)zh, Ur (pla)lws) ) < d(plaa)zh U (p(ei)) ) +d (U1 (p(ai)), U (pla)lws) ) < 1/V,

since both quantities converge to 0 as ¢ — o0 at a speed only depending on the
Anosov constants of p. The proposition then follows from Corollary 2.9. O

Recall from Definition 2.20 that we say that a pair of cone types (C(a1), C(az)) of
I are k-nested if there exists a path in the geodesic automaton of lenght k& between
C(a1) and C(az). In this case we say that 8 € I' is a nesting word if 8 labels one
such path.

Lemma 5.8. For every L big enough (dependmg only on p) there exists a constant
c (depending on p and L) such that for every L-nested pair (C(ay), C(az2)) and any
nesting word 3 it holds

(i) p(B)Xeo(a2) = Xoo(an)

(it) for every z) € £(6Cu(2)) and every w), € Xo(a1)\p(B)Xoo(r2), it holds

d(zll), wl) > c.
Proof.

(i) By definition of ¢, and X (cv2), whenever |3] > L and § is a nesting word,
then d(z,Ugs—1(p(871))) = 6,/2 for every point @ in X (az). Here L is as
in Definition 5.1. Up to possibly enlarging L we can assume, by Corollary
2.11, that p(8) contracts distances on X (az2) so that

P(B) X (az) € Ny, j2(p(B)E) (Coo(@2))) N E(AT) € Xop(arr).

(ii) Since, by construction, X (az) contains the intersection of £}(dl) with a
ball around any point z} € £}(Co(ar2)) of radius 6,/2, the set p(8)Xo(r2)
contains the intersection of 51(3|_) with the ball around any point z! €

P
p(B)E)(Cop(az)) of radius % 2 ol (p(B)) : 22 (g) is the smallest contraction for
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the action of g € SL(d,K) on P(IK?). Recall that only finitely many 8 can
occur, as, by construction, |3| = L. The result follows taking

¢ = min 274 (p(3))

1I=L 2 01

Combining Proposition 5.7 and Lemma 5.8 we obtain:

Proposition 5.9. There exists c1 depending only on p such that, if L is as in
Lemma 5.8 and {a;} < T is a geodesic ray with endpoint x, for every y with y; €

p(an) Xoo (n)\p(@ns 1) Xoo (s 1), it holds
(X
d(yl,l) > cla—j(pmnm).

Proof. Tt follows from Lemma 2.21 that for every n, L the pair (Co(tn ), Coo(an+1))
is L-nested. Furthermore, up to choosing L large enough, we can apply Lemma 5.8
to the pair (Coo (), Con(ansr)). If we denote by 2z := a,, 'z and w := a; 'y we
deduce that d(z},w)) > c. Proposition 5.7 implies then that

d(yp. ;) > Cﬁfz—j(an) > Clz—j(anu)
Where in the last inequality we used that, as L is fixed the homothecy ratio gap of
Qv 18 uniformly comparable to the one of a1 1. O

As a corollary of Proposition 5.7 we can finally get the main result of the section
(cfr. Figure 3):

Corollary 5.10. Let p : I — PGL4(K) be a projective Anosov; then for every
locally conformal point x € OT there exists a geodesic ray c; — = with

B (e Z (o) ) 0 60T) < )Xo ().

Proof. This follows from the above proposition by observing that the sets p(a;) X o (o)
form a fundamental system of neighborhoods of :vll) in (). O

5.3. A regular measure for conformal points. The goal of this section is to
construct, following Patterson’s original idea, a measure, supported on {;;(0F), for
which we can get good estimates on the measure of the cone types. This will be
used in Section 5.4 to obtain the desired lower bound on the Hausdorff dimension
of the limit set®.

Let p : T — PGL4(K) be a projective Anosov representation. Recall from the
introduction that we have defined

O (j—j(pw)))s-

We can assume that ®2!(h3') = o : otherwise, as it is standard in Patterson-
Sullivan theory, we would carry out the same construction with the aid of the
modified Poincaré series

o\
%9 = 21 (m60) (Z00)

ag
el 1

6See Remark 5.15 for a comparison with the work of Quint [39)]
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where f(s) is the function constructed (for example) in Quint [39, Lemma 8.5].
We will therefore assume from now on that the Poincaré series diverges at its
critical exponent; for every s > h3!, we define

1 02 ’
y, = B3 (5) Z <0—1(P(”Y))> OU (p(7))-

~el

Recall from Section 2.1 that, for every element v € ' we chose a Cartan decompo-
sition of p(v) and therefore a 1-dimensional subspace Uy (p(7)).

One easily checks that for every s > h%' the functional f +— §f dpy, is continuous
on C(P(K?),R) with the uniform topology and hence one can take a weak* accu-
mulation point of pj5, as s — h3', in the space of Radon probability measures on
P(IK?). We will denote such Radon measure by pat, (note that we do not show, nor
require, that 3! is the only accumulation point of y5).

Lemma 5.11. For any n €T the (signed) measure

e(n,8) 1= Nwpiy — % > <02 (p(v))> U (p(n))

o
~yel 1
weakly* converges to zero as s — h3'.

Proof. Indeed by definition

s 1 g9 ®
Mely = G0y > (—(p(w))) Op(m)Us (p(+))-

(o}
el 1

Furthermore, Lemma 2.3 (3) implies that

d(p(mUi(p(7)), Ur(p(n7))) < |0l Hn’l\lg—jp(v)-

In order to show that (), s) converges to zero, it is enough to show that for every
continuous function f : P(V) — R the integral of f on (), s) tends to zero as
s converges to hi'. However every such function f is uniformly continuous, and
therefore for every e we can find ¢ such that |f(z) — f(y)| < e/2 if d(x,y) < 4. Tt is
then enough to choose s close enough to h%' so that the mass of pj of the elements
7 such that o1 /02(7) < |n||n~'|/d is smaller than ST O

One has the following proposition (compare with Sullivan’s shadow Lemma, [12]).

Proposition 5.12. Let p : [ — PGL4(K) be a projective Anosov representation,
then for all n € T one has

o4 B e X () 4 (o &
<U_1(p(77))) < m < g (U—I(P(W))) .

Recall that there are finitely many cone types, so the number p31 (X (7)) is an
irrelevant constant.
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Proof. Consider s > h7, n el and a continuous function f : P(K?%) — R. One has

pF o)™ = gt ) (Z60)) 16 10:60))
=+ g B (20l SO
pel ~el 1
=) + g > (Z6mZemn) (Z60) 1en),

where €(n™!, s) is the term estimated in Lemma 5.11, so that e(n~!, s)(f) converges
to zero when s — hZ'.

Assume that the support of f contains X4 (n) in its interior and s is close enough
to A% so that % (s) is arbitrary large. Then only the tail of the sum involved in
o (f o p(n)~1) is relevant, this is to say:

- only ~’s for which |v| is large matter,
- since we are integrating f, U1 (p(y)) has to be near to X (n), so that there
is a geodesic segment from 7! to v passing through the identity.

This, together with Proposition 3.3, implies that such ~’s one has

sin (£(U1(p(7)), Ua—1(p(n)))) > €y,

for some e; depending on the support of f. Note that ¢¢ approaches ¢,/2 (recall
Definition 5.1) as supp f — X (7). Choosing a sequence sp — h3! such that
ppk — p3t one has, using Lemma 2.6 and equation (11), that, for any such f

_ . s _ 4 (o9 e
i (Fo ot ™) = T (7o o) < 55 (Z0) i),
sp—hg 5 \01
By continuity of f — p3 (f), one concludes the desired upper bound. The lower
bound follows similarly. O

Since cone types shrink to any given point of ¢ one has the following conse-
quences of Proposition 5.12.

Corollary 5.13. The measure p5' has total support and no atoms.

Proof. If «; is a geodesic ray converging to x then p(a;)Xo(;) is a family of
open neighborhoods decreasing to z, and since p is projective Anosov one has
(02/01)(p(i)) — 0 as i — 0. As p3! is a Radon measure we have on the one hand

h3
a : a 4 (D) P
4 ) = nf 3 (o) Xolo)) < 55 ( Z00a)
P
on the other hand for every open set A intersecting £(0') we can find « such that
plai) X () is contained in A, and thus

, )
121 (A) > 2 (ple) Koo ())) = (—d(p(n))> .

01
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5.4. When conformal points are abundant. Denote by
LC(p) = {x € aI : x is locally conformal for p}.

We can now prove the following.

Theorem 5.14. Let p : I — PGL4(K) be a projective Anosov representation. If
pat(LC(p)) > 0, then
HEf(¢)(0)) = k3.

Proof. As we already established in Proposition 4.1, Hff(¢)(aI)) < h3!,
only need to show the reverse inequality. The proof will follow the main ideas
in Sullivan’s original work [412], using Corollary 5.10 and Proposition 5.12 as key
replacement for the conformality of a Kleinian group action on its boundary, and
Sullivan’s shadow lemma.

Given z € LC(p) and a geodesic ray {«;} on ' converging to z, Corollary 5.10
implies that for all i = Ny(z) the set p(a;)Xo(;) is coarsely (with constants
independent of z) a ball of radius

SO we

ri(x) = 72 (plen))

01
about «, (for the induced metric on £}(ar)).
Proposition 5.12 then states that for all i > Ny(z)
pe (B, ri(x))) < eri(a)". (12)

Observe that we can extend equation (12) for any 0 < r < rx, (), up to possibly
worsening the constant ¢: Since p is projective Anosov, the word length of v €T is
coarsely log oa/c1(p(7)), thus

ri(z)/riv1(z) < K,

for some constant K, only depending on p; given r it suffices to consider r;41(z) <
r < r;(z) and thus

. B2 . .
Hp (Bl,m) < C(r:ﬂ)) Cri (@) < Lyt
Furthermore, there exists € such that the set X, = {z € LC(p) : rn,(x) = €} has
positive p5t-mass: this follows from the general fact that countable union of sets
with measure 0 has measure 0, since we assumed 3! (LC(p)) > 0,
The remainder arguments are verbatim as in Haissinsky [24, Théoreme F.4]. We
include them for completeness: as X, is a subset of £(0I), it is enough to verify that

Hff(§(Xe)) = h3'; we will show that, denoting by o := h3', we have 37 (X.) > 0.
Indeed let us denote by d := “;;(L):E). By definition of o-capacity we can find an
open covering B = {B(xz;,r;)} of X, consisting of balls of radius r; < € and such

that

D <HO(X) +d.

Recall from (9) at the beginning of Section 4 that we denote by H?(X.) the o-
capacity of the set X.. On the other hand we have

pot (Xe) < 3t (UB(%,M)) < Zuf} (B(wi,m3)) < ZL,,T;’.

This shows that H*(X,) is positive, and concludes the proof. O
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Remark 5.15. Patterson-Sullivan measures in a setup close to ours were exten-
sively studied by Quint [39]. For our geometric applications it is crucial to have
an Ahlfors regular measure of exponent h3'. Let us denote by G the Zariski clo-
sure of p(I'), assume that G is reductive (despite this is not always the case in the
examples we have in mind), and let Fg denote the full flag space associated to
G. Quint [39, Theorem 8.4] provides a quasi-invariant measure p on Fg called a
(p(1), hf)lal)-Patterson-Sullivan, with the desired transformation rule, as long as a
tecnical condition is satisfied, namely that the form h%'a; is tangent to the growth
indicator function t,ry. In order to guarantee that this is the case we would have
to further assume that the representation p is {a,}-Anosov, and that pa(p(7y)) = p
for every v € I'. The measure p could then be pushed forward via the projection
Fe — P(KY) and the fact that p is {a1,a,}-Anosov would imply that the new
measure on P(K9) would still be quasi-invariant. However deducing the analogue
of Proposition 5.12 in that setting would require some work as our representations
are, in most interesting cases, not Zariski dense.

6. (p,q,r)-HYPERCONVEXITY

In this section we introduce (p, ¢, 7)-hyperconvex representations, establish geo-
metric properties and provide the link with local conformality.

6.1. Hyperconvex representations. The following definition is inspired from
Labourie [31] for surface groups. Let I' be a word-hyperbolic group and denote by

0BT = {(2,y,2) € (@N)° : pairwise distinct}.

Definition 6.1. Consider p,q,7 € [1,d — 1] such that p + ¢ < d. We say that a
representation p : [ — PGL4(K) is (p, ¢, r)-hyperconvex if it is {ap,aq,ar}-Anosov
and for every triple (z,v,z) € d®)T one has

(xg Dyl N zg_r = {0}.

Note that, since p + ¢ < d and the representation is {ap, a;}-Anosov, the sum
xh + yl is necessarily direct. Hence, hyperconvexity implies that p + ¢ < . We
will observe in Corollary 6.6 that p can only be (p, ¢, r)-hyperconvex if r —p — ¢ =
dim(dl) — 1. Note that we do not require p and ¢ to be different.

Proposition 6.2. The space of (p, q, r)-hyperconvex representations is open in
hom(I, PGL4(KK)).

Proof. The proof follows the same lines as Labourie [31, Proposition 8.2]. Since
the action of I on d®)T is properly discontinuous and co-compact, given a triple
(x,y,2) € G there exists v € I such that the the points vz, vy and vz are pairwise
far apart. Considering a (p, g, r)-hyperconvex representation p, one concludes that
the angles between any pair of the spaces (yz)?, (yy)? and (yz)4~" are bounded
away from zero. Corollary 3.8 states that the Anosov condition is open and that
equivariant maps vary continuously with the representation, hence, since the map
T — Sp+q (Kd)
(a,b) — ab @bl

is continuous away from the diagonal the result follows. O
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Since hyperconvexity is an open property, one can provide interesting examples
of hyperconvex representations by looking at representations of the form I - G —
GL4(K), where the first arrow is convex co-compact (see Section 7.2) furthermore
hyperconvexity behaves well with field extensions:

Lemma 6.3. Let K < F be a field extension, if p : I — PGL4(K) is (p,q,7)-
hyperconvex then so is p : I — PGLg(F).

We conclude the subsection providing obstructions to the existence of (1,1,7r)-
hyperconvex representations. A useful tool for this is the stereographic projection:

Definition 6.4. Let p : [ — PGL4(K) be {a1,a,}-Anosov. Given z € dI, the
stereographic projection defined by z (and p) is the continuous map

T OF — {2} > P(K?/2077)

defined as follows: since p is {aj}-Anosov, for every point a € dI different from z,
the vector space :c,l) ® zg” has dimension d — r + 1 and projects to a line in the
quotient space K%/z07"; we define 7. ,(x) € P(K%/z07") to be the projectivisation
of this line.

The following is immediate from the definitions:

Lemma 6.5. If the representation p is (1,1, r)-hyperconvexr then for every z € oI
the map 7, , is continuous and injective.

Proof. The stereographic projection 7, , is the composition of the boundary map
¢t oN\{z} — P(K?) with the projection P(K*\z¢™") — P(K%/z47"), which is
algebraic outside the (d —r)-dimensional subspace z;l*’”; it is well defined as p is a1-
Anosov, and is therefore continuous. Injectivity follows directly from the definition
of hyperconvexity. (I

Corollary 6.6. If there is no continuous injective map oI — {z} — P(K"), then
there is no (1,1, r)-hyperconvexr representation p : I — PGL4(K).

6.2. From hyperconvexity to local conformality. We now find a link between
hyperconvexity and local conformality. The following statement is the main tech-
nical result of Section 6, and will be crucial in the proof of Theorem 7.1.

Recall from Section 5.1 that we defined, for every projective Anosov representa-
tion p : I — PGL4(K), the thickened cone type at infinity X, («) as the intersection
of the §,/2-neighbourhood of £, (€y () with the image of the boundary map. In
a similar way, if p is {a,}-Anosov, we set

X5 () :=Ns, 268 (Con(a)) n g5 (0T),
where dp, , is the number ¢ from Proposition 3.3.

Proposition 6.7. Let p : T — PGL4(K) be (p, q,7)-hyperconver. Then there exist
constants L,e such that for every o € T with |a| > L, for every x € Cy () and
every y € (€)' X% (), it holds

sin&(xﬁ@yg,Ud_T(p(afl)D > €. (13)

Observe that the conclusion of the proposition is the second condition required
for a locally conformal point (Definition 5.5).
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Before proving the Proposition let us fix a distance d on dI' inducing its topology
and for v > 0 define a triple of points x,y,z € 0l is v-separated, if all distances
d(z,y), d(y,z) and d(z, z) are bounded below by v. The following lemma follows
from the convergence property of hyperbolic groups, see for example Tukia [43].

Lemma 6.8. Let (a;)icz be a bi-infinite geodesic through e € T with a; — x and
a_; — z say, as it — +00. Then the function y — d(ai_ly,ozi_lz) converges to 0
uniformly on compact sets of O — {x} is i — +o00. Consequently, for fixed v, the
positive integers n such that the triple o, 'z, aty, o, 1z is v-separated is bounded
above uniformly on compact sets of oI — {x}. Finally, there exists vy > 0 such that
for every 0 < e < vy and y € T — {x} with d(x,y) < € there exists n € N such that
a;lx, oz;ly, oz;lz are vg-separated.

Proof. Let us give an idea of the proof in our situation, i.e. assuming that [ admits
a projective Anosov representation p. We focus on finding vy and n € N so that the
last sentence of the statement holds.

Consider the distance d induced by our chosen distance on P(IK?) through the
boundary map &,. The fact that there is a lower bound on the values d(a;, =, oy, ' 2)
for all n follows from Lemma 3.9, and the fact that we can find a suitable n, such
that both d(a;, 'z, a;, y) > vo and d(a;, *x, o 'y) > 1y is a consequence of Lemma
3.10 combined with the fact that the action of the images of the generators on
P(KK?) is uniformly Lipschitz. O

Proof of Proposition 6.7. Since the representation p : I — PGL4(K) is (p,q,r)-
hyperconvex we can find €y such that if s, w,t € oI are vy-separated one has

sin £ (sh @, w;l*’”) >gp: (14)

this is guaranteed since the set of 1y-separated triples is precompact as the group
is hyperbolic.

Let us first show that if y is close enough to = (depending on ¢g, as well as the
representation p), we can find 1, L; for which Equation (13) holds.

In order to do so, observe that, since the group is hyperbolic, and thus the cone-
type graph is finite, there exists K smaller than the diameter of the cone-type graph
such that, if x € Cy (), there exists a bi-infinite geodesic («;)iez passing through
the identity, and an integer M such that d(a_j;,a™!) < K; of course in this case
[lo| — M| < K. We denote by z be the second endpoint of such geodesic.

or

F1GURE 5. The first step in the proof of Proposition 6.7
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By Lemma 6.8 we can choose NV € N such that a]_vlzzr, oaxfly, a]_vlz are vg-separated.
The size of N measures how close y is to x. Using the triangular inequality we get

sin £ (¢8 @ y2, Ua—r(p(a™))) = sin £ (Ur(p(an)), Ua—r(p(a—n)))

—d(Uar(pla-21)),Ua-r(p(™)) ) = d(plan) (03 2) @ (5" 9)2), Un (plan)) ).

The first term of the expression is bigger than §, , provided |a| is big enough, by
Lemma 3.3. The second term is smaller than 4, ,/3 if |a| is big enough by Lemma
2.3 (2): indeed a~! = a_jpra for some a € I with |a| < K. We chose Ly so that
these two conditions are satisfied. In order to prove our claim it is enough to verify
that we can find Ny big enough, depending on the representation only, such that
for every N = Ny, it holds

d(p(an)((ay'2)" ® (ay'y)?, Ur(plan))) < 6,/3.

Since z # z are fixed, the subspaces zg_r

since U, (p(an)) — z;, as N — oo uniformly in N, the angle between z;™" and
U.(p(an)) is bounded below for all positive big enough N depending only on the

representation p. Using Lemma 2.5 we deduce that

-1 —1\ d—r Od—r+1 -1 1
A(Usr (pla3): )5 ) < TP Gl ) s

Since the representation is {ag_,}-Anosov,((0a—r+1)/(da—r))(p(ay')) is smaller
than €¢/2 for big enough positive N. By hyperconvexity (equation (14)) we know

and zj, have a positive angle and thus,
d—r

(15)

—1_\P —1,\4 s . —1 \d—r
that (aN :C)p @ (aN y)p has a definite angle with (aN z)p , consequently, by
equation (15) we deduce that

4((a]}1$)z ® (a;,ly)z, Uj_r (p(ajvl))) > g0/2.
Thus, by Lemma 2.5
2

A(p(ax) (032 ® (' )E). U (o)) ) < 2 (plaw)) -

This concludes the first step, we can chose e1 = 6. ,/3.

We are thus left to verify that, up to possibly shrinking £; and enlarging Lq,
Equation (13) is also verified in the case n for which «,!(x,y,z2) is vo-far and
smaller than a fixed N. Observe that, since the group I is finitely generated and
N is fixed, we can find C, depending on p, such that d(a;, 'z, a;ty) < C"d(z,v),
and therefore we can find v; depending on N only such that d(y,z) > v4. Since
furthermore y¢ € X?(a), and thus we have a lower bound on d(y, z), we deduce,
up to further shrinking v4, that the triple (z,y, z) is v1-far. The same argument as
above let us deduce that there exists 5 such that

. d—
sin £ (zh ®yl, z,”") > ea.

It is then enough to chose Ly big enough so that d(z¢ ", Us—,(p(a!))) < e2/2.
The Proposition holds with L = max{L1, Lo} and € = min{eq, e2}. O

Proposition 6.7 combined with Theorem 5.14 yields the following Hausdorff di-
mension computations.

Corollary 6.9. Let p: T — PGL4(K) be (1,1, 2)-hyperconvez, then
Hff(¢'(or)) = h3'.
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Corollary 6.10. Let p : I — PGL4(K) be (1,1, r)-hyperconvez. Assume moreover
that for every v € T one has o2(p(7)) = or(p(7)), then every point of T is locally
conformal for p and thus

h3 = HIf (£'(aT)).

6.3. Examples: (ir)reducible SL,. The easiest examples of hyperconvex repre-
sentations are induced from representations of SLy(IK) (see for example Humphreys’s
book [25] for standard basic facts on the representation theory of SLs).

Recall that for every d € N — {0,1} there is a (unique up to conjugation) irre-
ducible representation ¢4 : SLa(K) — SLg(IK). This representation is given by the
action of SLy(IK) on the symmetric powers S¢~1(IK?), which can be identified with
the space of homogenous polynomials on two variables of degree d — 1 with coef-
ficients in K. If we denote by E;‘Lz ®) the weight space, the representation ¢q has
highest weight x,, € E§ ) given by x., () = (d—1)x.

Let F(S471(IK?)) denote the full flag space associated to SL(S?~!(K2)). The
Veronese map ¢ : P(K2?) — F(S971(KK?)) is defined by

((x) = {F@)}im
where (¥ (/) is the k-dimensional vector subspace of S¥~1(IK2) consisting of polyno-

mials that have x97% as a factor. It is easy to check that ( is t4-equivariant and
the image of an attractor in P(K2) is an attractor in F(S%1(K2)).

Remark 6.11. Note that for every pair of distinct points z # y in P(IK?) the flags
¢(x) and ((y) are in general position, i.e. for every k € [1,d — 1], it holds ¢*(z) n
¢4 (y) = {0}.

Moreover, using the transitivity of the SLo(IK)-action on transverse pairs, it is
easy to check the following:

Proposition 6.12. Let ¢ = {¢'}9Z] be the Veronese embedding of P(K2) into
F(Sa—1(KK?)), then for every triple p+q+r = d and pairwise distinct x,y, z € P(IK?)
one has

@) ¢ (y) &M (2) = K7
Corollary 6.13. For every convex cocompact’ subgroup T < SLo(K), the repre-
sentation tq|r : T — SLqa(K) is (p,q,r)-hyperconvex for every (p,q,r) such that
r = p+q. The same holds for small deformations.

We can obtain many more examples of hyperconvex representations by consid-
ering direct sums of irreducible representations. A representation m : SLy(K) —
SL(V,K) decomposes in irreducible modules

k
T =@t
1

where we have ordered d; > - -+ > dj. The highest weight x, € E’S"LQ(K) is xx(z) =
(dy — 1)z. Let us denote by

the remaining weights in decreasing order.

"For non-Archimedean fields K, in analogy with the Archimedean case, we say that a repre-
sentation is convexr cocompact if it is Anosov, as in Definition 3.1.
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Definition 6.14. Given k € [2,dim V], we say that = is k-coherent if X,(Tk) > dy—1,
equivalently if dy > do + 2(k — 1).

Observe that a representation 7 is k-coherent if and only if the representation has
a gap of index k and the top k eigenspaces are eigenlines of a diagonalizable element
in m(SLz(K)) and belong to the top irreducible factor. An important example of
2-coherent representations are exterior powers:

Example 6.15. For every p € [1,d — 1] the representation
APrg s SLo(KK) — SL(APKY)
is 2-coherent.

Proof. Considering a diagonalizable element in SLo(IK) one explicitly checks that
the top 3 weights of APy are

- Xarry =d—1+...+d+1—-2p=p(d-—p),

2
- X(A’?Ld = XnaPrg — 27
3 4
- X(Ang = X(Ang = XAPig — 4.

Definition 6.14 guarantees some hyperconvexity:

Proposition 6.16. Let p : [ — SLy(K) be convex co-compact. If m : SLa(K) —
SL(V,K) is k-coherent, then wop is (p, q, k)-hyperconvez for every p, q with p+q < k.

Proof. Since x*) > dy — 1 one has that x*) > y*+1) and thus 7 o p is {ag}-
Anosov. Coherence implies thus that x() > x(*1 for every I € [1,k] and thus
7o pis also {ap,aq}-Anosov since both p and ¢ are smaller than k. The remainder
of the statement follows from Lemma 6.12: if N denotes the dimension of V,
Gy, or — G,(ST1(K?)) = G,(V) is the tg-equivariant map induced by ¢, and
¢ . or — G;(V) denotes the boundary map associated to m, we have, for every
1 <k, that ¢ = Cllil and

k
&= e@s K.
=2
g

In particular Proposition 6.16 can be used to construct example of representa-
tions of Kleinian groups satisfying the assumptions of Theorem 5.14.

7. DIFFERENTIABILITY PROPERTIES

7.1. Convergence on pairs and bounds on the Hausdorff dimension. The
following result, which follows from Proposition 6.7 is inspired by Guichard [22,
Proposition 21], however, Guichard’s proof relies heavily on the fact that oI is a
circle, and that the representation is (p,q,r)-hyperconvex for every triple p,q,r
with p+q=r.

Theorem 7.1. Let p: I — PGL4(K) be (p, q,7)-hyperconvez then for every (w,y) €
0T one has
lim dw? @y, z") = 0.
(wy)=(z,2) (wh ©5,5)
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More precisely there exist constants C,p such that, if {«;} is a geodesic ray with
endpoint x, for every w,y € a;Cqp(cv;) it holds

d(wg Dy, x;) < Ce M7,
Proof. The first claim is a direct consequence of the second, as the sets a;Co ()
form a fundamental system of neighbourhoods of the point x.

As the representation p is (p, g, r)-hyperconvex, and w,y € a;Cqy(a;), we deduce
from Proposition 6.7 that

sin £ (a7 'w)b ® (a7 'y, Ua—r(p(a; 1)) > &.

In particular Lemma 2.5 implies

. 1 G,
d(w} @ y3, Uy (1)) < “(pla)) < e

Where C1, p; are the constants provided by the fact that p is {a,}-Anosov. The
result now follows, via triangular inequality, from Lemma 3.6, which guarantees
that

d(x;, Ur(a;)) < Coe™#2%,

The following easy converse is useful for applications:

Proposition 7.2. Consider p,q,r € [1,d — 1] withp+q <r. If p: T — PGL4(K)
is {ap,aq, ar}-Anosov and for every x € oI one has
lim  d(w) @y}, x,) =0, (16)

(w,y)—(z,z)

then p is (p, q,r)-hyperconvez.

Proof. Since p is {ap,a4}-Anosov and p + ¢ < r < d — 1, for every pair of distinct
points w,y the sum wh + y¢ is direct. Since p is {a,}-Anosov there is a lower
bound on sin i(x;, zg_T) if x, z are the endpoints of a geodesic through the origin.

Combining this fact with (16) we can find £, ¢ such that
(e ®yp) n =7 = {0}

for every triple with d(z,y) < ¢ and d(z,z) > § > . Any triple in d®)T can be
transformed in such a triple by an element of [ and thus the claim follows. (|

Using the stereographic projection (see Definition 6.4) combined with Theorem
7.1 it is possible to deduce the following estimate on Hausdorff dimension:

Proposition 7.3. Let p: I — PGL4(K) be (1,1,r)-hyperconvex, then
Hff (¢'(or)) < HEf (P(K")).

Proof. We first claim that if p : I — PGL4(K) is (1,1, r)-hyperconvex, then for
every = we can find a point z an open neighbourhood U, of z in £'(Al) such that
the stereographic projection 7, , is Lipschitz on U,. Indeed as p is {a,}-Anosov,
we can choose z so that the subspaces zj, and z;l*’” make a definite angle. The
claim is then a consequence of Theorem 7.1: Indeed, it implies we can find an open
neighbourhood U, of x such that for every pair w,y € U, the angle that wll) @ yll)
makes with zg” is bigger than a fixed constant. This is enough to guarantee that

the stereographic projection doesn’t distort distances too much.
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In particular, as Lipschitz maps preserve the Hausdorff dimension, it follows
that Hff (U,) < Hff (P(K")). Since the Hausdorff dimension of a compact set is the
maximum of the Hausdorff dimensions of the sets in a finite open cover, the result
follows. O

7.2. When 0l is a manifold and K = R. A classical result of Benoist [2] states
that if a word hyperbolic group of projective transformations divides a convex set,
then the boundary of this set has to be C* . These, together with Hitchin representa-
tions, have become the paradigm of Zariski-dense projective Anosov representations
whose limit set is a regular manifold. The purpose of this section is to provide new
examples of such phenomena. Sharper results of similar nature have recently been
obtained independently by Zhang-Zimmer [45].

We begin by observing that Theorem 7.1 has the following interesting conse-
quence.

Proposition 7.4. Let p : [ — PGL4(R) be a (1,1, r)-hyperconvex representation
and assume that 0T is topologically a sphere of dimension r — 1, then 5;(6|') s a

C! manifold with To165(00) = TasP(a)).

Proof. Theorem 7.1 implies that the set £}(dr) is differentiable at z), with tangent
space TI})[F’(:Z:;). The continuity of x — z}, completes the proof.

O

Proposition 7.4 can be applied to many different situations to produce interesting
examples through the represent and deform method, we now explain how this works
in a specific situation. Denote by

S* : PGLgy1(R) — PGL(S®(RI 1))

the k-symmetric power.

Note that in PGLg441(K) a (1,1, d)-hyperconvex representation is a projective
Anosov representation p such that for each triple (z, v, z) € d®)T the sum Tty tz,
is direct.

Proposition 7.5. Let p: T — PGL411(R) be a (1,1, d)-hyperconvex representation
and assume that there exist ¢ > 0, > 1 such that, for every yeT,

a1(p(y))aalp(v))

cethl
S PC) L a7

Then the composition
SFop: T — PGL(SF(RIT))
is (1,1, d)-hyperconvex.

Proof. We endow S*(R?*!) with the norm induced by our choice of norm on R4+
For this choice, and for every g € PGLgy1(R), the semi-homotecy ratios of S¥g are
just the products of k-tuples of semihomotecy ratios of g. Assumption (17) then
gives that for all v apart from possibly finitely many exceptions

- a1 (¥(S*p(7))) = a1(v(p()));

- aa(v(S*p(7))) = min{aq(v(p(7))), log EEIZALEON
Since p is {a1, aq}-Anosov, we deduce from Definition 3.1 that S*p is also {a1,ag}-
Anosov.
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Observe that the map S* is equivariant with respect to the map between the
partial flags

S* : {line < hyperplane} — {line c d-dimensional subspace}

defined by
SFI, H) = (I9%,19%1 o 1)).
Here we denote by ® the symmetric tensors.
It is immediate to verify that Assumption (17) also implies that S* o ¢ sends
attractors to attractors, therefore, by continuity of S¥ o &, we have, for every = € oI,

Sk(xéa xg) = (‘Tékp’ ‘rgkp)

Finally, the convergence property (Theorem 7.1) for p, together with the differ-
entiability of S? : P(R1) — P(S?*(R**!)) implies that
. 1 1 d o\ _
(w,yl)l—’rn(m,m) 4(’“}52/’ ® Ys2ps xszp) =0.

Proposition 7.2 yields the result. O
As a direct corollary we get:

Corollary 7.6. If p: I — PSO(d, 1) is cocompact, every small deformation
n: T — PGL(S*(R*™))

of S*p is (1,1,d)-hyperconvex. Any such n will have a C'-sphere as limit set in
P(Sk(Rd+l)).

Applying Johnson-Millson’s [26] bending technique we obtain the announced
Zariski dense subgroups whose limit set is a C! sphere:

Corollary 7.7. There exists a Zariski dense subgroup I < PGL(S?(R*1)) whose
limit set is a C' sphere.

Proof. Let M be a d-dimensional closed hyperbolic manifold that has a totally
geodesic, co-dimension one, closed submanifold N. The inclusion = mM <
SO(d, 1) — SL (S*(R?*1)) satisfies the hypothesis of Proposition 7.5. Without loss
of generality we can assume that m N < SO(d — 1,1). Observe that the centralizer
of
S%(SO(d —1,1)) = SL (52(|Rd+1))

is non-trivial and strictly contains that of $?(SO(d, 1)): as an $?(SO(d, 1))- mod-
ule, S2(R?+1) splits as a direct sum of an irreducible representation (usually denoted
Sp2(R%1)) and a trivial representation, its centralizer is thus reduced to R*. The de-
composition as a $*(SO(d—1,1))-module splits as the sum Sy (R~ 1) @RI~ PR
where the action on the second factor is the standard action, while the action on
R? is trivial. In particular the centralizer of S?>(SO(n — 1,1)) is GL(2,R) x R*. By
bending the representation along N with a nontrivial element in GL(2,R) which
doesn’t leave invariant the factor R, we obtain the desired representation. O

8. EXAMPLES OF LOCALLY CONFORMAL REPRESENTATIONS

The purpose of this section is to discuss some of the many examples in which
restricting the Zariski closure of a representation to a non-split real form of SL4(K)
gives room for (1, 1, p) hyperconvex representations for which we can also guarantee
that the second gap ps is strictly bigger than 2.
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8.1. Hyperconvex representations in PU(1,d) and PSp(1,d). The first inter-
esting setting in which Theorem 5.14 applies for large classes of representations is
given by considering representations in the rank one groups PU(1,d) or PSp(1,d).
To unify the treatment we will write POk (1,d) for either PU(1,d) if K = C or
PSp(1,d) if K = H and regard POk (1, d) as a subgroup of PGL(d + 1, K).

Remark 8.1. Unfortunately, as H is non-commutative, we don’t have the setup of
Section 2.2.1 at our disposal (as the exterior algebra over a non-commutative field is
not well defined), however the issue can be easily solved by considering SL(d+ 1, H)
as a subgroup of SL(2d + 2,C). Given an element g € SL(d + 1,H) we denote by g©
the corresponding element in SL(2d + 2, C); it is then immediate to verify that we
can choose a Cartan decomposition of ¢¢ so that, for every p, the subspace Usyp (gq:)
is a quaternionic vector space, and we thus set Uy (g) := Ua,(g®). Similarly we say
that a sequence («;)icz in SL(d + 1,H) is p-dominated if (af);cz is 2p-dominated in
SL(2d+2,C), and that a representation p : [ — SL(d+1,H) is (p, ¢, r)-hyperconvex
if the induced representation p : [ — SL(2d+2, C) is (2p, 2¢, 2r)-hyperconvex. With
this at hand it is easy to verify that Theorem 5.14 holds for representations with
values in SL(d + 1,H).

Recall that POk (1,d) has rank one, therefore we have at our disposal a good
notion of convex co-compactness: a representation p : I — POy (1,d) is convex
co-compact if and only if there is a convex p(I)-invariant subspace of I]-[l& whose
quotient is compact. The induced representation p : I — PGL(d + 1,K) is {a;}-
Anosov if and only if p is convex co-compact, see for example Guichard-W. [23,
Section 6.1].

Observe that POk (1, d) preserves the closed codimension 1 submanifold JHE <
P(IK?+1), furthermore one has the following.

Lemma 8.2. For every g € POk(1,d), we have Ui(g) € dHi <= P(K*!) and
Ua(g) = Ui(g)*, where the orthogonal is defined with respect to the Hermitian form
defining the group POk (1,d).

In particular, considering for every point x € 0[H]& the subspace zt < Tzéﬂ'ﬂ&,
one obtains a non-integrable distribution that has (real) codimension 1 if K = C
and 3 if K = H. In the complex case this is the standard contact structure on
the sphere. We will refer to this distribution also in the quaternionic case as the
generalized contact distribution. Given a distinct pair x,y € 0 we will denote by
€.,y the intersection P((x,y)) ndHE. Of course if K is C then €, , is a circle, while
if K = H it is a 3-sphere. In the complex case the sets €, , are often referred to
as chains, and their geometry was extensively studied by Cartan. The incidence
geometry of chains (and of suitable generalizations) played an important role in
Burger-Tozzi [9] and P. [30].

With these definition at hand we can rephrase our main results in the rank 1

setting:
Proposition 8.3. A conver cocompact action p : T — POk(1,d) is (1,1,d)-
hyperconvex if and only if for every distinct pair x,y € oI, the chain sz)y; n-
tersects £(OF) only in xfl),yll). In this case LC(p) = £(0T), and £(0T) is tangent to
the generalized contact distribution.

Proof. The first statement follows directly from the definitions: for every triple
x,y, 2z the sum x[l) + yll) + zll) is direct if and only if z; doesn’t belong to Gx}ﬁy}). The
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second statement follows then from Proposition 6.7, and the last is a consequence
of Theorem 7.1. O

There are many interesting examples of representations satisfying the assumption
of Proposition 8.3, a natural class of examples can be obtained deforming totally
real embeddings. The following is a direct consequence of Proposition 8.3:

Lemma 8.4. Let I < POg(1,d) be a convex cocompact subgroup and let p : T —
POk(1,d) be obtained extending the coefficients. Then p is (1,1, d)-hyperconvex.

Corollary 8.5. Fvery {ai}-Anosov representation 8 : T — POk(1,d) sufficiently
close to a totally real representation p is (1,1, d)-hyperconvex. In particular for each
such representation

dimpes (§(0T)) = b3 < (d — 1) dimK.

Proof. The first statement is a direct consequence of Propositions 6.2 and 8.3.
Furthermore we know that for every element g € POk (1, d), we have p3(g) = d, and
hence every point in 0l is locally conformal for 8. Theorem 5.14 then applies and
gives the second statement. ([

Another class of examples was studied by Dufloux in his thesis [15, 16]. He says
that a Schottky subgroup I' < PU(1,d) generated by a symmetric set W is well
positioned if, for every w € W there is an open subsets B(w) < 0HZ such that

e the closures B(w) are pairwise disjoint;

e w(oHI\B(w™1)) = B(w);

e 1o chain passes through three of these open subsets B(w).
Similarly one can define well positioned Schottky subgroups of PSp(1,d) replac-
ing chains with quaternionic three spheres (recall that in 8[H][fﬂ any pair of points
uniquely determines a 3 sphere, the boundary of a totally geodesic copy of Hy).
We will denote also these subspaces of 8[H][fﬂ chains for notational ease.

Arguments analogue to the ones presented in [16, Section 7.2] imply that well

positioned Schottky groups are hyperconvex representations:

Proposition 8.6. Let p : I — POk(1,d) be a well positioned Schottky subgroup.
Then p: T — SLg+1(K) is (1,1, d)-hyperconvex. Furthermore LC(p) = &(0r).

Proof. Observe that since POk (1, d) is a rank one group, p2(«) doesn’t depend on
i. Furthermore, as soon as the sequence {a;}2, forms a geodesic ray, the sequence
is d dominated by a classical ping pong argument, and it follows from Lemma 8.2
that Ef, () = 2 < P(K4).

In order to verify that every point x € oI is locally conformal, we need to
check that there exists a constant ¢ such that % (£(y) ® £(2), Ui (p(a™1))) > ¢ for
all y,z € X (). Since I is a well positioned Schottky group, we can choose §,
as the smallest distance between two sets B(w). Let w, be the first letter of .
It follows from Lemma 3.6 that if |a| is big enough Ui(p(a~t)) € B(w;') and
Xoo(a@) € Ugpn, B(s): by construction Co(a) < | J,.,,,, B(s) and the intersection
of the §,/2 neighbourhood of | J,_,,. B(s) with the image of the boundary map is
already contained in | J,_,, B(s).

Since the chain €, . through y} and z} is the intersection of OHE with Py, ®z)),
and, by assumption, €, , doesn’t intersect the open subset B(w,) < 0HZ, the result
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follows. The fact that the representation p : I — SLg41(K) is (1, 1, d)-hyperconvex
is a consequence of Theorem 7.1. (I

Corollary 8.7 (cfr. [15, Corollary 43]). Let p: T — POk(1,d) be a well positioned
Schottky subgroup. Then

HEE(£1(0r)) = A2

Proof. If K = C this follows directly from Theorem 5.14. For K = H it is enough
to observe that in the construction of the measure ! performed in Section 5.3 we
never used the commutativity of the field K. (|

We conclude the discussion on convex cocompact subgroups of POk(1,d) by
showing that the set of (1, 1, d)-hyperconvex representations is, in general, not closed
within the space of projective Anosov representations. We will prove in Proposition
9.3, that, instead, (1,1, 2)-hyperconvex representations of fundamental groups of
surfaces are closed in the space of Anosov representations. Denote by Fs the free
group on two generators.

Proposition 8.8. There exists a continuous path of {a1}-Anosov representations
pt + Fo — PU(1,d) such that po is (1,1, d)-hyperconver and py is not (1,1,d)-
hyperconvez.

Proof. As PU(1, d) has rank 1, for every 4-tuple (a*,a™,b",b7) of pairwise distinct
points in dHZ we can find elements a,b € PU(1,d) with prescribed attractive and
repulsive fixed points and with translation length big enough so that the group
generated by a, b is free and convex cocompact on IH]g: this follows from a classical
ping pong argument. Furthermore, if (a;",a; , b, ,b; ) vary continuously in ¢ we can
also arrange for the elements a¢, b; to vary continuously in ¢; in this way we can
define a continuous path p; : Fo — PU(1,d) of {aj}-Anosov representation.

Our claim follows if we choose ag,by contained in PO(1,d) (so that the rep-
resentation is (1,1, d)-hyperconvex by Lemma 8.4), and (aj,aj,b],b;) so that
(af,ay,b]) belong to a single chain, but b; doesn’t. In this case the representa-
tion p; is clearly not (1,1, d)-hyperconvex as the sum &(a™) + &(a™) + £(bT) is not
direct. (|

8.2. Locally conformal representations in SO(p,q). We now turn our atten-
tion to the group SO(p,q). Every semi-simple element g € SO(p, q) has |p — ¢|
eigenvalues equal to 1. In this subsection, considering suitable exterior representa-
tions of SO(p, ¢) we will produce examples of hyperconvex representations for which
every point is locally conformal, and thus Corollary 6.10 applies. For these repre-
sentations, the Hausdorff dimension of the limit set computes the critical exponent
for the first simple root.

The following generalization of Labourie’s property (H) [31, Section 7.1.4] guar-
antees that a suitable exterior power is hyperconvex:

Proposition 8.9. Let p : [ — SO(p,q) be {ap—1,ap}-Anosov (here p < q). Then

APp T — PGL(AP(RP9)) is {a1,aq—pt1}-Anosov. It is (1,1,q — p + 1)-hyperconvex
if and only if for every x,y,z € oI pairwise distinct, the sum

xh + (25 ng) +yh

is direct. In this case every point in oI is locally conformal.



CONFORMALITY FOR A ROBUST CLASS OF NON-CONFORMAL ATTRACTORS 41

Proof. Observe that the singular values of an element g € SO(p, ¢) < SL,14(R) have
the form o1(g) > ...0p(9) = 1 = =12>o0,(9)7" > ...01(9)"", where 1 has
multiplicity at least ¢ — p (higher 1f Up( ) = ) If p: T — SO(p,q) is {ap—1,ap}-
Anosov, then, for every v with |y| big enough, it holds o,—1(p(7)) > o,(p(7)) > 1,
hence in particular

a1(APp(7)) = o1(p(7)) - - op(p(7)),
a1(APp(7))
ap(p(7))

a1(~Pp(7)) Ul(App(v))}
op-1(p(1) " op(p(7))? |’
which implies that APp is {a1, ag—p+1}-Anosov.

Denote by Fp—1,4(RP?) the partial flag manifold consisting of pairs of (p — 1, ¢)-
dimensional isotropic subspaces and consider the map

L: ?p,Lp(RP’q) — ?17q,p+1(/\pRp’q)
(P,Q) = (AP(Q),AP"H(P) A QF)

where the orthogonal is considered with respect to the bilinear form defining the
group SO(p,q). The map L is clearly equivariant with the homomorphism AP :
SO(p,q) — SL(AP(RP-?)); furthermore, if g € SO(p,q) is Srp,lyq(vaq)—proximal,
namely ¢ has an attractive fixedpoint g™ in F,_q 4(RP?), then L(g") = (APg)*.
Thus if (€P71,€P) : oI — Fp_1 4,(RP9) denote the boundary maps associated to
p: T — SO(p,q), the boundary maps associated to APp have the form Lo (£P71, £P).

Let N denote the dimension of AP(RP:?). In order to check if the representation
APpis (1,1,q —p + 1)- hyperconvex it is enough to verify that for every distinct
triple z,y,z € dI, the subspace xl o T 2L , intersects transversely yN a+r=1 or,
equivalently, the image of xAp + zAp in /\p[Rp q/yJAVp 7+P=1 is two dimensional.

Recall that if p: I — SO(p, ¢) is ap-Anosov, then for every distinct pair (x,y) €
or? it holds h Dyl = R?, furthermore we can interpret any other point zh as a
linear map 28 : 28 — y1. With this notation the condition that the sum 2% + (zg N
yg+1) yb is direct is equivalent to requiring that

o2(APp(7)) = 0g—p+1(APp(7)) = and

4-pra (A7) = s {

zg(xp o) ng Nnyh = {0}.

Let us then choose a basis {b1...by} of 2 such that {b1,...b,—1} forms a basis of
ab~t and b, = xP A yd*!, then we have that a basis of 2? is given by ¢; = b; + 28(b;).
Furthermore the only term of the explicit expression of ¢; A ... A ¢, that might
not belong to yN P~ is by A ... A bp—1 A cp. This last vector doesn’t belong to
yNoate=t ol if and only if zp(xp N ydt) A yh = {0} O

Proposition 8.10. Assume that there are convexr cocompact representations py :
I — SO(1,k), pa : T — SO(1,1) such that py strictly dominates pa, namely there
exists constants c, i such that o1(p1(y)) > co1(p2(y))*. Then the representation
pi=p@®..®p1@p2: T — SO (p,(p— 1)k + 1+ s) satisfies the hypothesis of
Proposition 8.9.

Proof. The representation p is a,-Anosov as ps is convex cocompact, and is ap—1-
Anosov as p; strictly dominates ps. Explicitly writing down the boundary map
€P associated to p in term of the boundary maps & : I — oHE, & : T — oML
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flssociate.d t0 p1, p2 ome verifies that zfj(.xg N yit) nyh = 2} ny,, and the latter
intersection is empty as the representation is Anosov. O

Danciger-Gueritaud-Kassel [13, Proposition 1.8] gave an explicit construction of
convex cocompact actions p1, p2 on Hg of the the group I' generated by reflections
in the faces of a 4-dimensional regular right-angled 120-cell, such that p; strictly
dominates po and therefore Proposition 8.10 applies. In this case the boundary oI
is a 3 sphere. It is also easy to construct representations satisfying the assumption
of Proposition 8.10 when the group I is free, and in this case it one can deform the
representation p : F,, — SO(p, ¢) to obtain a Zariski dense representation whose
image under AP is locally conformal. We also expect that many more convex
cocompact subgroups in rank one have the same property, and it is probably possible
to give further examples of situations in which Proposition 8.9 applies for more
complicated groups, as, for example, hyperbolic Coxeter groups.

The same argument as in the proof of Proposition 8.9 gives the following

Proposition 8.11. Let p: I — SLg(K) be {ap—1,ap, as}-Anosov. Assume that
(i) there exist constants ¢, pu such that

ap-1(p(7))os (p(7))

ap(p(7))op+1(p(7))

(ii) for every x,y, z € O pairwise distinct, the sum

+ yﬁ_s

> ceulvl7

d—p+1)

oh + (20 Ny,

P
is direct,

then APp is (1,1,s — p + 1)-hyperconvez.
Observe that the first condition, which guarantees that the map

L: ?p—l,p,S(Kd) - ?17s—p+1(/\pKd)
(P.Q,R) — (AP(Q),AP"1(P) A R)

is proximal, is automatic if s = p + 1.

9. FUNDAMENTAL GROUPS OF SURFACES

Let us denote by s a word-hyperbolic group such that® ol is homeomorphic
to S'. One has the following direct consequence of Proposition 7.4 and Corollary
6.9.

Corollary 9.1. Let p: s — PGL4(R) be (1,1,2)-hyperconver, then h3' = 1.

9.1. Weak irreducibility and closedness. A projective Anosov representation
p: I > PGL4(K) is weakly irreducible if the image of its boundary map is not
contained in a proper subspace of P(K?). Clearly if p is irreducible, then p is
weakly irreducible, but it is possible to construct examples of weakly irreducible
Anosov representations with non reductive image.

The assumption of weak irreducibility can be used to study properties of the
stereographic projection 7 , defined in Definition 6.4.

8A celebrated Theorem of Gabai [18] states that a hyperbolic group s such that olg is a
circle is virtually the fundamental group of a connected, closed genus > 2 surface. We will not
use this fact.
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Lemma 9.2. Let p: I — PGL4(K) be {a1,a,}-Anosov. If the stereographic projec-
tion 7, : OT\{z} — P(K?) collapses an open set U < 0T, then ,,, is constant. In
particular the representation p is not weakly irreducible.

Proof. Indeed, as fixed points of attractive elements are dense in dI' we can find
v el with v+ € U. Up to shrinking U we can assume that v-U < U. Let V < K¢
be the smallest subspace containing {(t) for every ¢ in U. As 7, ,|y is constant, the
subspace V is proper, furthermore p(y)V = V| since if &(x1),...,&(xy) is a basis
of V' then {(vyx1),...,&(yzx) are also linearly independent vectors contained in V.
In particular, for every n, m, ,(y~"U) is constant. As the union of the sets of the
form v~ "U is the complement of a point in I, the first result follows by continuity
of m, p.

If the map 7. ,, is constant then, for every « € oI —{z}, the image of the boundary
map is contained in the proper subspace :vll, + zg_r, hence the representation is not

weakly irreducible. ([l

Lemma 9.2 is particularly useful to analyze properties of (1, 1,2)-representations
of groups 's. The following argument is very similar to Labourie [31, Proposition
8.3].

Proposition 9.3. The space of real weakly irreducible {a1,as}-Anosov representa-
tions of I's that are not (1,1,2)-hyperconvex is open.

Proof. Let p: g — PGL4(R) be {a1,a2}-Anosov and not (1,1, 2)-hyperconvex. By
definition, there exists a triple of pairwise distinct points x, ¥y, z € 0l'g such that

(ZC; ® y;) N 22_2 # 0, (18)

and thus the stereographic projection 7 , is not injective.
Note that P(R?/ 22—2) is topologically a circle. Therefore the stereographic pro-
jection 7, , is a map from an interval with a point removed to a circle that:

- does not collapse intervals,
- is not injective.

One can therefore, using the intermediate value theorem, find an interval I
0ls\{z} and a point w € ol g\({z} U I) such that 7, ,(w) belongs to the interior of
72,p(1).

This last property will hold for any map close enough to 7 ,, in particular for
the stereographic projection 7, for some 7 close to p. Thus, 7, is not injective

and hence 7 is not (1, 1, 2)-hyperconvex, as desired.
O

Recall from Definition 6.14 that a reducible representation 7 : SLo(K) — SL4(K)
is k-coherent if it has a gap of index k and its highest k£ weights belong to the same
irreducible factor. Combining results from previous sections one has the following.

Corollary 9.4. Let 7w : SL2(R) — SL4(R) be a 2-coherent representation and
p: Ts — PSL2(R) be co-compact, then any deformation n of 7p among weakly ir-
reducible {a1,az}-Anosov representations into PSLg(R) is (1,1, 2)-hyperconvez. In
particular, verifies:

- has C'-limit set in P(R?),

- the exponential growth rate hi' = 1.
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Proof. Proposition 6.16 states that mp is (1,1,2)-hyperconvex. Proposition 6.2
states hyperconvexity is an open property and, since 0l g is topologically a circle,
Proposition 9.3 implies that (1, 1, 2)-hyperconvex is closed among weakly irreducible
{a1, a2}-Anosov representations. The remaining statements follow from Proposition
7.4 and Corollary 6.9 for K = R. ]

This result can be useful to distinguish some components of weakly irreducible
Anosov representations (similar bounds on the number of connected components
of Anosov representations were obtained with different techniques by Stecker-Treib
[11, Corollary 8.2]).

9.2. The Hitchin component of PSL;(R). Let S be a closed connected oriented
surface of genus > 2. The Hitchin component of PSL4(R) is a connected component
of the character variety X(m1.5, PSL4(R)) that contains a Fuchsian representation,
i.e. a representation that factors as

18 — PSLy(R) ~4 PSLy(R),

where the first arrow is a the choice of a hyperbolic metric on S. Such a connected
component is usually denoted by #4(S) and an element p € 54(S) is called a
Hitchin representation.

Recall from Labourie [31] that a map & : o — JF(R?) satisfies Property (H) if
for every triple of distinct points z,y, z and every integer k one has

5 y) + (€ (2) n €7 (@) + €2 (@) = RY.
One has the following central result by Labourie [31].

Theorem 9.5 (Labourie [31]). Fvery Hitchin representation p : I — PSL4(R) is
(p, q,7)-hyperconvez, for every triple with p +q = r. The equivariant boundary map
€:0r — F(RY) has property (H).

Thus, one concludes the following for deformations of the exterior powers.

Proposition 9.6. Let p € 54(S) and consider any k € [1,d — 1]. Then any
weakly irreducible {a1,as}-Anosov representation n : mS — PSL(AFRY) connected
by weakly irreducible {a1, as}-Anosov representations to A¥p is (1,1, 2)-hyperconver
and consequently verifies:

- has C'-limit set in P(A*R?),
- the exponential growth rate hi' = 1.

Proof. Observe that for every s, the representation A®p is {a1, as}-Anosov, further-
more Proposition 8.11 ensures that A®p is (1, 1,2)-hyperconvex as the boundary
curve satisfies Property (H) (for £ = s — 1). The result then follows from Proposi-
tion 7.4, Corollary 6.9 and Corollary 9.4. O

When no deformation is applied one recovers the following result from Potrie-S.
[35, Theorem B].

Theorem 9.7 (Potrie-S. [35]). For every p € 54(S) and every k € [1,d — 1] one
has h3k = 1.
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9.3. Hitchin representations in other groups. More generally, let Gg be a
simple real-split Lie group. These have been classified, i.e. up to finite coverings
Gr is a group in the following list: PSL4(R), PSp(2n,R),SO(n,n + 1) SO(n,n), or it
is the split real forms of the exceptional groups Fu spiit, G2 split,£6,split, £7,split and
E8,split'

The work of Kostant [29] provides a subalgebra tg;, : sl2(R) — gg, unique up to
conjugation and called the principal sla, such that the centralizer of LQR(S 6) has
minimal dimension. Denote by g, : PSL2(R) — Gg the induced morphism. For
example, tps| @) = ta is the (unique up to conjugation) irreducible representation
of SLy(R) in R? defined in Subsection 6.3.

Let S be a closed connected genus > 2 surface. The Hitchin component of Gg
is the connected component of the character variety ¥(m1.5, Gg) that contains a
Fuchsian representation, i.e. a representation that factors as

mS — PSLy(R) =25 Gg,
where the first arrow is a the choice of a hyperbolic metric on S. We will denote
this connected component by J#(S, Gr) and an element p € (S, Gg) is called a
Hitchin representation.

Remark 9.8 (Canonical inclusions). By construction, one sees that the irreducible
representation ¢4 : SLo(R) — SLg(R) factors, depending on the parity of d, as

SLy(R) “225% Sp(2n, R) — SLay (R),

(
SLy(R) ™% SO(n,n + 1) — SLon41 (R),

SLy(R) &% Gog — SO(3,4) — SLy(R),

where, in each case, the first arrows is the principal inclusion tq,. Thus

A (S,PSp(2n,R)) < H#2,(S),

H (S, PSO(n,n + 1)) < Han1(9),

H(S,PGar) < H(S, PSO(3,4)) c H7(9).
On the other hand if we consider the embedding SO(n — 1,n) < SO(n,n) as the
stabilizer of a positive definite line. The morphism tso(p,,) is the composition

of tso(n—1,n) With such inclusion. Hence the induced action of isg(y,,) on R™™
decomposes in SLz(R)-irreducible modules as

tan—1 @ L1,
and in particular 5 (S, PSO(n,n)) is not a subset of a PSLa, (R)-Hitchin compo-

nent.

It is known to experts that every Hitchin representation is Anosov with respect
to the minimal parabolic of G, see for example Fock-Goncharov [17].

Recall that the simple roots of the group PSO(n,n) are given by {ai,...,a,—1, by}
where, as above, a;(z) = x; — ;41 and b, is defined by

bp(x) = zp_1 + Tp.

Thus every representation p € (S’, PSO(n, n)), when considered as a representa-
tion in SL,(R) under the canonical inclusion, is {a,}-Anosov for every p <n — 1.
Furthermore it is easy to check that the n-th exterior power

A" : PSO(n,n) — PSL(A™R*™)
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splits as the direct sum of two irreducible PSO(n, n)-modules, which have respec-
tively a,—1 and b,, as first root (see for example Danciger-Zhang [14]). In particular
we obtain the following result, independently announced by Labourie [30].

Theorem 9.9. For every p € 7(S,PSO(n,n)) and every p < n — 2 the exterior
power APp is (1,1,2)-hyperconvezr, and the same holds for each one of the two
irreducible submodules of A"™p. Thus the associated limit curve of p on the p-
Grassmannian for p < n — 2, as well as each one of the two limit curves in the
n-Grassmannian, is C* and one has hi =1 for every simple root a.

Proof. Considering a diagonalizable element in SLy(R) as in the proof of Lemma
6.15 we obtain that A*(12, 1 ®t1) is 2-coherent for every k € [1,n — 2]. Similarly
a direct computation shows that the 5 highest weights of A™(12,—1 @ 1) are

(2)
- X/\"(LG—l@bl) = X/\"(L2n—l®bl) =2n+...+2= n(n + 1),

(3 ICY — -
© Xt (ian 1@i1) = Xan(iam 1@ug) = 2N F -+ A= nn+1)—2

5
X ey =20+ 6 =n(n 1) — 4

and each of the first four weights appears with multiplicity one in each irreducible
SO(n,n)-submodules of A"R?". We deduce that the restriction of the represen-
tation A™(t2p—1 @ t1) to each of the two submodules is also (1,1,2)-hyperconvex.
The result is then a consequence of Corollary 9.4 together with the classification of
Zariski closures due to Guichard [21]. O

Remark 9.10. Danciger-Zhang [14] recently proved that when a representation p €
H(S,PSO(n,n)) is regarded as a representation in PSLy, (R), it is, instead, never
{an}-Anosov and the limit curve in the n — 1-Grassmannian is never C*.
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